
4.5 Confidence Intervals for Proportions

Recall (from Lecture 5) that a population proportion is

p = P (i ∈ A),

where A is a subpopulation.
Based on a random sample X1, . . . , Xn, we define the sample proportion as

p =
number of sampled items from A

n
.

Then

E (p) = p,

V (p) =
p(1− p)

n
=

pq

n
. (4.1)

So p is an absolutely correct estimator for p and by a CLT,

Z =
p− p√

pq

n

(4.2)

converges in distribution to a Standard Normal N(0, 1) variable, as n → ∞.

Now, as p is unknown, we estimate the standard error σp =
√

V (p) =

√
p(1− p)

n
by

sp =

√
p(1− p)

n
.

So, again, for large samples (n > 30), we can use

Z =
p− p√
p(1− p)

n

∈ N(0, 1)

as a pivot to construct a confidence interval for p.
For a given confidence level 1−α, with the same computations as before, we obtain a 100(1−α)%
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CI for the population proportion p as [
p± zα

2

√
p(1− p)

n

]
. (4.3)

Selecting the sample size

Just as we did for the population mean (in the case of known variance), we can derive a formula for
the sample size that will provide a certain precision of our interval estimator. The length of the CI
in (4.3) is

2

√
p(1− p)

n
z1−α

2
.

Notice that for any p ∈ (0, 1), we have

p(1− p) ≤ 1

4
.

Then to get a desired precision

2

√
p(1− p)

n
z1−α

2
≤ ∆,

we solve

2 · 1
2

1√
n
z1−α

2
≤ ∆,

for n. We get

n ≥
(z1−α

2

∆

)2

. (4.4)

CI for the difference of proportions

To estimate the difference of two population proportions p1−p2, based on two independent samples
of sizes n1 and n2, respectively, we use the estimator p1 − p2 for which we know (again, from
Lecture 4) that

E (p1 − p2) = p1 − p2,
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V (p1 − p2) =
p1q1
n1

+
p2q2
n2

, (4.5)

s2 (p1 − p2) =
p1q1
n1

+
p2q2
n2

with qi = 1− pi, qi = 1− pi, i = 1, 2. Also, for large samples (n1 + n2 > 40), by a CLT,

Z =
p1 − p2 − (p1 − p2)√

p1q1
n1

+
p2q2
n2

∈ N(0, 1). (4.6)

Using Z as a pivot, we construct a 100(1 − α)% CI for the difference of population proportions
p1 − p2 as p1 − p2 ± zα

2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

 . (4.7)

Example 4.1. A company has to accept or reject a large shipment of items. For quality control
purposes, they collect a sample of 200 items and find 12 defective items in it.
a) Find a 99% confidence interval for the proportion of defective items in the whole shipment.
b) How many items should be tested to ensure a 99% confidence interval of length at most 0.05?

Solution. The sample is large enough and we have

p =
12

200
= 0.06.

For 1− α = 0.99, α = 0.01, α/2 = 0.005, the quantile is

z0.005 = −2.576.

Then the 99% confidence interval for the proportion of defective items is[
p± zα

2

√
p(1− p)

n

]
=

[
0.06± 2.576

√
0.06 · 0.94

200

]
= [0.017, 0.103] .

So, with 99% confidence, the percentage of defective items is between 1.7% and 10.3%.

b) The length of the 99% CI we found is 0.086. For a margin of ∆ ≤ 0.05 of the 99% CI, we
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need a sample size of

n ≥
(z0.995

∆

)2

=

(
2.576

0.05

)2

= 2653.898 ≈ 2654.

Example 4.2. Two candidates prepare for the local elections. During a phone poll, 42 out of 70
randomly selected people said they would vote for candidate A and 59 out of 100 randomly selected
people said they preferred candidate B and would vote for him. Estimate the difference in support
for the two candidates with 95% confidence. Can we state affirmatively that candidate A gets a
stronger support than candidate B?

Solution. We have

n1 = 70, n2 = 100,

p1 = 42/70 = 0.6,

p2 = 59/100 = 0.59.

For the confidence interval, we want 1− α = 0.95, so we compute the quantile

z0.025 = −1.96.

We find the 95% CI for the difference of proportions,[
0.6− 0.59± 1.96

√
0.6 · 0.4

70
+

0.59 · 0.41
100

]
= [0.01 ± 0.15] = [−0.14, 0.16].

So, is the support stronger for candidate A? On one hand, the estimator p1 − p2 = 0.01 suggests
that the support is 1% higher for candidate A than for B. On the other hand, the difference could
appear positive just because of a sampling error. As we see, the 95% confidence interval includes a
large range of negative values too. Therefore, the obtained data does not indicate affirmatively that
the support for candidate A is stronger.

In the following sections, we will learn how to test if there is any significant difference between
the two candidates, so that we can conclude for it or against it.
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5 Hypothesis Testing

In the previous sections we have considered the basic ideas of parameter estimation in some detail.
We attempted to approximate the value of some population parameter θ, based on a sample, without

having any predetermined notion concerning the actual value of this parameter. We simply tried
to ascertain its value, to the best of our ability, from the information given by a random sample.
In contrast, statistical hypothesis testing is a method of making statistical inferences on some
unknown population characteristic, when there is a preconceived notion concerning its value or its
properties.

Based on a random sample, we can use Statistics to verify a various number of statements, such
as:
− the average connection speed is as claimed by the internet service provider,
− the proportion of defective products is at most a certain percentage, as promised by the manufac-
turer,
− service times have a certain distribution, etc.

Testing statistical hypotheses has wide applications far beyond Mathematics or Computer Sci-
ence. These methods can be used to prove efficiency of a new medical treatment, safety of a new
automobile brand, innocence of a defendant, authorship of a document and so forth.

5.1 Basic Concepts

So, we will work with statistical hypotheses, about some characteristic X (relative to a population),
whose pdf f(x; θ) depends on the parameter θ, which is to be estimated.
The method(s) used to decide whether a hypothesis is true or not (in fact, to decide whether to reject

a hypothesis or not) make up the hypothesis test. To begin with, we need to state exactly what we
are testing. Any hypothesis test will involve two theories, two hypotheses,
− the null hypothesis, denoted by H0 and
− the alternative (research) hypothesis, denoted by H1 (or Ha).
A null hypothesis is always an equality, showing absence of an effect or relation, some “normal”
usual statement that people have believed in for years. The alternative is the opposite (in some
way) of the null hypothesis, a “new” theory proposed by the researcher to “challenge” the old one.
In order to overturn the common belief and to reject the null hypothesis, significant evidence is
needed. Such evidence can only be provided by data. Only when such evidence is found, and when
it strongly supports the alternative H1, can the hypothesis H0 be rejected in favor of H1. The purpose
of each test is to determine whether the data provides sufficient evidence against H0 in favor of H1.
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This is similar to a criminal trial. The jury are required to determine if the presented evidence against
the defendant is sufficient and convincing. By default, the presumption of innocence, insufficient
evidence leads to acquittal.

To determine the truth value of a hypothesis, we use a sample function called
− the test statistic (TS).
The set of values of the test statistic for which we decide to reject H0 is called
− the rejection region (RR) or critical region (CR).
The purpose of the experiment is to decide if the evidence (the data from a sample) tends to rebut
the null hypothesis (if the value of the test statistic is in the rejection region) or not (if that value
falls outside the rejection region).
If the statistical hypothesis refers to the parameter(s) of the distribution of the characteristic X , then
we have a parametric test, otherwise, a nonparametric test. For parametric tests, we will consider
that the target parameter

θ ∈ A = A0 ∪ A1, A0 ∩ A1 = ∅,

and then the two hypotheses will be set as

H0 : θ ∈ A0

H1 : θ ∈ A1.

If the set A0 consists of one single value, A0 = {θ0}, which completely specifies the population
distribution, then the hypothesis is called simple, otherwise, it is called a composite hypothesis
(and the same is true for A1 and the alternative hypothesis). The null hypothesis will always be
taken to be simple. Then the null hypothesis

H0 : θ = θ0

will have one of the alternatives

H1 : θ < θ0 (left-tailed test),
H1 : θ > θ0 (right-tailed test),
H1 : θ ̸= θ0 (two-tailed test).

Remark 5.1. The first and one of the most important tasks in a hypothesis testing problem is to
state the relevant null and alternative hypotheses to be tested. The null hypothesis is usually taken
to be a simple hypothesis, but the appropriate alternate has to be understood from the context. We
mentioned that H1 is the opposite “in some way” of H0. Let us clarify this.
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1. Consider a problem in which a medicine which is believed to have the side effect of increasing
the body temperature above normal, is tested. If the temperature values of a number of patients
taking this medicine are considered, then for the mean temperature the relevant hypotheses would
be

H0 : µ = 37

H1 : µ > 37,

since an average lower than or equal to 37oC would mean the same thing in this context, the patients
are fine. A problem would be a mean temperature greater than 37oC. In this sense, H0 and H1 are
“opposites” of each other.
2. To verify that the average broadband internet connection speed is 100 Mbps, we test the hypoth-
esis

H0 : µ = 100

H1 : µ ̸= 100.

However, if we worry about a low connection speed only, we can conduct a one-sided test of

H0 : µ = 100

H1 : µ < 100.

In this case, we only measure the amount of evidence supporting the one-sided alternative H1 : µ <

100. In the absence of such evidence, we gladly accept the null hypothesis.

Designing a hypothesis test means constructing the rejection region RR, such that for a given α ∈
(0, 1), the conditional probability, conditioned by H0 being true,

P (TS ∈ RR | H0) = α. (5.1)

For any given hypothesis testing problem, we have the following possibilities:

Decision Actual situation
H0 true H1 true

Reject H0 Type I error Right
(prob. α) decision

Not reject H0 Right Type II error
decision (prob. β)

Table 1: Decisions and errors
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In two of the cases, we make the right decision, in the other two, we make an error.
A type I error occurs when we reject a true null hypothesis and by (5.1), the probability of making
such an error is

P (type I error) = P ( reject H0 | H0) = P (TS ∈ RR | H0) = α. (5.2)

The value α is called significance level or risk probability.
A type II error happens when we fail to reject a false null hypothesis, and its probability is denoted
by β,

P ( type II error) = P ( not reject H0 | H1) = P (TS /∈ RR | H1) = β. (5.3)

Remark 5.2.
1. The rejection region and hence, the hypothesis test, are not uniquely determined by (5.1), as was
the case with confidence intervals.
2. Since both α and β represent risks of making an error, we would like to design tests such that
both of their values are small. Unfortunately, making one of them very small will result in the other
being unreasonably large. But, for almost all statistical tests, α and β will both decrease as the
sample size increases.
3. In general, α is preset and a procedure is given for finding an appropriate rejection region.

5.2 General Framework, Z-Tests

Just like with confidence intervals, we start with the case where the test statistic has a N(0, 1)

distribution, so we can better understand the ideas.
Let θ be a target parameter and let θ be an unbiased estimator for θ (E(θ) = θ), with standard

error σθ, such that, under certain conditions, it is known that

Z =
θ − θ

σθ

(
=

θ − E(θ)

σ(θ)

)
(5.4)

has an approximately Standard Normal N(0, 1) distribution. We design a hypothesis testing proce-
dure for θ the following way: for a given level of significance α ∈ (0, 1), consider the hypotheses

H0 : θ = θ0,
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with one of the alternatives

H1 :


θ < θ0

θ > θ0

θ ̸= θ0.

(5.5)

We will use the test statistic TS = Z given by (5.4).
The observed value of the test statistic from the sample data is

TS0 = TS(θ = θ0). (5.6)

In our case, this is

Z0 = TS(θ = θ0) =
θ − θ0
σθ

.

How to design the rejection region RR? Let us start with the left-tailed case. We need to deter-
mine the RR such that (5.1) holds. Intuitively, we reject H0 if the observed value of the test statistic
is far from the value specified in H0, “far” in the sense of the alternative H1, in this case far to the

left of θ0. So, we determine a rejection region of the form

RR = {Z0 | Z0 ≤ k1} = (−∞, k1].

We have

α = P (Z0 ∈ RR | H0)

= P (Z0 ≤ k1 | θ = θ0)

= P (Z0 ≤ k1 | Z0 ∈ N(0, 1)).

Now, we know that if Z0 ∈ N(0, 1), P (Z0 ≤ zα) = α, where zα is the quantile of order α for the
N(0, 1) distribution. Thus, we choose k1 = zα and

RRleft = {Z0 ≤ zα}. (5.7)

Similarly, for a right-tailed test, we want to find a rejection region of the form

RR = {Z0 | Z0 ≥ k2} = [k2,∞),
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so that

α = P (Z0 ∈ RR | H0)

= P (Z0 ≥ k2 | θ = θ0)

= P (Z0 ≥ k2 | Z0 ∈ N(0, 1))

= 1− P (Z0 < k2 | Z0 ∈ N(0, 1)).

Since P (Z0 < z1−α) = 1 − α, then P (Z0 ≥ z1−α) = α and so we choose k2 = z1−α, the quantile
of order 1− α for the N(0, 1) distribution and

RRright = {Z0 ≥ z1−α}. (5.8)

Finally, for a two-tailed test, we reject the null hypothesis if the observed value of the test
statistic is far away from θ0 on either side. That is, the rejection region should be of the form
RR = {Z0 | Z0 ≤ k1 or Z0 ≥ k2} = (−∞, k1]∪[k2,∞). The rejection region should be chosen
such that

P (Z0 ≤ k1 or Z0 ≥ k2 | θ = θ0) = α,

or, equivalently,
P (k1 < Z0 < k2 | Z0 ∈ N(0, 1)) = 1− α.

We encountered such problems before in the previous section, when finding (two-sided) confidence
intervals. As we did then, we will choose k1 = zα

2
and k2 = z1−α

2
, so

RRtwo = {Z0 ≤ zα
2

or Z0 ≥ z1−α
2
}, (5.9)

or, since the distribution of Z is symmetric and z1−α
2
> 0,

RRtwo = {Z0 ≤ −z1−α
2

or Z0 ≥ z1−α
2
}

= {|Z0| ≥ z1−α
2
}.

To summarize, the rejection regions for the three alternatives (5.5) are given by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{Z0 ≤ zα

2
or Z0 ≥ z1−α

2
} = {|Z0| ≥ z1−α

2
}.

(5.10)
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Remark 5.3.
1. Since a test statistic Z ∈ N(0, 1) was used, these are commonly known as Z-tests.
2. We will derive hypothesis tests for all the common parameters (mean, variance, proportion,
difference of means, ratio of variances, difference of proportions). The test statistics and their
distributions will change, but the ideas and the principles will remain the same, as for the case we
just described.
3. Notice from our derivation of the rejection region for a two-tailed test, that there is a strong
relationship between confidence intervals and rejection regions: The values θ0 of a target parameter
θ in a 100(1− α)% CI (α ∈ (0, 1)), are precisely the values for which the test statistic falls outside

the RR, and hence, for which the null hypothesis θ = θ0 is not rejected at the significance level α.
We say that the 100(1− α)% two-sided CI consists of all the acceptable values of the parameter, at
the significance level α.
4. Caution! This is not saying that the rejection region is the complement of the confidence interval!
The RR contains values for the test statistic TS, while the CI consists of values of the parameter θ.

Example 5.4. The number of monthly sales at a firm is known to have a mean of 20 and a standard
deviation of 4 and all salary, tax and bonus figures are based on these values. However, in times of
economical recession, a sales manager fears that his employees do not average 20 sales per month,
but less, which could seriously hurt the company. For a number of 36 randomly selected salespeople,
it was found that in one month they averaged 19 sales. At the 5% significance level, does the data
confirm or contradict the manager’s suspicion?

Solution.
Here, the population would be the number of monthly sales at this firm, of all the employees, for
any period of time.
The question is about the average number of sales per month, so the test is for the population mean
µ. Recall that if either the original population is approximately Normally distributed or the sample
size is large (over 30) and σ is known, then

Z =
X − µ

σ√
n

∈ N(0, 1).

Since the sample size n = 36 > 30 and we know σ = 4, we can use a Z-test.
Now, which alternative is appropriate? The manager’s suspicion is that the average is less than

20, which is supposed to be. If that average is 20, everything is ok. If it is greater than 20, even
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better! A problem is if the average is less than 20, so the two hypotheses to be tested are

H0 : µ = 20

H1 : µ < 20,

a left-tailed test. Here, “greater than or equal to 20” go together, they are in the same category and
the opposite is “less than 20”. However, the null hypothesis states only equality to 20, but we keep
in the back of our minds that “µ > 20” falls in the same category.

A type I error would mean concluding that the average number of monthly sales is less than 20,
when in fact, it is not; a type II error would be deciding that the average number of monthly sales is
20 (or higher), but it actually is not. We allow for the probability of a type I error (the significance
level) to be α = 0.05. The population standard deviation is known, σ = 4 and the sample mean is
X = 19.
The observed value of the test statistic is

Z0 =
X − µ0

σ√
n

=
19− 20

4

6

= −1.5.

The rejection region is, by (5.10),

RR = (−∞, zα] = (−∞,−1.645].

Since Z0 /∈ RR, we do not reject H0. The evidence obtained from the data is not sufficient to reject
it. In the absence of sufficient evidence, by default, we accept the null hypothesis. So, at the 5%

significance level, the data does not confirm the manager’s suspicion.
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