
Short Review

So, we have the following parameters and random variables that describe the performance of a
stationary queuing system.

λA =
E
(
A(t)

)
t

= arrival rate

λS = service rate

µA = 1/λA = mean interarrival time

µS = 1/λS = mean service time

r = λA/λS = µS/µA = utilization (arrival-to-service ratio)

Xs(t) = number of jobs receiving service at time t

Xw(t) = number of jobs waiting in a queue

X(t) = Xs(t) +Xw(t) = total number of jobs in the system at time t

S = service time for a job

W = waiting time for a job

R = S +W = response time for a job

= total time a job spends in the system, from arrival to departure

2 Little’s Law

This is one of the most important results in queuing theory. It was first established and used by
Philip. M. Morse and other researchers in the 1950’s. In 1954, Morse published it, but was not able
to prove it, so he challenged his readers to find a situation where it did not hold. John D. C. Little,
Professor Emeritus at the MIT Sloan School of Management (since 1962), proved it in 1961. Later,
in the 1990’s and 2000’s there were more developments and versions both in theory and in practice.

Little’s Law gives a simple relationship between the expected number of jobs, the expected
response time, and the arrival rate. It is valid for any stationary queuing system.

Proposition 2.1 (Little’s Law).

E(X) = λAE(R). (2.1)

Proof. We make a diagram (see Figure 1), with time t on the x-axis and number of arrivals A(t) on
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the y-axis. Each job is represented by a rectangle with height 1 and length stretching between its
arrival and its departure time.

Fig. 1: Illustration of Littles’s Law

We will compute the shaded area in two ways, geometrically (with areas) and analytically (with
integrals).

Geometrically: add the areas of the rectangles. For job #k, the area of the rectangle is its base
length (since its height is 1), so the difference between departure and arrival times, i.e. response

time:
Area (rectangle k) = Departure time − Arrival time = Rk.

By the time T (k = 1, A(T )), there are A(T ) arrivals. Among them, X(T ) jobs remain in the system
at time T . Not all of these jobs are completed by time T , a portion of them will be completed after

time T , call that portion ε. Then, the total shaded area is

Shaded area =

A(T )∑
k=1

Rk − ε.
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Analytically: recall from Calculus that every area can be computed by integration. So we let t
run from 0 to T and integrate the cross-section of the shaded region at t. As seen on the picture, the
length of this cross-section is X(t), the number of jobs in the system at time t. Hence,

Shaded area =

T∫
0

X(t) dt.

So, we have

T∫
0

X(t) dt =

A(T )∑
k=1

Rk − ε. (2.2)

Take expectations on both side, divide by T and then let T → ∞. We compute separately the LHS
(left-hand side) and RHS of (2.2). Recall from Calculus that the mean value of a function f on an
interval [a, b] is defined as

1

b− a

b∫
a

f(x)dx.

So, in (2.2), we have

LHS = lim
T→∞

1

T
E

 T∫
0

X(t) dt


= lim

T→∞
E

 1

T

T∫
0

X(t) dt


= lim

T→∞
E(X) = E(X).

On the other side, we have

RHS = lim
T→∞

1

T
E

A(T )∑
k=1

Rk − ε


= lim

T→∞

 1

T
E
( A(T )∑

k=1

Rk

)
− ε

T
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= lim
T→∞

1

T

E(A(T ))∑
k=1

E
(
Rk

)
+ 0

= lim
T→∞

E
(
A(T )

)
T

E(R) = λAE(R),

since λA =
E
(
A(T )

)
T

.
Thus, we have

E(X) = λAE(R).

Example 2.2. A person walks into a bank at 10:00 a.m. He counts a total of 10 customers in the
bank and assumes that this is the typical, average number. He also notices that, on average, new
customers walk in every 2 minutes. When should he expect to finish his business and leave the
bank?

Solution. The average number of customers in the bank, i.e. the expected number of jobs in the
system, is

E(X) = 10.

On average, new customers walk in every 2 minutes, that is the mean interarrival time,

µA = 2 minutes, so

λA = 1/µA = 1/2 / minute.

Then the amount of time he is expected to spend in the bank, i.e. the expected response time is

E(R) =
1

λA

E(X) = µAE(X) = 20 minutes.

Thus, he should expect to leave at 10:20.

Remark 2.3.
1. Little’s Law is universal, it applies to any stationary queuing system and even to the system’s
components, the queue and the servers.

E(Xw) = λAE(W )

E(Xs) = λAE(S).
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2. Looking at the second equation above, E(S) is the expected or the mean service time, i.e. µS .
So, we have

E(Xs) = λA · µS =
λA

λS

= r,

so we just obtained another important definition of utilization, which also justifies its name.

Definition 2.4. Utilization r is the expected number of jobs receiving service at any given time.

Little’s Law only relates expectations of the number of jobs and their response time. In the
remaining sections of this chapter, we evaluate the entire distribution of X(t), which will help us
describe and evaluate the performance of a queuing system.

Definition 2.5. The number of jobs in a queuing system, X(t), is called a queuing process.

Since X(t) is the number of jobs in the system, it is clearly a discrete-state stochastic process.
The time set may be discrete or continuous and we will look at both cases. In general, a queuing
process is not a counting process because jobs arrive and depart, therefore, their number may in-
crease and decrease, whereas any counting process is nondecreasing. However, we will use counting
processes to model arrivals and service of jobs.

Another aspect is the number of servers in a queuing system, one or more. Again, we will
consider both situations (in the end even considering the case where the number of servers goes to
infinity).

3 Bernoulli Single-Server Queuing Process

Definition 3.1. A Bernoulli single-server queuing process (B1SQP) is a discrete-time queuing

process with the following characteristics:

• one server;

• unlimited capacity;

• arrivals occur according to a Binomial process, and the probability of a new arrival during

each frame is pA;

• the probability of a service completion (and thus, a departure) during each frame is pS pro-

vided that there is at least one job in the system at the beginning of the frame;

• service times and interarrival times are independent;
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• jobs are being serviced in the order of their arrival.

Examples of processes modeled by a B1SQS include: customers waiting at an ATM, cars com-
ing to a car wash or a gas station, documents arriving to a printer, clients calling a customer service
representative, etc.

Everything we know about Binomial counting processes applies to job arrivals and to service
completions, as long as there is at least one job in the system. So, we know that:
− the number of arrivals by time t, A(t), is a Binomial counting process with probability pA;
− the number of jobs being serviced at time t, Xs(t), is a Binomial counting process with probability
pS (when there is at least one job in the system);
− there is a Shifted Geometric(pA) number of frames between successive arrivals;
− there is a Shifted Geometric(pS) number of frames between successive service completions (i.e.
each service takes a SGeo(pS) number of frames);
− pA = λA∆;
− pS = λS∆.

Markov property

Obviously, a B1SQS is a Markov chain. Since the probabilities pA and pS never change, it is also
a homogeneous Markov chain. The number of jobs in the system increases by 1 with every arrival
and decreases by 1 with each departure. Conditions of a Binomial process guarantee that at most
one arrival and at most one departure may occur during each frame.

The states are {0, 1, . . .} (number of jobs in the system). Let us find the transition probabilities.

p00 = P
(
0 arrivals

)
= 1− pA

p01 = P
(
1 arrival

)
= pA.

In general, for i ≥ 1,

pi,i−1 = P
(
0 arrivals and 1 departure

)
= P

(
{0 arrivals}∩ {1 departure}

)
= (1− pA)pS

pi,i = P
((

{0 arrivals}∩{0 departures}
)
∪
(
{1 arrival}∩{1 departure}

))
= P

(
{0 arrivals}∩{0 departures}

)
+ P

(
{1 arrival}∩{1 departure}

)
= (1− pA)(1− pS) + pApS

pi,i+1 = P
(
{1 arrival}∩ {0 departures}

)
= pA(1− pS)
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All the other transition probabilities are 0, since the number of jobs cannot change by more than 1

in any single frame.
So, the transition probability matrix is

P =



1− pA pA 0 . . . 0 . . .

(1− pA)pS
(1− pA)(1− pS)

+pApS
pA(1− pS) . . . 0 . . .

0 (1− pA)pS
(1− pA)(1− pS)

+pApS
. . . 0 . . .

0 0 (1− pA)pS . . . 0 . . .
...

...
... . . .



, (3.1)

an ∞×∞ tridiagonal matrix. Below, see the transition diagram.

Fig. 2: Transition diagram for a B1SQS

The transition probability matrix may be used, for example, to simulate this queuing system
and study its performance, as we did with general Markov chains. One can also compute k-step
transition probabilities and predict the load of a server or the length of a queue at any time in future.

Example 3.2. Jobs are sent to a printer at the rate of 20 per hour. It takes an average of 40 seconds
to print each job. Currently, the printer is printing a job, and there is another job stored in a queue.
Assume a B1SQS with 20-second frames is modeling this printer.
a) Compute the probability that the printer will be idle in 2 minutes.
b) Find the expected total number of jobs in the system in 2 minutes.
c) What is the expected length of the queue in 2 minutes?

7



d) What is the expected waiting time for a document in 2 minutes?
e) On average, how long does it take to get the printout of a document in 2 minutes?

Solution.
First off, let us note that any printer represents a single-server queuing system, because it can process
only one job at a time while other jobs are waiting in a queue.

Now, parameters are given in hours, in minutes and in seconds, so let us choose the “middle”
one, i.e., express everything in minutes. We are given:

λA = 20 / hour = 1/3 / minute, so

µA = 3 minutes,

µS = 40 seconds = 2/3 minutes, so

λS = 1/µS = 3/2 / minute,

∆ = 20 seconds = 1/3 minutes.

Then

pA = λA∆ = 1/9, 1− pA = 8/9,

pS = λS∆ = 1/2, 1− pS = 1/2.

The transition probabilities are

p00 = 1− pA = 8/9,

p01 = pA = 1/9,

pi,i−1 = (1− pA)pS = 8/9 · 1/2 = 4/9,

pi,i = (1− pA)(1− pS) + pApS = 8/9 · 1/2 + 1/9 · 1/2 = 1/2,

pi,i+1 = pA(1− pS) = 1/9 · 1/2 = 1/18.

Hence,

P =



8/9 1/9 0 0 . . .

4/9 1/2 1/18 0 . . .

0 4/9 1/2 1/18 . . .

0 0 4/9 1/2 . . .
...

...
...

... . . .


.
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Now, in t = 2 minutes, there are n =
t

∆
= 6 frames. The distribution of X after 6 frames is

P6 = P0 · P 6.

The initial distribution (2 jobs in the system) is

P0 = [0 0 1 0 . . .]

Here is an interesting problem. How do we deal with matrix P that has infinitely many rows and
columns? Fortunately, we only need a small portion of this matrix. In the course of 6 frames, the
number of jobs in the system, X(t), can change by 6 at most (see Figure 2), i.e. it can reach a max-

imum of 8. Thus, it is sufficient to consider the first 9 rows and 9 columns of P only, corresponding
to states {0, 1, . . . , 8}.

So, we consider P0 (and P6) as having length 9,

P0 = [0 0 1 0 0 0 0 0 0]

and P a 9× 9 matrix,

P =



8/9 1/9 0 0 0 0 0 0 0

4/9 1/2 1/18 0 0 0 0 0 0

0 4/9 1/2 1/18 0 0 0 0 0

0 0 4/9 1/2 1/18 0 0 0 0

0 0 0 4/9 1/2 1/18 0 0 0

0 0 0 0 4/9 1/2 1/18 0 0

0 0 0 0 0 4/9 1/2 1/18 0

0 0 0 0 0 0 4/9 1/2 1/18

0 0 0 0 0 0 0 4/9 1/2


.

In 2 minutes (6 frames), the distribution will be

P6 = P0 · P 6 = [ 0.6436 0.25 0.0799 0.0218 0.0041 0.0005 0 0 0 ].

a) The probability that the printer is idle after 2 minutes is the probability of 0 jobs in the system at
that time, i.e.

P6(0) = 0.6436.
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b) In 2 minutes, the total number of jobs in the system, X(2), has pdf

X

(
0 . . . 8

P6

)
=

(
0 1 2 3 4 5 6 7 8

0.6436 0.25 0.0799 0.0218 0.0041 0.0005 0 0 0

)
,

so

E(X) =
8∑

k=0

kP6(k) = 0.4944 jobs.

c) Out of the X jobs in the system above, Xw jobs are waiting in a queue and Xs are being serviced.
The expected length of the queue is the expected value

E(Xw) = E(X −Xs)

= E(X)− E(Xs).

We have found E(X), so let us turn our attention to Xs.
Since the server (printer) can process at most 1 job at a time, Xs is either 0 or 1, i.e. it has

Bernoulli distribution. With what parameter p? The parameter is the probability of “success”, in
this case, the probability that the system is working, so, not idle:

p = P (printer is busy) = 1− P (printer is idle) = 1− 0.6436 = 0.3564.

So the pdf of Xs is

Xs

(
0 1

1− p p

)
and its expected value

E(Xs) = p = 0.3564.

Then the expected queue length is

E(Xw) = E(X)− E(Xs) = 0.4944− 0.3564 = 0.138 jobs.

d) The expected waiting time for a document is E(W ). By Little’s Law, we have

E(W ) =
1

λA

E(Xw) = µAE(Xw) = 3 · 0.138 = 0.414 minutes = 24.84 seconds.

e) This is the expected total time the job spends in the system, i.e., the expected response time of a
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job, in 2 minutes. Again, by Little’s Law, that number is

E(R) =
1

λA

E(X) = 3 · 0.4944 = 1.4832 minutes.

Remark 3.3.
1. A B1SQS is an irregular Markov chain. Any k-step transition probability matrix contains zeros
because a k-step transition from 0 to k + 1 is impossible. It requires at least k + 1 arrivals, and this
cannot happen by the conditions of the Binomial process of arrivals.
2. However, without the Binomial counting process restrictions, it can be shown that any system
whose service rate exceeds the arrival rate (i.e., jobs can be served faster than they arrive, so there
is no overload),

λS > λA,

does have a steady-state distribution, despite the infinite dimension of P . In fact, we will compute
the steady-state distribution of a continuous queuing process, obtained by letting the frame size
∆ → 0.

Systems with limited capacity

As we have seen, the number of jobs in a B1SQS may potentially reach any number. However, in
practice, many systems have limited resources for storing jobs. Then, there is a maximum number
of jobs C that can possibly be in the system simultaneously. This number is called capacity. As
examples, consider people going to a restaurant, cars entering a parking lot, customers going into a
bank, etc.

How does the situation change for a queuing system with a limited capacity C < ∞? Not much,
but it does make a difference. Up until the capacity C is reached, the system operates as before.
Things change when X = C. At this time, the system is full, so it can accept new jobs into its queue
only if some job departs. We have

pC,C−1 = P
(
0 arrivals ∩ 1 departure

)
= (1− pA)pS (as before),

pC,C = P
(
( 0 arrivals ∩ 0 departures ) ∪ ( 1 arrival ∩ 1 departure )

∪ ( 1 arrival ∩ 0 departures )
)

= (1− pA)(1− pS) + pApS + pA(1− pS)

= 1− (1− pA)pS.
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This Markov chain has states 0, 1, ..., C, its transition probability matrix is finite, and it is regular

(any state can be reached in C steps). The transition diagram for a system with limited capacity is
given in Figure 3.

Fig. 3: Transition diagram for a B1SQS with limited capacity C

Example 3.4. A customer service representative has a telephone with 2 lines, so she can talk to a
customer while having another one “on hold”. Suppose the representative gets an average of 10 calls
per hour and the average phone conversation lasts 4 minutes. Assuming a B1SQS with 1-minute
frames find the steady-state distribution and interpret it.

Solution.
Obviously, this is a system with limited capacity C = 2. When the capacity is reached and someone
tries to call, (s)he will get a busy signal or voice mail.
This Markov chain X(t) has 3 states, 0, 1, 2 and we have:

λA = 10 / hour = 1/6 / minute,

µS = 4 minutes, so

λS = 1/µS = 1/4 / minute,

∆ = 1 minute,

so,

pA = λA∆ = 1/6, 1− pA = 5/6,

pS = λS∆ = 1/4, 1− pS = 3/4.
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The transition probability matrix is 3× 3,

P =

 1− pA pA 0

(1− pA)pS (1− pA)(1− pS) + pApS pA(1− pS)

0 (1− pA)pS 1− (1− pA)pS

 =

 5/6 1/6 0

5/24 2/3 1/8

0 5/24 19/24

 .

The steady-state distribution is found, as usually, from the system
πP = π
2∑

k=0

πk = 1,

which leads to 
π0 −

5

4
π1 = 0

3

5
π1 − π2 = 0

π0 + π1 + π2 = 1,

with solution

π0 =
25

57
≈ 0.439,

π1 =
20

57
≈ 0.351,

π2 =
12

57
≈ 0.21.

Interpretation: 43.9% of the time the representative is not talking on the phone (and, implicitly,
there is no one on hold), 35.1% of the time she talks to a customer, but the second line is open, and
21% of the time both lines are busy (one talking, one holding) and no new calls can get through.
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