Chapter 3. Stochastic Processes

So far, when discussing random variables, random vectors and their distributions, we described
the situation at a particular moment of time, as if someone had said “Freeze!” and everything stood
still. But the real world is dynamic and many random variables develop and change in time (think
stock prices, air temperatures, interest rates, football scores, CPU usage, the speed of internet con-
nection, popularity of politicians, and so on).

Basically, stochastic processes are random variables that evolve and change in time.

1 Basic Notions

Definition 1.1. A stochastic process is a random variable that also depends on time. It is denoted
by X(t,e) or X,(e), where t € T is time and e € S is an outcome. The values of X (t, €) are called

states.

If t € T is fixed, then X; is a random variable, whereas if we fix e € S, X, is a function of time,

called a realization or sample path or trajectory of the process X (¢, e).

Definition 1.2. A stochastic process is called discrete-state if X,(e) is a discrete random variable,
forallt € T and continuous-state if X,(e) is a continuous random variable, for all t € T.
Similarly, a stochastic process is said to be discrete-time if the set T is discrete and continuous-time

if the set of times T is a (possibly unbounded) interval in R.

Example 1.3.
1. Available memory, CPU usage, in percents, is a continuous-state, continuous-time process.
2. The CPU usage per hour is continuous-state, discrete-time.

3. In a printer shop, X,,(e), the amount of time required to print the n®

job, is a discrete-time,
continuous-state stochastic process, because n = 1,2, ... and X € (0, 00).

4. On the other hand, Y, (e), the number of pages of the n'" printing job, is discrete-time and
discrete-state. In this case, Y = 1,2, ..., which is a discrete set.

5. The actual air temperature X;(e) at time ¢ is a continuous-time, continuous-state stochastic pro-
cess. Indeed, it changes smoothly and never jumps from one value to another.

6. However, Y;(e), the temperature reported every hour on radio or TV, is a discrete-time pro-
cess. Moreover, since the reported temperature is usually rounded to the nearest degree, it is also a

discrete-state process.



Throughout the rest of the course, we will omit writing e as an argument of a stochastic process

(as it is customary when writing random variables).

2 Markov Processes and Markov Chains

2.1 Transition Probability Matrix

Definition 2.1. A stochastic process X; is Markov if for any times t; < t5 < ... < t, < t and any
sets Ay, Aoy A A,

PXieA| Xy, €Ay,..., Xy, €A,)=P(X: € A| Xy, € A,). (2.1)

What this means is that the conditional distribution of X; given observations of the process at

several moments in the past, is the same as the one given only the latest observation:
P(future | past, present) = P(future | present).

Example 2.2.

1. Let X, be the total number of internet users registered by some internet service provider by the
time ¢. If, say, there were 999 users connected by 10 o’clock, then their total number will be or
exceed 1000 during the next hour regardless of when and how those 999 users connected to the
internet in the past. The number of connections in an hour will only depend on the current number.
This process is Markov.

2. Let Y; be the value of some stock or some market index at time ¢. If we know Y (¢), do we also
want to know Y (¢ — 1) in order to predict Y (¢ + 1)? One may argue that if Y (¢ — 1) < Y'(¢), then
the market is rising, therefore, Y (¢ + 1) is likely (but not certain) to exceed Y (¢). On the other hand,
if Y(t—1) > Y (t), we may conclude that the market is falling and may expect Y (t +1) < Y (¢). It
looks like knowing the past in addition to the present did help us to predict the future. In this case,
to make predictions about the future, we need a history (so the past, too, not just the present). Then,

this process is not Markov.

Remark 2.3. The idea of Markov dependence was proposed and developed by Andrey A. Markov
(1856 — 1922) who was a student of P. L. Chebyshev at St. Petersburg University (Russia).



Definition 2.4. A discrete-state, discrete-time Markov stochastic process is called a Markov chain.

To simplify the writing, we use the following notations: Since a Markov chain is a discrete-time

process, we can see it as a sequence of random variables
{Xo, X1,...},

where X, describes the situation at time ¢t = k.

It is also a discrete-state process, so we can denote the states by 1,2, ..., n. Sometimes we will
start enumeration from state 0, and sometimes we might deal with a Markov chain with infinitely
many (discrete) states, then we will have n = oo.

Then the random variable X}, has the pdf

1 2 ... n
a ( Py(1) Py(2) ... Py(n) ) ’ (2.2)

where

Since the states (the values of the random variable X}) are the same for each k, one only needs the

second row to describe the pdf. Then let

P, = [P(1) Pu(2) ... Pu(n)] (2.3)

denote the vector on the second row of (2.2). Obviously, Z Py(i) = 1.
i=1
So, in short, we can write the pdf of X, as

X 1 ... n
k P, .

The Markov property (2.1) means that in predicting the value of X4, i.e. in which state j it is and



with what probability P;,1(7), only the value i of X; matters. So (2.1) can now be written as
P(Xt+1:j|Xt:’l.,Xt_1:l7...) = P(Xt+1:j|Xt:i), for all tGT (24)

We summarize this information in a matrix.
Definition 2.5.

» The conditional probability
pij(t) = P(Xe=j|Xe=1) (2.5)

is called a transition probability; it is the probability that the Markov chain transitions from

state 1 to state j, at time t. The matrix

P(t) = [py (t)]i,j:ﬁ (2.0)
is called the transition probability matrix at time t.

* Similarly, the conditional probability
Py = P(Xin =3 X =1) 27

is called an h-step transition probability, i.e. the probability that the Markov chain moves

from state 1 to state j in h steps, and the matrix

PO = [pPm] @8

1,7=1,n
is the h-step transition probability matrix at time t.

Definition 2.6. A Markov chain is homogeneous (or stationary) if all transition probabilities are

independent of time,

pij(1) Pij,

Pt) = P = |pyl—tm:
i () = py,
.



Being homogeneous means that transition from ¢ to j has the same probability at any time.
By the Markov property, each next state can be predicted from the previous state only.
So, when working with Markov chains, we will need to know:
e X, its initial situation, i.e. the distribution of its initial state, Fp;
¢ the mechanism of transitions from one state to another, i.e. the matrix P.

Based on this, we want to find:

* h-step transition probabilities pg-b) and P,

* the distribution of states at time h, X, i.e. P, which will be our forecast;

« possibly the limit of P") and P, as h — oo, i.e. a long-term forecast.

In order to better understand the ideas and the computations, let us start with a simple example

and then discuss the general formulas.

Example 2.7. In Rainbow City, each day is either sunny or rainy. A sunny day is followed by
another sunny day with probability 0.7, while a rainy day is followed by a sunny day with probability

0.4. Suppose it rains on Monday. Make forecasts for Tuesday.

Solution. This process has two states, 1 = “sunny” and 2 = “rainy”, so it is discrete-state. The
time set {Monday, Tuesday, . ..} is also discrete, so it is discrete-time.

Since the weather forecast for each day depends only on the weather the previous day, it is a Markov
process and, hence, a Markov chain.

Finally, since transition probabilities are the same for any two consecutive times (days), it is also
homogeneous.

Thus, X}, the weather situation on day k, is a homogeneous Markov chain with 2 states.

The initial situation (on Monday) is

12
XO<O 1), P(1) =0, Py(2)=1, Py=[0 1].

The transition probability matrix is

pP—=

P11 D12 _ 0.7 0.3
P21 P22 0.4 0.6
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This can also be seen in a transition diagram (Figure 1). Arrows represent all possible one-step

transitions, along with the corresponding probabilities.

0.3 ‘
0.7 0.6
0.4

Fig. 1: Transition diagram for Example 2.7

Now, what is the prognosis for Tuesday (¢ = 1)? Since it rains on Monday, we only need to
look at the second row in matrix P, the transition probabilities from state 2. Then the forecast for
Tuesday is “sunny” with probability ps; = 0.4 (making a transition from a rainy to a sunny day) and

“rainy” with probability py; = 0.6. So for X;, we have

1 2
X . P(1)=04, P(2)=06, P,=1[04 0.6].
1(0'4 06) 1(1) 1(2) 1= ]

Recall multiplication of matrices. For two n x n matrices, A = [a]; ;—15, B = [bij]; j—17> the

product is computed by

blj n
[AB]U = |Q;1 ... Qipl- = E aik'bkj-
ith row of A bnj k=1
jth col. of B

Let us notice that

= [04 06] = P. (2.9)

PP = [0 1][0.7 0.3]

0.4 0.6

Now, before we go any further with our forecast, we need a little review. Recall the Total
Probability Rule (Theorem 1.4j, in Lecture 1):

P(E) = > P(E|A)P(4A),

el



for any partition { A4;};c;.
The same formula holds for a conditional probability, i.e.

P(E|B) = Y _ P(E|A)P(4B),

el

if {A; }ics is a partition of S and P(B) # 0.

Example 2.8. Assuming the same situation as before, make forecasts for Wednesday.

(2.10)

Solution. To make forecasts for Wednesday, we need the 2-step transition probability matrix P(%),

making one transition from Monday to Tuesday, X, to X;, and another one from Tuesday to

Wednesday, X; to X5. We’ll have to condition on the weather situation on Tuesday and use formula

(2.10). Notice that the events {{Tuesday is sunny }, {Tuesday is rainy}} form a partition. That is,

{(X; =1),(X; = 2)} form a partition.

So, let us proceed:

(2 _

ps; = P (Wednesday is sunny | Monday is rainy)

= P(Xy=1|X,=2)

+ P

P11 P21 + Pa1 - P22
0.7-04+04-06 = 0.52.

Obviously,

(2)

ps;, = P (Wednesday is rainy | Monday is rainy)
= 1 — P (Wednesday is sunny | Monday is rainy)

= 1-pY = 048

(

Thus, we have the second row of P, which is all we need to know in order to make forecasts for

Wednesday:

0.52 0.48

1 2
X2< ) Py(1) = 0.52, Py(2) = 0.48, P, =[0.52 0.48].

So, for Wednesday there is 52% chance of sun and 48% chance of rain.
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Notice that

pP-P® =10 11| = [0.52 048] = P,. 2.11
: 0 1] 0.52 0.48 [ I =B @11

Even though it wasn’t necessary for the Wednesday forecast, let us still compute the first row of
P®_in order to draw some conclusions. We proceed in a similar way (but write fewer details). We

have

P = P(Xy=1|X=1)
P(X,=1|X, = 1)P(X; =1 X, = 1)

P11 * P11+ P21 - P12
(0.7)24+0.3-04 = 0.61

and, of course,
2 2

So, we notice that

pﬁ) = P11 P11+ P21 - P12
P11
= [pn p12] )
| P21 |
2 _ ) )
D37 = P11 P21+ Do1 - Do
P11
= [p21 p22]
| P21 |

and, in fact,

by _ | 061039 ]
0.52 0.48

the second power of P.



Also, from (2.9) and (2.11), we notice that
Py-PY = P, i=1,2

Now, we can state the general result.

Proposition 2.9 (Chapman-Kolmogorov). Ler { Xy, X1, ... } be a Markov chain. Then the follow-

ing relations hold:

P — pt(=p.p.....P), foral h=12, ... (2.12)
N———
h times
P, = Py-PY = PP foral i=0,1,... (2.13)

Proof.

The proof of (2.12) goes by induction.

Obviously, relation (2.12) is true for & = 1. Assume P(*~1) = ph-1,

For a matrix M, we use the notation [M];; = M (i, j) and, similarly, for a vector v, (v); = v(i).
Since the events {(X;_1 = k)},_1, form a partition, using the Total Probability Rule (2.10) with
E= (X =j),B=(Xo=1),A, = (Xo1 = k), k = L, for [PM];; = p (the (i, j)-entry in
matrix P(")), we have

i = PX=j|Xo=1)
= D) P(Xn=j|Xna=k) -P(Xp1=k|Xo=1)
k=1 g pﬁ;’;”
= i oy = [P0 P

k=1
[ph—l . P]ij’ forall i,j =1,n,

ind. hyp.

SO
" = ph.

To prove the second relation (2.13), for each j = T,n, we have [P]; = Pi(j) = P(X; = j).

Again, using the Total Probability Rule for the partition {(Xo = k)},_75, with E = (X; = j) and



Ay = (Xo = k)), we get for [Py

P(X;=j) = Y P(X;=j|Xy=k) P(Xo=k)

k=1

o) [Pol,

= Y [pl, - py)

_

so0, by the previous relation proved, (2.12), we obtain

=

p(i)]

j )

P,=P P

Example 2.10. Assume the same situation as before, except for Monday the forecast is 80% chance

of rain. Make forecasts for Wednesday and Friday.

Solution. What is different from the previous situation? The transition probability matrices P and

P") —= P are the same. What changes is the initial situation. Now,

x [ ' 2 Py=1[0.2 0.8]
°\ 02 08 )7 ° T T

So, for Wednesday (t = 2), we have

= [0.538 0.462],

0.61 0.39
0.52 0.48

that means 53.8% chance of sun and 46.2% chance of rain.

For Friday, four days after Monday (so, at ¢t = 4), we have

= [0.5684 0.4316],

0.5749 0.4251
Pi=Py-PY = PB-P' = [0.2 0.8][ ]

0.5668 0.4332

i.e. 56.84% chance of sun and 43.16% chance of rain.
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Remark 2.11. Notice that in matrices P and P®)(= P"), the sum of all the probabilities on each
row is 1. That is because from each state, a Markov chain makes a transition to one and only one
state, i.e. state destinations are mutually exclusive and exhaustive events, thus forming a partition.
Such matrices are called stochastic. Caution! In general, this property does not hold for column
totals. Some states may be “more favorable” than others, then they are visited more often than
others, thus their column total will be larger. In our weather example, that is the case for the state

“sunny”’.

2.2 Simulation of Markov Chains

Many important characteristics of stochastic processes require lengthy complex computations.
Thus, it is preferable to estimate them by means of Monte Carlo methods.

For Markov chains, to predict its future behavior, all that is required is the distribution of X, i.e. Fy
(the initial situation) and the pattern of change at each step, i.e. the transition probability matrix P.
Once X is generated, it takes some value X, = 7 (according to its pdf F,). Then, at the next step,

X 1s a discrete random variable taking the values j,j = 1, ..., n with probabilities p;; from row ¢

of the matrix P. Its pdf will be
1 2 ... n
X1
(]%’1 Pi2 .. Pin )

The next steps are simulated similarly.
Since, at each step, the generation of a discrete random variable is needed, we can use the algorithm

that simulates an arbitrary discrete distribution, Algorithm 2.6 in Lecture 3.

Algorithm 2.12.
1. Given:
Nj; = sample path size (Iength of Markov chain),
Py=1[Py(1) ... Py(n),
P = [Pij]i,jzﬁ-
2. Generate X from its pdf F.
3. Transition: if X, = 1, generate X, , with probabilities p;;, j = 1,n (i.e. the i*" row of P), using
Algorithm 2.6 (L3).

4. Return to step 3 until a Markov chain of length N, is generated.
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