
4 Rejection Method

The inverse transform method works well when the cdf F of a random variable does not have a
complicated expression and its inverse F−1 is relatively easy to find. But when that is not the case,
we need other methods with larger applicability. We present next a method that uses the pdf f

instead.

Remark 4.1. Before we get started, let us briefly review some properties of Uniformly distributed
random variables and random vectors.
1. Recall that for Uniform U(a, b) variables, the pdf is given by

f(x) =


1

b− a
, x ∈ [a, b]

0, x /∈ [a, b]
=


1

length[a, b]
, x ∈ [a, b]

0, x /∈ [a, b]
.

A vector (X, Y ) has a Uniform distribution over a domain D ⊆ R2 if its (joint) pdf is of the form

f(x, y) =

{
const, (x, y) ∈ D

0, (x, y) /∈ D
.

What value must that constant be? It should be the value that makes the total integral of f over R2

equal to 1, as that represents the probability of the sure event. Then

1 =

∫∫
R2

f(x, y) dxdy =

∫∫
D

const dxdy = const
∫∫
D

dxdy = const · area(D),

so that constant must be 1/area(D). Thus, a vector (X, Y ) has a Uniform distribution over D ⊆ R2

if its pdf is

f(x, y) =


1

area(D)
, (x, y) ∈ D

0, (x, y) /∈ D
. (4.1)

2. From the joint pdf of a vector (X, Y ), we can always get the marginal pdf’s of its components by

fX(x) =

∫
R

f(x, y) dy, ∀x ∈ R, fY (y) =

∫
R

f(x, y) dx, ∀y ∈ R. (4.2)

3. If U ∈ U(0, 1), then X = α + (β − α)U ∈ U(α, β), ∀α < β.
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Theorem 4.2. Let f : R → R be a pdf. Let the vector (X, Y ) be Uniformly distributed over the

region

D = {(x, y) ∈ R2 | 0 ≤ y ≤ f(x)} (4.3)

(see Figure 1). Then X has pdf f , i.e. fX = f .

Fig. 1: Domain D

Proof. First, let us determine the joint pdf of the vector (X, Y ). By (4.1), it is

f(X,Y )(x, y) =
1

area(D)
, for (x, y) ∈ D

and 0 everywhere else. But, since f is a pdf, that area is
∫
R

f(x) dx = 1.

So, the joint pdf of (X, Y) is

f(X,Y )(x, y) =

{
1, (x, y) ∈ D

0, (x, y) /∈ D.

Then, using (4.2), we find the (marginal) pdf of its first component X . Fix x ∈ R. We have

fX(x) =

∫
R

f(X,Y )(x, y) dy =

∫
(x,y)∈D

dy =

y=f(x)∫
y=0

dy = f(x). (4.4)

Thus, X indeed has the function f as its pdf.
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So, to generate a variable with given pdf f , we generate points (X, Y ) that are Uniformly dis-
tributed in D. In order to have (X, Y ) ∈ D, we must have Y ≤ f(X). If that is not the case, we
reject the value, hence the name of the method.

Algorithm 4.3.

1. Find numbers a, b ∈ R, c ∈ R+ such that f(x) ∈ [0, c] for x ∈ [a, b] (this is always possible,
since D is a bounded region in R2, having an area of 1). The rectangle [a, b]× [0, c] is called
a bounding box.

2. Generate U, V ∈ U(0, 1).

3. Let X = a + (b − a)U and Y = cV . Then X ∈ U(a, b), Y ∈ U(0, c) and (X, Y ) ∈
U ([a, b]× [0, c]).

4. If Y > f(X), reject the point and return to step 2. If Y ≤ f(X), then X has the desired pdf,
f .

The idea of the rejection method is displayed graphically in Figure 2.

Fig. 2: Rejection Method

Example 4.4. Recall Example 3.2 (Lecture 3). Now let us use the rejection method to generate a
random variable X with that same pdf

f(x) =
1

2
(x+ 1), x ∈ [−1, 1]. (4.5)

Then test it for the values (U1, V1) = (0.12, 0.45) and (U2, V2) = (0.91, 0.37).
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Solution. The graph of f is shown in Figure 3. We can see that a bounding box is [−1, 1] × [0, 1].
Then by Algorithm 4.3, we find

X = 2U − 1 and

Y = V.

For (U1, V1), we find (X, Y ) = (−0.76, 0.45), for which Y = 0.45 > 0.12 = f(X), so this point is
rejected.
For (U2, V2), we have (X, Y ) = (0.82, 0.37) and Y = 0.37 < 0.91 = f(X), so this point is
accepted.
Thus we generated the value 0.82 for the random variable X with pdf (4.5).

Fig. 3: Function f in Example 4.4

Remark 4.5. The rejection method can be used to generate n−dimensional random vectors having
a desired joint pdf f : Rn → R. A bounding box now becomes an (n+1)−dimensional cube, where
we generate a Uniformly distributed random vector (X1, X2, . . . , Xn, Y ), which will be accepted
only if Y ≤ f(X1, X2, . . . , Xn). Then, the generated vector (X1, X2, . . . , Xn) will have the desired
joint density f .
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5 Special Methods

These are methods aimed at particular variables, using specific properties of certain distributions.
They are a good alternative of simulation, when the more general methods presented so far, are too
complicated to implement.

Poisson Distribution P(λ), λ > 0

Let us recall: In a Poisson process, where X is the number of rare events occurring in time t, X has a
Poisson distribution, X ∈ P(λt), while the time between rare events and the time of the occurrence
of the first rare event have an Exp(λ) distribution. Then to generate a P(λ) variable, we count the
number of rare events that occur during one unit of time (t = 1) and generate the Exponential times
between events by formula (3.4) (Lecture 3), using the Inverse Transform Method. So, each such

time is generated by Ti = −1

λ
ln (Ui), for Ui ∈ U(0, 1) and then we count the number of events that

occurred in one unit of time:

X = max{n | T1 + . . .+ Tn ≤ 1}. (5.1)

We can simplify the above formula:

T1 + . . .+ Tn = −1

λ
ln (U1) + . . .− 1

λ
ln (Un)

= −1

λ

(
ln (U1) + . . .+ ln (Un)

)
= −1

λ
ln
(
U1 · . . . · Un

)
.

Then in (5.1) we have, equivalently,

−1

λ
ln
(
U1 · . . . · Un

)
≤ 1

ln
(
U1 · . . . · Un

)
≥ −λ

U1 · . . . · Un ≥ e−λ.

So, a Poisson variable X can be generated by

X = max{n | U1 · . . . · Un ≥ e−λ}. (5.2)
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Algorithm 5.1.

1. Generate U1, U2, . . . ∈ U(0, 1).

2. X = max{n | U1 · U2 · . . . · Un ≥ e−λ}.

Normal Distribution N(µ, σ), µ ∈ R, σ > 0

We present an algorithm called the Box-Muller transform, that converts a pair of independent
Standard Uniform variables (U, V ) into a pair of independent Standard Normal variables (Z1, Z2).

Algorithm 5.2.

1. Generate U, V ∈ U(0, 1).

2. Let

Z1 =
√

−2 ln (U) cos (2πV ),

Z2 =
√

−2 ln (U) sin (2πV ). (5.3)

Then Z1, Z2 are independent N(0, 1) random variables.

3. Let X = σZ + µ (for either Z from above). Then X ∈ N(µ, σ).

Without going into too many details, this transform is based on the following idea:
For Z1, Z2 ∈ N(0, 1), the variable

D2 = Z2
1 + Z2

2 ∈ Exp(1/2),

so D2 can be generated by

D2 = − 1

1/2
ln (U) = −2 ln (U) and

D =
√
−2 ln (U),

for some U ∈ U(0, 1). From here, it is just a matter of getting the two sides of a rectangular triangle
from its hypotenuse (see Figure 4). We have

Z1 = D cosω

Z2 = D sinω,
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where the angle ω can take any value in [0, 2π] (a complete rotation), i.e. it has a Uniform distribu-
tion U(0, 2π), so ω = 2πV for some other Standard Uniform variable V ∈ U(0, 1). Thus, we get
(5.3).

Fig. 4: Box-Muller Transform

6 Accuracy and Size of a Monte Carlo Study

Now, using the methods of simulation presented so far, we perform a Monte Carlo study, meaning
that we put the chosen algorithm in a loop and simulate a “long run”, i.e. generate a number of such
variables, X1, . . . , XN .
Recall from Statistics that when a parameter θ is approximated by an estimator (a function of sample
variables) θ, a desired quality of that estimator is to be unbiased, i.e. that

E(θ) = θ, (6.1)

so that, in the long run, we know its values will stabilize at the right point. We also want that its
variance V (θ) be small, approaching 0, as the sample size N → ∞.
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Estimating Probabilities, Means and Variances

We estimate probabilities by long run relative frequencies. For a random variable X , we generate
variables X1, . . . , XN with the same distribution and approximate p = P (X ∈ A) by

p =
number of X1, . . . , XN ∈ A

N
. (6.2)

The mean value E(X) = µ, the variance V (X) = σ2 and the standard deviation σ =
√
V (X) of a

random variable X are estimated by

X =
X1 + . . .+XN

N
,

s2 =
1

N − 1

N∑
i=1

(
Xi −X

)2
, s =

√
s2,

(6.3)

respectively. Since the simulations are independent, the number at the numerator in (6.2) has Bino-
mial B(N, p) distribution (the number of successes in N trials) and, hence, expected value Np and
variance Np(1− p). Then, we have

E(p) =
1

N
Np = p,

V (p) =
1

N2
Np(1− p) =

p(1− p)

N
.

(6.4)

Thus, p is an unbiased estimator for p and its standard deviation σ(p) =

√
p(1− p)

N
decreases with

N at the rate of 1/
√
N .

The same is true for the estimators in (6.3), but we omit the details.

Accuracy of a Monte Carlo Study

When we conduct a Monte Carlo study, the question arises about its size. What would be a suitable
size in order to get a certain accuracy? Given a tolerable error ε > 0 and a significance level
(probability of error) α ∈ (0, 1), we want to determine the size N so that

P
(
|p− p| > ε

)
≤ α. (6.5)
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It is known that for moderate values of p (0.05 ≤ p ≤ 0.95) and large values of n, a Binomial
variable can be approximated by a Normal one:

B(n, p) ≈ N
(
µ = np, σ =

√
np(1− p)

)
(6.6)

Also, recall that for a Normal variable X ∈ N(µ, σ), its reduced variable
X − E(X)

σ(X)
=

X − µ

σ
has a Standard Normal N(0, 1) distribution.

Then for the variable Np for large values of N , we use the Normal approximation of the Bino-
mial distribution of Np, to get

Np− E(Np)√
V (Np)

=
N(p− p)

N

√
p(1− p)

N

=
p− p√
p(1− p)

N

≈ N(0, 1).

We can use this to estimate the probability in (6.5). We have

P
(
|p− p| > ε

)
= P

 |p− p|√
p(1− p)

N

>
ε√

p(1− p)

N

 = 2Φ

(
− ε

√
N√

p(1− p)

)
,

where Φ is Laplace’s function (the cdf of a N(0, 1) variable) described in equation (5.13) (Lecture
2).
Still, this contains the unknown value p. We can manage that using the fact that for any p ∈ (0, 1),

p(1− p) ≤ 1

4
,√

p(1− p) ≤ 1

2
,

1√
p(1− p)

≥ 2,

− 1√
p(1− p)

≤ −2,

so,

− ε
√
N√

p(1− p)
≤ −2ε

√
N.
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Since Φ is an increasing function,

Φ

(
− ε

√
N√

p(1− p)

)
≤ Φ

(
− 2ε

√
N
)
.

Then to ensure (6.5), we take Φ
(
− 2ε

√
N
)
≤ α/2, or, equivalently, −2ε

√
N ≤ Φ−1(α/2) = zα/2,

i.e.
N ≥ 1

4

(zα/2
ε

)2
, (6.7)

where zα/2 is the quantile (inverse of the cdf Φ) of order α/2 for the N(0, 1) distribution.

7 Other Applications of Monte Carlo Methods

Estimating lengths, areas, volumes

Let A ⊆ [0, 1]. How to estimate length(A)? Recall that a variable U ∈ U(0, 1) has pdf fU(x) =

1, x ∈ [0, 1]. Then

P (U ∈ A) =

∫
A

fU(x) dx =

∫
A

dx = length(A). (7.1)

But MC methods can be used to estimate the probability on the left-hand side. So, we generate
U1, . . . , UN ∈ U(0, 1), compute the proportion of Ui that lie in A and estimate the length of A by
that proportion.
What if A ⊈ [0, 1], but in some other interval A ⊆ [a, b]? Then for a variable X ∈ U(a, b), with pdf
f(x) = 1/(b− a), x ∈ [a, b],

P (X ∈ A) =

∫
A

f(x) dx =
1

b− a

∫
A

dx =
1

b− a
length(A). (7.2)

Then we generate X1, . . . , XN ∈ U(a, b) and estimate the length of A by (b− a)P (X ∈ A).

For estimating areas, we do exactly the same things, but with double integrals.
Let A ⊆ [0, 1] × [0, 1] and U, V ∈ U(0, 1). That means (U, V ) ∈ U

(
[0, 1] × [0, 1]

)
, so its joint pdf

is f(U,V )(x, y) = 1, (x, y) ∈ [0, 1]× [0, 1]. Then

P
(
(U, V ) ∈ A

)
=

∫∫
A

f(U,V )(x, y) dxdy =

∫∫
A

dxdy = area(A). (7.3)
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Again, if A ⊆ [a, b]× [c, d] and (X, Y ) ∈ U
(
[a, b]× [c, d]

)
, then

P
(
(X, Y ) ∈ A

)
=

∫∫
A

f(X,Y )(x, y) dxdy =
1

(b− a)(d− c)
area(A) (7.4)

and the area of A can be approximated by (b− a)(d− c)P
(
(X, Y ) ∈ A

)
.

Algorithm 7.1.

1. Generate Xi ∈ U(a, b), Yi ∈ U(c, d), i = 1, . . . , N .

2. Compute the number of pairs (Xi, Yi) that belong to A, say NA.

3. Estimate area(A) ≈ (b− a)(d− c)
NA

N
.

Example 7.2. Approximate π by MC methods.

Solution. The number π is the area of the unit circle x2 + y2 ≤ 1. Cover the unit circle by the
rectangle [−1, 1]× [−1, 1], i.e. find a bounding box (see Figure 5).

Fig. 5: Unit Circle

Apply Algorithm 7.1:

1. Generate X1, . . . , XN , Y1, . . . , YN ∈ U(−1, 1).

2. Compute the number of pairs (Xi, Yi) for which X2
i + Y 2

i ≤ 1, say Nπ.
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3. Approximate π ≈ 4
Nπ

N
.

Remark 7.3. Notice that estimation of areas (or lengths, volumes) by MC methods does not require
knowing the exact boundaries of the region to be estimated. All that is necessary is covering that
region by a bounding box (rectangle) and generating points Uniformly distributed in that rectangle.

Example 7.4. An emergency is reported at a nuclear power plant and it is necessary to assess the
size of the region exposed to radioactivity. Boundaries of the region cannot be determined, but it is
known that it is covered by a rectangle of 15 by 20 km and the level of radioactivity can be measured
at any given location. Suppose that 100 measurements are taken at random points in that rectangular
area and radioactivity is found above normal in 43 locations. Estimate the area of the exposed region
A.

Solution. We have a bounding box [0, 15] × [0, 20] and the 100 locations represent 100 Uniform
variables (Xi, Yi) ∈ U

(
[0, 15] × [0, 20]

)
. Of those, 43 pairs are found to belong to the region A.

Thus, we estimate
area(A) ≈ 15 · 20 · 43

100
= 129 km2.

Monte Carlo integration

Recall that the definite integral of a nonnegative function represents the area of the region underneath
the graph of that function. Then MC methods can be used to approximate definite integrals by
estimating areas below or above the graphs of corresponding functions.

Suppose we want to approximate the integral

I =

b∫
a

g(x) dx,

for some function g : [a, b] → [0, c]. Then we cover the area that is I by [a, b] × [0, c] and estimate
it with the rejection method.

Algorithm 7.5.

1. Generate Ui, Vi ∈ U(0, 1), i = 1, . . . , N .
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2. Let Xi = a + (b − a)Ui and Yi = cVi, i = 1, . . . , N (or generate directly Xi ∈ U(a, b) and
Yi ∈ U(0, c)).

3. Compute the number of pairs (Xi, Yi) for which Yi ≤ g(Xi), say NI .

4. Estimate the integral by

I ≈ I = (b− a) c
NI

N
.

Finally, for the general case g : [a, b] → [c, d], where g can take both positive and negative
values, take each subinterval separately and on those subintervals where g(x) ≤ 0, consider |g(x)|.
Then the areas above the x−axis are added and those below are subtracted (see Figure 6). Since the
estimation of the integral still uses (long-run) proportions, the accuracy of the approximation is the
same, i.e.

E(I) = I (it is unbiased) and

σ(I) =

√
I(1− I)

N
.

Fig. 6: MC Integration
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