4 Random Vectors

Everything that holds for random variables (one-dimensional case) can be easily generalized to any dimension, i.e. to random vectors. We restrict our discussion to two-dimensional random vectors $(X, Y): S \rightarrow \mathbb{R}^{2}$.

Let (S, \mathcal{K}, P) be a probability space. A random vector is a function $(X, Y): S \rightarrow \mathbb{R}^{2}$ satisfying the condition

$$
(X \leq x, Y \leq y)=\{e \in S \mid X(e) \leq x, Y(e) \leq y\} \in \mathcal{K}
$$

for all $(x, y) \in \mathbb{R}^{2}$.

- if the set of values that it takes, $(X, Y)(S)$, is at most countable in \mathbb{R}^{2}, then (X, Y) is a discrete random vector,
- if $(X, Y)(S)$ is a continuous subset of \mathbb{R}^{2}, then (X, Y) is a continuous random vector.
- the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

is called the joint cumulative distribution function (joint cdf) of the vector (X, Y).
The properties of the cdf of a random variable translate very naturally for a random vector, as well: Let (X, Y) be a random vector with joint cdf $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and let $F_{X}, F_{Y}: \mathbb{R} \rightarrow \mathbb{R}$ be the cdf's of X and Y, respectively. Then following properties hold:

- If $a_{k}<b_{k}, k=\overline{1,2}$, then

$$
\begin{aligned}
P\left(a_{1}<X \leq b_{1}, a_{2}<Y \leq b_{2}\right) & =F\left(b_{1}, b_{2}\right)-F\left(b_{1}, a_{2}\right) \\
& -F\left(a_{1}, b_{2}\right)+F\left(a_{1}, a_{2}\right) .
\end{aligned}
$$

- $\lim _{x, y \rightarrow \infty} F(x, y)=1$,
$\lim _{y \rightarrow-\infty} F(x, y)=\lim _{x \rightarrow-\infty} F(x, y)=0, \forall x, y \in \mathbb{R}$, $\lim _{y \rightarrow \infty} F(x, y)=F_{X}(x), \forall x \in \mathbb{R}$, $\lim _{x \rightarrow \infty} F(x, y)=F_{Y}(y), \forall y \in \mathbb{R}$.

4.1 Discrete Random Vectors

Let $(X, Y): S \rightarrow \mathbb{R}^{2}$ be a two-dimensional discrete random vector. The joint probability distribution (function) of (X, Y) is a two-dimensional array of the form

$X \backslash Y$	y_{1}	\cdots	y_{j}	\cdots	
x_{1}					
\vdots			\vdots		
x_{i}		\cdots	$p_{i j}$	\cdots	p_{i}
\vdots			\vdots		
			q_{j}		

where $\left(x_{i}, y_{j}\right) \in \mathbb{R}^{2},(i, j) \in I \times J$ are the values that (X, Y) takes and $p_{i j}=P\left(X=x_{i}, Y=y_{j}\right)$.
An important property is that

$$
\sum_{j \in J} p_{i j}=p_{i}, \sum_{i \in I} p_{i j}=q_{j} \text { and } \sum_{i \in I} \sum_{j \in J} p_{i j}=\sum_{j \in J} \sum_{i \in I} p_{i j}=1,
$$

where $p_{i}=P\left(X=x_{i}\right), i \in I$ and $q_{j}=P\left(Y=y_{j}\right), j \in J$. The probabilities p_{i} and q_{j} are called marginal pdf's.

For discrete random vectors, the computational formula for the cdf is

$$
F(x, y)=\sum_{x_{i} \leq x} \sum_{y_{j} \leq y} p_{i j}, x, y \in \mathbb{R}
$$

Operations with discrete random variables

Let X and Y be two discrete random variables with pdf's

$$
X\binom{x_{i}}{p_{i}}_{i \in I} \text { and } Y\binom{y_{j}}{q_{j}}_{j \in J}
$$

Sum. The sum of X and Y is the random variable with pdf given by

$$
\begin{equation*}
X+Y\binom{x_{i}+y_{j}}{p_{i j}}_{(i, j) \in I \times J} \tag{4.2}
\end{equation*}
$$

Product. The product of X and Y is the random variable with pdf given by

$$
\begin{equation*}
X \cdot Y\binom{x_{i} y_{j}}{p_{i j}}_{(i, j) \in I \times J} \tag{4.3}
\end{equation*}
$$

Scalar Multiple. The random variable $\alpha X, \alpha \in \mathbb{R}$, with pdf given by

$$
\begin{equation*}
\alpha X\binom{\alpha x_{i}}{p_{i}}_{i \in I} \tag{4.4}
\end{equation*}
$$

Quotient. The quotient of X and Y is the random variable with pdf given by

$$
\begin{equation*}
X / Y\binom{x_{i} / y_{j}}{p_{i j}}_{(i, j) \in I \times J} \tag{4.5}
\end{equation*}
$$

provided that $y_{j} \neq 0$, for all $j \in J$.
In general, if $h: \mathbb{R} \rightarrow \mathbb{R}$ is a function, then we can define the random variable $h(X)$, with pdf given by

$$
\begin{equation*}
h(X)\binom{h\left(x_{i}\right)}{p_{i}}_{i \in I} \tag{4.6}
\end{equation*}
$$

Variables X and Y are said to be independent if

$$
\begin{equation*}
p_{i j}=P\left(X=x_{i}, Y=y_{j}\right)=P\left(X=x_{i}\right) P\left(Y=y_{j}\right)=p_{i} q_{j}, \tag{4.7}
\end{equation*}
$$

for all $(i, j) \in I \times J$.
If X and Y are independent, then in (4.2), (4.3) and (4.5), $p_{i j}=p_{i} q_{j}$, for all $(i, j) \in I \times J$.

4.2 Continuous Random Vectors

Let (X, Y) be a continuous random vector with joint $\operatorname{cdf} F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then F is absolutely continuous, i.e. there exists a real function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v \tag{4.8}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. The function f is called the joint probability density function (joint pdf) of (X, Y).

The usual properties of continuous pdf's (and their relationship with cdf's) hold for the twodimensional case, as well: Let (X, Y) be a continuous random vector with joint cdf F and joint density function f. Let $F_{X}, F_{Y}: \mathbb{R} \rightarrow \mathbb{R}$ be the cdf's of X and Y and $f_{X}, f_{Y}: \mathbb{R} \rightarrow \mathbb{R}$ be the pdf's of X and Y, respectively. Then the following properties hold:

- $\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)$, for all $(x, y) \in \mathbb{R}^{2}$.
- $\iint_{\mathbb{R}^{2}} f(x, y) d x d y=1$.
- for any domain $D \subseteq \mathbb{R}^{2}, P((X, Y) \in D)=\iint_{D} f(x, y) d x d y$.
- $f_{X}(x)=\int_{\mathbb{R}} f(x, y) d y, \forall x \in \mathbb{R}$ and $f_{Y}(y)=\int_{\mathbb{R}} f(x, y) d x, \forall y \in \mathbb{R}$.

When obtained from the vector (X, Y), the pdf's f_{X} and f_{Y} are called marginal densities. The continuous random variables X and Y are said to be independent if

$$
\begin{equation*}
f_{(X, Y)}(x, y)=f_{X}(x) f_{Y}(y) \tag{4.9}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$.

5 Common Distributions

5.1 Common Discrete Distributions

Bernoulli Distribution $\operatorname{Bern}(p)$

A random variable X has a Bernoulli distribution with parameter $p \in(0,1)(q=1-p)$, if its pdf is

$$
X\left(\begin{array}{ll}
0 & 1 \tag{5.1}\\
q & p
\end{array}\right)
$$

Then

$$
\begin{aligned}
E(X) & =p \\
V(X) & =p q
\end{aligned}
$$

A Bernoulli r.v. models the occurrence or nonoccurrence of an event.

Discrete Uniform Distribution $U(m)$

A random variable X has a Discrete Uniform distribution (unid) with parameter $m \in \mathbb{N}$, if its pdf is

$$
\begin{equation*}
X\binom{k}{\frac{1}{m}}_{k=\overline{1, m}} \tag{5.2}
\end{equation*}
$$

with mean and variance

$$
\begin{aligned}
E(X) & =\frac{m+1}{2} \\
V(X) & =\frac{m^{2}-1}{12} .
\end{aligned}
$$

The random variable that denotes the face number shown on a die when it is rolled, has a Discrete Uniform distribution $U(6)$.

Binomial Distribution $B(n, p)$

A random variable X has a Binomial distribution (bino) with parameters $n \in \mathbb{N}$ and $p \in(0,1)$ ($q=1-p$), if its pdf is

$$
\begin{equation*}
X\binom{k}{C_{n}^{k} p^{k} q^{n-k}}_{k=\overline{0, n}} \tag{5.3}
\end{equation*}
$$

with

$$
\begin{aligned}
E(X) & =n p \\
V(X) & =n p q
\end{aligned}
$$

This distribution corresponds to the Binomial model. Given n Bernoulli trials with probability of success p, let X denote the number of successes. Then $X \in B(n, p)$. Also, notice that the Bernoulli distribution is a particular case of the Binomial one, for $n=1, \operatorname{Bern}(p)=B(1, p)$.

Geometric Distribution Geo (p)

A random variable X has a Geometric distribution (geo) with parameter $p \in(0,1)(q=1-p)$, if its pdf is given by

$$
\begin{equation*}
X\binom{k}{p q^{k}}_{k=0,1, \ldots} \tag{5.4}
\end{equation*}
$$

Its cdf, expectation and variance are given by

$$
\begin{aligned}
F(x) & =1-q^{x+1}, x=0,1, \ldots \\
E(X) & =\frac{q}{p} \\
V(X) & =\frac{q}{p^{2}}
\end{aligned}
$$

If X denotes the number of failures that occurred before the occurrence of the $1^{\text {st }}$ success in a Geometric model, then $X \in G e o(p)$.

Remark 5.1. In a Geometric model setup, one might count the number of trials needed to get the $1^{\text {st }}$ success. Of course, if X is the number of failures and Y the number of trials, then we simply have $Y=X+1$ (the number of failures plus the one success). The variable Y is said to have a Shifted Geometric distribution with parameter $p \in(0,1)(Y \in S G e o(p))$. Its pdf is

$$
\begin{equation*}
X\binom{k}{p q^{k-1}}_{k=1,2, \ldots} \tag{5.5}
\end{equation*}
$$

and the rest of its characteristics are given by

$$
\begin{aligned}
F(x) & =1-q^{x}, x=0,1, \ldots \\
E(X) & =\frac{1}{p} \\
V(X) & =\frac{q}{p^{2}}
\end{aligned}
$$

In some books, this is considered to be a Geometric variable (not in Matlab, though).

Negative Binomial (Pascal) Distribution $N B(n, p)$

A random variable X has a Negative Binomial (Pascal) (nbin) distribution with parameters $n \in \mathbb{N}$ and $p \in(0,1)(q=1-p)$, if its pdf is

$$
\begin{equation*}
X\binom{k}{C_{n+k-1}^{k} p^{n} q^{k}}_{k=0,1, \ldots} \tag{5.6}
\end{equation*}
$$

Then

$$
\begin{aligned}
E(X) & =\frac{n q}{p} \\
V(X) & =\frac{n q}{p^{2}} .
\end{aligned}
$$

This distribution corresponds to the Negative Binomial model. If X denotes the number of failures that occurred before the occurrence of the $n^{\text {th }}$ success in a Negative Binomial model, then $X \in$ $N B(n, p)$. It is a generalization of the Geometric distribution, $G e o(p)=N B(1, p)$.

Poisson Distribution $\mathcal{P}(\lambda)$

A random variable X has a Poisson distribution (poiss) with parameter $\lambda>0$, if its pdf is

$$
\begin{equation*}
X\binom{k}{\frac{\lambda^{k}}{k!} e^{-\lambda}}_{k=0,1, \ldots} \tag{5.7}
\end{equation*}
$$

with

$$
E(X)=V(X)=\lambda .
$$

Poisson's distribution is related to the concept of "rare events", or Poissonian events. Essentially, it means that two such events are extremely unlikely to occur simultaneously or within a very short period of time. Arrivals of jobs, telephone calls, e-mail messages, traffic accidents, network blackouts, virus attacks, errors in software, floods, earthquakes are examples of rare events.

A Poisson variable X counts the number of rare events occurring during a fixed time interval. The parameter λ represents the average number of occurrences of the event in that time interval.

Remark 5.2.

1. The sum of n independent $\operatorname{Ber} n(p)$ random variables is a $B(n, p)$ variable.
2. The sum of n independent $G e o(p)$ random variables is a $N B(n, p)$ variable.

5.2 Common Continuous Distributions

Uniform Distribution $U(a, b)$

A random variable X has a Uniform distribution (unif) with parameters $a, b \in \mathbb{R}, a<b$, if its pdf is

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & \text { if } x \in[a, b] \tag{5.8}\\
0, & \text { if } x \notin[a, b]
\end{array}\right.
$$

Then its cdf is

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{cl}
0, & \text { if } x \leq a \tag{5.9}\\
\frac{x-a}{b-a}, & \text { if } a<x \leq b \\
1, & \text { if } x \geq b
\end{array}\right.
$$

and its numerical characteristics are

$$
\begin{aligned}
E(X) & =\frac{a+b}{2} \\
V(X) & =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

The Uniform distribution is used when a variable can take any value in a given interval, equally probable. For example, locations of syntax errors in a program, birthdays throughout a year, arrival times of customers, etc.

A special case is that of a Standard Uniform Distribution, where $a=0$ and $b=1$. The pdf and cdf are given by

$$
f_{U}(x)=\left\{\begin{array}{ll}
1, & x \in[0,1] \tag{5.10}\\
0, & x \notin[0,1]
\end{array}, \quad F_{U}(x)= \begin{cases}0, & x \leq 0 \\
x, & 0<x \leq 1 \\
1, & x \geq 1\end{cases}\right.
$$

Standard Uniform variables play an important role in stochastic modeling; in fact, any random

Fig. 1: Uniform Distribution
variable, with any thinkable distribution (discrete or continuous) can be generated from Standard Uniform variables.

Normal Distribution $N(\mu, \sigma)$

A random variable X has a Normal distribution (norm) with parameters $\mu \in \mathbb{R}$ and $\sigma>0$, if its pdf is

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, x \in \mathbb{R} \tag{5.11}
\end{equation*}
$$

The cdf of a Normal variable is then given by

$$
\begin{equation*}
F(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{t^{2}}{2}} d t \tag{5.12}
\end{equation*}
$$

and its mean and variance are

$$
\begin{aligned}
E(X) & =\mu \\
V(X) & =\sigma^{2}
\end{aligned}
$$

There is an important particular case of a Normal distribution, namely $N(0,1)$, called the Standard (or Reduced) Normal Distribution. A variable having a Standard Normal distribution is usually denoted by Z. The density and cdf of Z are given by

$$
\begin{equation*}
f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in \mathbb{R} \quad \text { and } \quad F_{Z}(x)=\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t \tag{5.13}
\end{equation*}
$$

The function F_{Z} given in (5.13) is known as Laplace's function and its values can be found in tables or can be computed by any mathematical software. One can notice that there is a relationship between the cdf of any Normal $N(\mu, \sigma)$ variable X and that of a Standard Normal variable Z, namely,

$$
F_{X}(x)=F_{Z}\left(\frac{x-\mu}{\sigma}\right) .
$$

Exponential Distribution $\operatorname{Exp}(\lambda)$

A random variable X has an Exponential distribution (\exp) with parameter $\lambda>0$, if its pdf and cdf are given by

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x}, & \text { if } x \geq 0 \tag{5.14}\\
0, & \text { if } x<0
\end{array} \text { and } F(x)=\left\{\begin{array}{cc}
1-e^{-\lambda x}, & x \geq 0 \\
0, & x<0
\end{array}\right.\right.
$$

respectively. Its mean and variance are given by

$$
\begin{aligned}
E(X) & =\frac{1}{\lambda} \\
V(X) & =\frac{1}{\lambda^{2}}
\end{aligned}
$$

Remark 5.3.

1. The Exponential distribution is often used to model time: lifetime, waiting time, halftime, interarrival time, failure time, time between rare events, etc. The parameter λ represents the frequency of rare events, measured in time ${ }^{-1}$.
2. A word of caution here: The parameter μ in Matlab (where the Exponential pdf is defined as $\frac{1}{\mu} e^{-\frac{1}{\mu} x}, x \geq 0$) is actually $\mu=1 / \lambda$. It all comes from the different interpretation of the "frequency". For instance, if the frequency is " 2 per hour", then $\lambda=2 / \mathrm{hr}$, but this is equivalent to "one every half an hour", so $\mu=1 / 2$ hours. The parameter μ is measured in time units.
3. The Exponential distribution is a special case of a more general distribution, namely the $\operatorname{Gamma}(a, b), a, b>0$, distribution (gam). The Gamma distribution models the total time of a multistage scheme, e.g. total compilation time, total downloading time, etc.
4. If $\alpha \in \mathbb{N}$, then the sum of α independent $\operatorname{Exp}(\lambda)$ variables has a $\operatorname{Gamma}(\alpha, 1 / \lambda)$ distribution. 5. In a Poisson process, where X is the number of rare events occurring in time $t, X \in \mathcal{P}(\lambda t)$, the time between rare events and the time of the occurrence of the first rare event have $\operatorname{Exp}(\lambda)$ distribution, while T, the time of the occurrence of the $\alpha^{\text {th }}$ rare event has $\operatorname{Gamma}(\alpha, 1 / \lambda)$ distribution.

Gamma-Poisson formula

Let $T \in \operatorname{Gamma}(\alpha, 1 / \lambda)$ with $\alpha \in \mathbb{N}$ and $\lambda>0$. Then T represents the time of the occurrence of the $\alpha^{\text {th }}$ rare event. Then, the event $(T>t)$ means that the $\alpha^{\text {th }}$ event occurs after the moment t. That means that before the time t, fewer than α rare events occur. So, if X is the number of rare events that occur before time t, then the two events

$$
(T>t)=(X<\alpha)
$$

are equivalent (equal). Now, X has a $\mathcal{P}(\lambda t)$ distribution. So, we have:

$$
\begin{align*}
& P(T>t)=P(X<\alpha) \text { and } \\
& P(T \leq t)=P(X \geq \alpha) \tag{5.15}
\end{align*}
$$

Remark 5.4. This formula is useful in applications where this setup can be used (seeing a Gamma variable as a sum of times between rare events, if $\alpha \in \mathbb{N}$), as it avoids lengthy computations of Gamma probabilities. However, one should be careful, T is a continuous random variable, for which $P(T>t)=P(T \geq t)$, whereas X is a discrete one, so on the right-hand sides of (5.15) the inequality signs cannot be changed.

Remark 5.5. The Exponential distributions has the so-called "memoryless property". Suppose that an Exponential variable T represents waiting time. Memoryless property means that the fact of having waited for t minutes gets "forgotten" and it does not affect the future waiting time. Regardless of the event $(T>t)$, when the total waiting time exceeds t, the remaining waiting time still has

Exponential distribution with the same parameter. Mathematically,

$$
\begin{equation*}
P(T>t+x \mid T>t)=P(T>x), t, x>0 . \tag{5.16}
\end{equation*}
$$

The Exponential distribution is the only continuous variable with this property. Among discrete ones, the Shifted Geometric distribution also has this property. In fact, there is a close relationship between the two families of variables. In a sense, the Exponential distribution is a continuous analogue of the Shifted Geometric one, one measures time (continuously) until the next rare event, the other measures time (discretely) as the number of trials until the next success.

