
Chapter 4. Numerical Differentiation and Integration

1 Approximation of Linear Functionals, Basic Notions

Let X be a linear space and L,L1, . . . , Lm : X → R be real, linear functionals, that are linearly
independent.

Definition 1.1. An approximation formula of L using L1, . . . , Lm, is a formula of the type

L(f) =
m∑
i=1

AiLi(f) +R(f), f ∈ X. (1.1)

The real parameters Ai are called coefficients, and R(f) is the remainder of the formula.

For an approximation formula of the form (1.1), given Li, we want to determine the coefficients
Ai and study the corresponding remainder (error).
The functionals Li express the available information on f and they also depend on the particular
type of approximation we seek, i.e. on L.

Example 1.2. Let X = {f | f : [a, b] → R}, Li(f) = f(xi), for some distinct nodes xi ∈ [a, b], i =

0,m and L(f) = f(α), for an arbitrary α ∈ [a, b]. Formula (1.1) becomes

f(α) =
m∑
i=0

li(α)f(xi) + (Rf)(α),

i.e. the Lagrange interpolation formula. We have

Ai = li(α),

where li are the Lagrange fundamental polynomials. One of the expressions for the remainder is

(Rf)(α) =
u(α)

(m+ 1)!
f (m+1)(ξ), ξ ∈ [a, b], u(x) = (x− x0) . . . (x− xm),

if f (m+1) exists on [a, b].

Example 1.3. Let X and Li be defined as in the previous example. Assuming that f (k)(α), k ∈ N∗

exists, define L(f) = f (k)(α). We get an approximation formula for the derivative of order k of f
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at α,

f (k)(α) =
m∑
i=0

Aif(xi) +R(f),

called a numerical differentiation formula.

Example 1.4. Let xk ∈ [a, b], k = 0,m be distinct nodes and Ik some sets of indices. Consider X =

{f | f : [a, b] → R, f integrable on [a, b], for which f (j)(xk), k = 0,m, j ∈ Ik exist}, Lkj(f) =

f (j)(xk) and L(f) =

b∫
a

f(x)dx. Formula (1.1) becomes

b∫
a

f(x)dx =
m∑
k=0

∑
j∈Ik

Akjf
(j)(xk) +R(f),

called a numerical integration (quadrature) formula.

In general, there are two approaches for solving the approximation problem (1.1):
− the interpolation method: apply the functional L to a suitable interpolation polynomial of f ,
instead of f itself;
− the method of undetermined coefficients: find the coefficients in (1.1), by making the remainder
R(f) be 0 for polynomials of degree as high as possible, i.e., imposing the conditions R(ek) =

0, ek(x) = xk, k = 0, 1, . . . , d, for as large a d as possible.

2 Numerical Differentiation

Numerical approximation of derivatives is used when the values of a function f are given in tables,
as empirical data, or the expression of f is complicated.
We can derive simple, immediate numerical differentiation rules using divided and finite differences.
Let f : [a, b] → R be differentiable on [a, b], x ∈ [a, b], arbitrary and h > 0. We have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0
f [x, x+ h].

From here, we immediately get the approximation

f ′(x) ≈ f(x+ h)− f(x)

h
≡ Dhf(x), (2.1)
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called the forward difference numerical derivative.
Expanding f(x+ h) in a Taylor’s series around x, we get

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ),

f(x+ h)− f(x)

h
= f ′(x) +

h

2
f ′′(ξ), ξ ∈ (x, x+ h),

from which we have the error formula

(RDhf)(x) = f ′(x)−Dhf(x) = −h

2
f ′′(ξ), ξ ∈ (x, x+ h). (2.2)

The error is proportional to h, so formula (2.2) can be used for small steps h.
Similarly, we obtain the backward difference numerical derivative,

f ′(x) ≈ f(x)− f(x− h)

h
≡ D̃hf(x), (2.3)

with approximation error

(RD̃hf)(x) = f ′(x)− f(x)− f(x− h)

h
=

h

2
f ′′(ξ), ξ ∈ (x− h, x). (2.4)

Interpolating f at the nodes x− h, x+ h and then taking the derivative, we obtain

f ′(x) ≈ f(x+ h)− f(x− h)

2h
≡ D̂hf(x), (2.5)

known as the central difference numerical derivative formula, with remainder given by

(RD̂hf)(x) = − h2

6
f ′′′(ξ), ξ ∈ (x− h, x+ h). (2.6)

This says that for small values of h, the formula (2.5) should be more accurate than the earlier
approximations, because the error term of (2.6) decreases more rapidly with h.

Example 2.1. Use Dhf and D̂hf to approximate the derivative of f(x) = cosx at x = π/6. Study
the error of each approximation.

Solution. The exact value is f ′
(π
6

)
= − sin

π

6
= −1

2
.
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By (2.2), when using Dhf ,the error is

(RDhf)
(π
6

)
= f ′

(π
6

)
−Dh

(π
6

)
=

h

2
cos ξ,

thus, ∣∣∣(RDhf)
(π
6

)∣∣∣ ≤ h

2
.

Similarly, for D̂hf , the error is bounded by∣∣∣(RD̂hf)
(π
6

)∣∣∣ ≤ h2

6
.

Table 1 contains the approximation results yielded by the two methods, for various values of h.
Indeed, both the value of Dhf and that of D̂hf are approaching −0.5. Moreover, looking at the
errors, we see that when h is halved, the error is almost halved (see the first ratio column) for the
first approximation. This confirms the fact that the error is proportional to h (relation (2.2)). For
the approximation D̂hf , we see that the errors decrease more rapidly and the last column of ratios
confirms the (superior) rate of convergence of O(h2) given in (2.6).

h Dhf Error Ratio D̂hf Error Ratio
0.1 −0.54243 4.243e− 2 −0.49917 −8.329e− 4
0.05 −0.52144 2.144e− 2 1.98 −0.49979 −2.083e− 4 4.00
0.025 −0.51077 1.077e− 2 1.99 −0.49995 −5.208e− 5 4.00
0.0125 −0.50540 5.403e− 3 1.99 −0.49998 −1.302e− 5 4.00
0.00625 −0.50270 2.701e− 3 2.00 −0.49999 −3.255e− 6 4.00

Table 1: Example 2.1, f(x) = cos x

Remark 2.2. One must be very cautious in using numerical differentiation, because of the sensi-
tivity to errors in the function values. This is especially true if the function values are obtained
empirically with relatively large experimental errors, as is common in practice. Numerical differen-
tiation is an unstable operation, meaning that even if the approximation of a function is good, that
does not guarantee that its derivative will be a good approximation for the derivative of the function.
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Here is such an example: Let

f(x) = g(x) +
xn2

n
, n ≥ 1, x ∈ [0, 1], f, g ∈ C[0, 1].

Notice that

||f − g||∞ = max
x∈[0,1]

xn2

n
=

1

n
→ 0, n → ∞,

||f ′ − g′||∞ = max
x∈[0,1]

nxn2−1 = n → ∞.

Numerical derivatives can be used to find numerical methods for (ordinary or partial) differential
equations. This is done in order to reduce the differential equation to a form that can be solved more
easily than the original equation.

3 Numerical Integration

Let f : [a, b] → R be integrable on [a, b], Fk(f), k = 0,m give information on f (usually, linear
functionals, such as values or derivatives) and let w : [a, b] → R+ be a weight function which is
integrable on [a, b].

Definition 3.1. A formula of the type

b∫
a

w(x)f(x)dx =
m∑
j=0

AjFj(f) +R(f), (3.1)

is called a numerical integration formula for the function f or a quadrature formula. The param-

eters Aj, j = 0,m are called the coefficients of the formula, and R(f) the remainder.

The weight function can be very useful in, among other things, “absorbing” any singularities the
integrand has on [a, b] (since on the right-hand-side only values related to f are used).

Definition 3.2. The natural number d satisfying the property that ∀f ∈ Pd, R(f) = 0 and ∃g ∈ Pd+1

such that R(g) ̸= 0 is called degree of precision (or degree of exactness) of the quadrature formula

(3.1).
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Remark 3.3. Since R is o linear functional, it follows that a quadrature formula has degree of
precision d if and only if

R(ej) = 0, j = 0, 1, . . . , d, R(ed+1) ̸= 0. (3.2)

If the degree of precision of a quadrature formula is known, then the remainder can be deter-
mined using Peano’s Theorem.

3.1 Interpolatory Quadratures, Newton-Cotes Formulas

For now, we will restrict our discussion to the case w(x) ≡ 1. Many numerical integration formulas
are based on the idea of replacing f by an approximating function whose integral can be evaluated.
Most of the times, that approximating function is an interpolation polynomial. Then, we obtain a
quadrature formula of the form

b∫
a

f(x)dx =
m∑
k=0

Akf(xk) +R(f), (3.3)

called an interpolatory quadrature. If, in addition, the nodes used are equally spaced, it is called
a Newton-Cotes quadrature. If the nodes include the endpoints of the interval, a and b, then we
have a closed Newton-Cotes formula, otherwise, an open one.
There are 2m + 2 unknowns (m + 1 nodes and m + 1 coefficients) in formula (3.3). Imposing
conditions (3.2), it follows that the maximum possible degree of precision can be obtained for a
polynomial with 2m + 2 coefficients, i.e. of degree 2m + 1, hence, e2m+1. Thus, the maximum
degree of precision of a quadrature formula (3.3) with m+ 1 nodes is

dmax = 2m+ 1 = 2 ∗ (nr. of nodes) − 1.

Any interpolatory numerical integration scheme (3.3) has degree of precision at least m (since the
interpolation formula has that degree of exactness).

We start with three of the most widely used (but also, simplest) quadratures, obtained from low
degree polynomial interpolation.
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Rectangle (Midpoint) Rule

We interpolate f at a single double node, x0 =
a+ b

2
, the midpoint of the interval (hence, the name

of the method). So we use the Taylor polynomial of degree 1. Assuming that f has second order
continuous derivatives on (a, b), we have

f(x) = T1f(x) +R1f(x)

= f
(a+ b

2

)
+
(
x− a+ b

2

)
f ′
(a+ b

2

)
+

1

2!

(
x− a+ b

2

)2

f ′′(ξ), ξ ∈ (a, b).

Integrating, we get

b∫
a

f(x)dx = (b− a)f
(a+ b

2

)
+ f ′

(a+ b

2

) b∫
a

(
x− a+ b

2

)
dx+R(f)

= (b− a)f
(a+ b

2

)
+ f ′

(a+ b

2

)1
2

(
x− a+ b

2

)2∣∣∣b
a
+R(f)

= (b− a)f
(a+ b

2

)
+R(f),

because the second integral is
1

2

[(b− a

2

)2

−
(b− a

2

)2]
= 0.

Check the conditions (3.2). We have

R(e0) =

b∫
a

e0(x)dx− (b− a)e0

(a+ b

2

)
= b− a− (b− a) = 0,

R(e1) =

b∫
a

xdx− (b− a)
a+ b

2
=

b2 − a2

2
− b2 − a2

2
= 0.

So, we found the formula

b∫
a

f(x)dx = (b− a)f
(a+ b

2

)
+R(f), (3.4)

called the rectangle rule, an open Newton-Cotes formula, having degree of precision d = 1, which
is the maximum possible for a formula with a single node (m = 0).
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We compute the remainder by

R(f) =
f ′′(ξ)

2!

b∫
a

(
x− a+ b

2

)2

dx =
(b− a)3

24
f ′′(ξ), ξ ∈ (a, b). (3.5)

Let us see a geometrical interpretation of this formula. Recall that, if f(x) ≥ 0 for x ∈ [a, b], the
definite integral in (3.4) represents the area of the region that lies below the graph of f(x), above
the Ox axis and between the lines x = a and x = b. This area is approximated by the area of the
rectangle with base b− a and height f

(
a+b
2

)
(see Figure 1). Hence, the other name of the method.

a b

f(x)

(a+ b)/2

Fig. 1: Geometrical illustration of the rectangle rule

Remark 3.4. The rectangle rule (3.4) can also be obtained using the method of undetermined coef-

ficients. We seek a quadrature formula with one node, i.e., of the form

b∫
a

f(x)dx = A0f(x0) +R(f).

Then impose conditions (3.2) and go as far as possible.
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Solution. First, we want R(e0) = 0, which means

b∫
a

e0(x)dx = A0e0(x0), i.e.,

b∫
a

dx = A0.

We get the first equation, A0 = b− a.
Then, from R(e1) = 0, we obtain

b∫
a

e1(x)dx = A0e1(x0), i.e.,

b∫
a

xdx = A0x0,

so, the second equation is A0x0 =
b2 − a2

2
. The two equations have the solution

A0 = b− a,

x0 =
a+ b

2
.

Can we go further? Let’s check.

R(e2) =

b∫
a

e2(x)dx− (b− a)e2

(
a+ b

2

)
=

b∫
a

x2dx− (b− a)

(
a+ b

2

)2

=
b3 − a3

3
− (b− a)

(a+ b)2

4
=

(b− a)3

12
̸= 0,

so the degree of precision is d = 1. From here, we can obtain the expression of the remainder (3.5)
using Peano’s theorem. Let us recall this important result and see how it is used for quadratures
formulas. For a numerical integration formula

b∫
a

f(x) dx = Q(f) +R(f),

with degree of precision d = n, assuming f ∈ Cn+1[a, b], the remainder has the form

R(f) =

b∫
a

Kn(t)f
(n+1)(t) dt,
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with

Kn(t) =
1

n!
Rn

(
(x− t)n+

)
=

1

n!

[ b∫
a

(x− t)n+ dx−Q
(
(x− t)n+

)]

=
1

n!

[
1

n+ 1
(x− t)n+1

+

∣∣∣∣x=b

x=a

−Q
(
(x− t)n+

)]
=

1

n!

[
(b− t)n+1

+ − (a− t)n+1
+

n+ 1
−Q

(
(x− t)n+

)]
.

If Kn has constant sign on [a, b], then

R(f) =
1

(n+ 1)!
f (n+1)(ξ)R

(
en+1

)
, ξ ∈ (a, b).

So, for the midpoint formula

b∫
a

f(x)dx = (b− a)f
(a+ b

2

)
+R(f),

with degree of precision d = 1, we have

R(f) =

b∫
a

K1(t)f
′′(t) dt,

with

K1(t) =
1

1!
R
(
(x− t)+

)
=

b∫
a

(x− t)+ dx− (b− a)

(
a+ b

2
− t

)
+

=
1

2

[
(b− t)2+ − (a− t)2+

]
− (b− a)

(
a+ b

2
− t

)
+

.

Now, since t ∈ [a, b], it follows that (b− t)+ = b− t and (a− t)+ = 0. The third term depends on

the sign of
a+ b

2
− t. So, we have two cases:
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1. a ≤ t ≤
a + b

2
, when

(
a+ b

2
− t

)
+

=
a+ b

2
− t and, hence,

K1(t) =
1

2
(b− t)2 − (b− a)

(
a+ b

2
− t

)
=

1

2
b2 − bt+

1

2
t2 − 1

2
(b2 − a2) + bt− at

=
1

2
t2 − at+

1

2
a2 =

1

2
(t− a)2 ≥ 0;

2.
a + b

2
< t ≤ b, when

(
a+ b

2
− t

)
+

= 0 and we have

K1(t) =
1

2
(b− t)2 ≥ 0.

So, in both cases, K1 has a constant sign over [a, b], and thus, the remainder can be expressed as

R(f) =
1

2!
f ′′(ξ)R

(
e2
)
=

(b− a)3

24
f ′′(ξ), ξ ∈ (a, b),

as in (3.5).

To improve on the approximation of the integral, break the interval [a, b] into n smaller subin-
tervals determined by the equidistant nodes xi = a + ih, i = 0, n, h = (b − a)/n, and apply the
rectangle rule (3.4) on each subinterval, i.e.,

xi+1∫
xi

f(x)dx = hf
(xi + xi+1

2

)
+

h3

24
f ′′(ξi), ξi ∈ [xi, xi+1].

We have

b∫
a

f(x)dx =
n−1∑
i=0

xi+1∫
xi

f(x)dx = h

n−1∑
i=0

f
(xi + xi+1

2

)
+

h3

24

n−1∑
i=0

f ′′(ξi), ξi ∈ [xi, xi+1].

Using a mean value formula for the continuous function f ′′,

f ′′(ξ) =
f ′′(ξ0) + · · ·+ f ′′(ξn−1)

n
, ξ ∈ (a, b),
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we get

b∫
a

f(x)dx = h
n−1∑
i=0

f
(
a+

(
i+

1

2

)
h
)
+

h2(b− a)

24
f ′′(ξ), ξ ∈ (a, b), (3.6)

called the composite (repeated) rectangle (midpoint) formula.

Trapezoidal Rule

We proceed similarly, approximating the integrand by the Lagrange interpolation polynomial with
2 nodes, x0 = a, x1 = b, the endpoints of the interval. If f is twice continuously differentiable on
(a, b), we have

f(x) =
x− b

a− b
f(a) +

x− a

b− a
f(b) +

f ′′(ξ)

2!
(x− a)(x− b), ξ ∈ (a, b).

Integrating, after doing all the computations, we get

b∫
a

f(x)dx =
b− a

2

(
f(a) + f(b)

)
− (b− a)3

12
f ′′(ξ), ξ ∈ (a, b), (3.7)

called the trapezoidal (or trapezium) rule, a closed Newton-Cotes formula. Again, the name
comes from the geometrical interpretation (see Figure 2), where the area of the region that lies
between the graph of f , the x−axis and the lines x = a and x = b, is approximated by the area of
the trapezoid with bases f(a), f(b) and height b− a.

Since this rule is derived from Lagrange interpolation with two nodes (the degree of the interpo-
lation polynomial being 1), we know that its degree of precision is at least d = 1 (without checking
R(e0) = R(e1) = 0). Let us check if d > 1.

R(e2) =

b∫
a

x2dx− b− a

2

(
a2 + b2

)
=

1

3

(
b3 − a3

)
− b− a

2

(
a2 + b2

)
= −(b− a)3

6
̸= 0.

Thus, the degree of precision is d = 1.
Now, just as we did with the rectangle rule, we divide the interval [a, b] into n subintervals
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a b

f(x)

Fig. 2: Geometrical illustration of the trapezoidal rule

[xi, xi+1], xi = a+ ih, i = 0, n, of length h =
b− a

n
. We have

b∫
a

f(x)dx =
n−1∑
i=0

xi+1∫
xi

f(x)dx =
h

2

n−1∑
i=0

(
f(xi) + f(xi+1)

)
− h3

12

n−1∑
i=0

f ′′(ξi), ξi ∈ [xi, xi+1]

Using again the mean value theorem and denoting by fi = f(xi), we get the composite (repeated)
trapezoidal (trapezium) rule,

b∫
a

f(x)dx =
h

2

[
f(a) + 2

(
f1 + · · ·+ fn−1

)
+ f(b)

]
− h2(b− a)

12
f ′′(ξ), ξ ∈ (a, b). (3.8)

Remark 3.5. Obviously, for larger n, we get increasingly accurate approximations of the definite
integral. But which sequence of values of n should be used? If n is doubled repeatedly, n → 2n,
then the function values used in each approximation (3.8) will include all of the earlier function
values used in the preceding approximation. Thus, the doubling of n will ensure that all previously
computed information is used in the new calculation, making the trapezoidal rule less expensive
than it would be otherwise.
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Simpson’s Rule

For this formula, we consider Hermite interpolation at the nodes x0 = a, x1 =
a+ b

2
, double and

x2 = b. Then the corresponding Hermite interpolation polynomial has degree 3 and is of the form

H3(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x1](x− x0)(x− x1) +

+ f [x0, x1, x1, x2](x− x0)(x− x1)
2.

If f has continuous derivatives of order 4 on [a, b], the error of the approximation can be written as

R3(x) =
(x− x0)(x− x1)

2(x− x2)

4!
f (4)(ξ), ξ ∈ (a, b).

Integrating on [a, b] the relation f(x) = H3(x) + R3(x), we get a new closed Newton-Cotes
formula,

b∫
a

f(x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (4)(ξ), ξ ∈ (a, b), (3.9)

called the (Cavalieri–) Simpson rule. Its degree of precision is d = 3.

Dividing the interval [a, b] into an even number n = 2m of subintervals of length h =
b− a

2m
,

and denoting by xi = a+ ih, fi = f(xi), i = 0, 2m, we have

b∫
a

f(x)dx =
m∑
i=1

x2i∫
x2i−2

f(x)dx

=
m∑
i=1

[
h

3

(
f2i−2 + 4f2i−1 + f2i

)
− h5

90
f (4)(ξi)

]
, ξi ∈ [x2i−2, x2i].

By the mean value theorem, we get the composite (repeated) Simpson’s rule

b∫
a

f(x)dx =
h

3

[
f(a) + 4

m∑
i=1

f2i−1 + 2
m−1∑
i=1

f2i + f(b)

]

− h4(b− a)

180
f (4)(ξ), ξ ∈ (a, b). (3.10)
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Remark 3.6.
1. The trapezoidal and Simpson’s rules can also be derived using the method of undetermined coef-
ficients for a two-point and three-point, respectively, quadrature formula.
2. Simpson’s formula can be derived by considering interpolation with 3 simple nodes, so a polyno-
mial of degree 2. We get the same coefficients, but the integral of the remainder will be zero. This
is why Hermite interpolation was used instead.
3. These are three of the simplest quadrature formulas. The rectangle and trapezoidal rules are
comparable precision-wise (O(h2)) and also from the computational cost point of view (number of
flops per iteration). The trapezoidal rule is usually preferred when the number of nodes is doubled
at each iteration (see Remark 3.5). Simpson’s rule is superior in precision (O(h4)), but it also incurs
a higher computational load.

Example 3.7. Approximate the integral

1∫
0

1

1 + x
dx

using the three methods above.

Solution. The exact value of the integral is

1∫
0

1

1 + x
dx = ln (1 + x)

∣∣∣1
0
= ln 2 = 0.693147180559945.

By the rectangle rule, we have the approximation

1∫
0

1

1 + x
dx ≈ 1 · f

(1
2

)
=

2

3
= 0.6667,

with error E1 = 0.0265. Using the trapezoidal rule, we obtain

1∫
0

1

1 + x
dx ≈ 1

2

(
f(0) + f(1)

)
=

3

4
= 0.75,
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with error E2 = −0.0569. Finally, with Simpson’s rule, we get

1∫
0

1

1 + x
dx ≈ 1

6

[
f(0) + 4f

(1
2

)
+ f(1)

]
=

25

36
= 0.6944,

with approximation error E3 = −0.0013.

Example 3.8. Let us approximate

1∫
0

e−x2

dx = 0.746824132812427,

with the composite trapezoidal and Simpson’s rules.

Solution. The approximation errors (as well as the ratios of successive approximations) for the two
methods are given in Table 2, for various values of n. These confirm the higher rate of convergence,
O(h4), of Simpson’s repeated method over the composite trapezoidal rule.

Composite Trapezoidal Repeated Simpson
n Error Ratio Error Ratio
2 1.55e− 2 3.56e− 4
4 3.84e− 3 4.02 3.12e− 5 11.4
8 9.59e− 4 4.01 1.99e− 6 15.7
16 2.40e− 4 4.00 1.25e− 7 15.9
32 5.99e− 5 4.00 7.79e− 9 16.0
64 1.50e− 5 4.00 4.87e− 10 16.0
128 3.74e− 6 4.00 3.04e− 11 16.0

Table 2: Example 3.8

Let us see another example of obtaining a quadrature formula two ways.

Example 3.9. Consider a quadrature formula of the type

1∫
−1

f(x) dx = Af ′(−1) +Bf(1) +R(f).
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a) Find A and B such that the formula has the maximum degree of exactness possible.

b) Let B1f be the Birkhoff polynomial interpolating f, given f ′(−1) and f(1). Compute
1∫
−1

(B1f)(x) dx and compare it to the formula found in a).

c) Express the remainder R(f) in the form

R(f) = const · f ′′(ξ), ξ ∈ (−1, 1).

Solution.
a) We set R(ek) = 0, ek(x) = xk and go as far as possible.

R(e0) = 2−
[
A · 0 +B · 1

]
= 2−B = 0,

R(e1) = 0−
[
A · 1 +B · 1

]
= −A−B = 0.

From these two equations, we get A = −2 and B = 2. Check further:

R(e2) =
2

3
−

[
− 2 · (−2) + 2 · 1

]
=

2

3
− 6 = −16

3
̸= 0,

so the maximum degree of precision possible is d = 1 and the quadrature formula is

1∫
−1

f(x) = 2
(
− f ′(1) + f(1)

)
+R(f).

b) For Birkhoff interpolation, we have the nodes x0 = −1, x1 = 1 and I0 = {1}, I1 = {0}. Then
the degree of the polynomial is n = 1 + 1− 1 = 1. The polynomial

B1f(x) = ax+ b

must satisfy the interpolation conditions{
(B1f)

′(−1) = f ′(−1)

(B1f)(1) = f(1)
⇐⇒

{
a = f ′(−1)

a+ b = f(1)
⇐⇒

{
a = f ′(−1)

b = f(1)− f ′(−1)
.
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So, we have

f(x) = (B1f)(x) + (R1f)(x)

= xf ′(−1) +
(
f(1)− f ′(−1)

)
+ (R1f)(x)

= (x− 1)f ′(−1) + f(1) + (R1f)(x)

= b01(x)f
′(−1) + b10(x)f(1) + (R1f)(x).

Integrating, we get

1∫
−1

f(x) dx =

1∫
−1

(B1f)(x) dx+R(f)

= f ′(−1)

1∫
−1

(x− 1) dx+ f(1)

1∫
−1

dx+R(f)

= −2f ′(−1) + 2f(1) +R(f),

the same quadrature formula as before.

c) The degree of precision is d = 1. Then,

R(f) =

1∫
−1

K1(t)f
′′(t) dt,

with

K1(t) = R
(
(x− t)+

)
=

1∫
−1

(x− t)+ dx− 2
[
− ∂(x− t)+

∂x

∣∣∣
x=−1

+ (1− t)+

]

=
1

2
(x− t)2+

∣∣∣∣x=1

x=−1

− 2
[
− 1 + (1− t)+

]
=

1

2

(
(1− t)2+ − (−1− t)2+

)
+ 2− 2(1− t)+.
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Since t ∈ [−1, 1], (1− t)+ = 1− t, (−1− t)+ = 0 and further we have

K1(t) =
1

2
(1− t)2 + 2− 2(1− t) =

1

2
(1− t)2 + 2t =

1

2
(1 + t)2 ≥ 0.

So,

R(f) =
1

2
f ′′(ξ)R(e2) =

1

2

(
−16

3

)
f ′′(ξ) = −8

3
f ′′(ξ), ξ ∈ (−1, 1).

Alternatively, we can find the remainder in the Birkhoff interpolation formula, using Peano’s Theo-
rem:

(R1f)(x) =
(x− 1)(x+ 3)

2
f ′′(ξ), ξ ∈ (−1, 1).

(try it, it’s a good exercise). Then, integrating, we get

R(f) =

1∫
−1

(R1f)(x) dx = −8

3
f ′′(ξ), ξ ∈ (−1, 1),

same as before.

3.2 Adaptive Quadratures

As seen so far, the errors in numerical integration methods depend not only on the size of the interval,
but also on values of certain higher order derivatives of the function to be integrated. Newton-Cotes
methods (including the three simple ones, that use low degree polynomial interpolation) work well
for smooth integrands (even with a small number of nodes), but perform poorly for functions having
large values of higher order derivatives – especially for functions having large oscillations on some
subintervals or on the whole interval. As a simple example, consider

1∫
0

√
x dx =

2

3
.

This integrand has infinite derivative at x = 0, but is smooth at points close to x = 1.
Generally, numerical integration schemes use evenly spaced nodes. When the function to be

integrated has a singularity at some point α ∈ [a, b], this requires many nodes in the vicinity of that

19



point, to reduce the errors caused by the chaotic behaviour of the function in that neighborhood.
But this implies that many more nodes (more than necessary) are used throughout the entire interval
of integration, increasing (unnecessarily) the computational cost of the method. Ideally, we want to
use small subintervals where the derivatives are large, and larger subintervals where the derivatives
are small and well-behaved.

A method that does this systematically is called adaptive quadrature. The general approach
in an adaptive quadrature is to use two different methods on each subinterval, compare the results,
and divide the interval when the differences are large. The structure of such an algorithm would be
“Divide and conquer”.

In Algorithm 3.1 we present an example of a general structure for a recursive adaptive quadra-
ture. The parameter “met” is a function that implements a composite quadrature rule, such as the
trapezoidal or Simpson’s rule, and m is the number of subintervals.

Unlike other methods, that decide what amount of work is needed to achieve a desired precision,
an adaptive quadrature computes only as much as is necessary.

Algorithm 3.1. [Adaptive quadrature]
function I = adquad(f, a, b, ε,met,m)

I1 = met(f, a, b,m);
I2 = met(f, a, b, 2m);

if |I1− I2| < ε % success
I = I2;
return

else % recursive subdivision
I = adquad(f, a, a+b

2
, ε,met,m) + adquad(f, a+b

2
, b, ε,met,m);

end
end
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