
1.3 Hermite Interpolation

Consider the following situation: For a moving object, we know the distances traveled d0, d1, . . . ,
dm, at times t0, t1, . . . , tm, and we want a polynomial approximation of the distance function d =

d(t) on the entire interval containing the points t0, . . . , tm. Obviously, this is a Lagrange interpola-
tion problem and we already know how to find the interpolation polynomial.

Now, assume that, in addition, we also know the values of the velocities vi of the object at
times ti, i = 0,m. We would expect that this additional information helps us find an even better

approximation of the function d. However, from what we know about Lagrange interpolation, there
is no way to include this data into our approximation. Since the velocity is the derivative with respect
to time of the distance traveled, this means that we also have information about the derivatives of
the function we want to interpolate. This is a Hermite interpolation problem. The ideas and
computational formulas are similar to the ones we used to determine the Lagrange interpolation
polynomial.

1.3.1 Interpolation with double nodes

For a variety of applications, as the one described above, it is convenient to consider polynomials
P (x) that interpolate a function f(x) and in addition have the derivative polynomial P ′(x) also
interpolate the derivative function f ′(x).

Hermite interpolation problem with double nodes. Given m + 1 distinct nodes xi, i = 0,m

and the values f(xi), f ′(xi) of an unknown function f and its derivative, find a polynomial P (x) of
minimum degree, satisfying the interpolation conditions

P (xi) = f(xi),

P ′(xi) = f ′(xi), i = 0,m. (1.1)

Since for each node there are two values (of the function and of its derivative) given, we call them
double nodes.

There are 2m+ 2 conditions in (1.1), so we seek a polynomial of degree (at most) n = 2m+ 1.
We determine this polynomial in a similar way to the construction of the Lagrange polynomial.
Recall the notations:

ψm(x) = (x− x0) . . . (x− xm−1)(x− xm),

li(x) =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xm)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xm)
=

ψm(x)

(x− xi)ψ′
m(xi)

,
(1.2)
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for i = 0, 1, . . . ,m.

Theorem 1.1. There is a unique polynomial Hnf of degree at most n, satisfying the interpolation

conditions (1.1). This polynomial can be written as

Hnf(x) =
m∑
i=0

[
hi0(x)f(xi) + hi1(x)f

′(xi)
]
, (1.3)

where
hi0(x) =

[
1− 2l′i(xi)(x− xi)

][
li(x)

]2
,

hi1(x) = (x− xi)
[
li(x)

]2
, i = 0, . . . ,m.

(1.4)

Hnf is called the Hermite interpolation polynomial of f at the double nodes x0, x1, . . . , xm. The

functions hi0(x), hi1(x), i = 0,m are called Hermite fundamental (basis) polynomials associated

with these points.

Proof. First we will prove that the polynomial in (1.3) does satisfy all interpolation conditions (i.e.,
existence), and then we will show that it is the only one to do so (i.e., uniqueness).
The degree of polynomials li from (1.2) is m, so the degree of hi0, hi1 and Hnf is 2m+ 1 = n.
The derivatives of the Hermite fundamental polynomials are

h′i0(x) = −2l′i(xi)
(
li(x)

)2
+ 2

[
1− 2l′i(xi)(x− xi)

]
l′i(x)li(x),

h′i1(x) =
(
li(x)

)2
+ 2(x− xi)l

′
i(x)li(x).

Notice that li(x), i = 0,m are the Lagrange fundamental polynomials, thus,

li(xj) = δij =

{
0, i ̸= j

1, i = j
.

Then,

hi0(xj) = 0, j ̸= i,

hi0(xi) = 1 ·
(
li(xi)

)2
= 1,

hi1(xj) = 0, j ̸= i,

hi1(xi) = 0.
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The values of the derivatives at the nodes are

h′i0(xj) = 0, j ̸= i,

h′i0(xi) = −2l′i(xi) + 2l′i(xi) = 0,

h′i1(xj) = 0, j ̸= i,

h′i1(xi) = 1 + 0 = 1.

It follows that

(Hnf)(xk) =
m∑
i=0

[
hi0(xk)f(xi) + hi1(xk)f

′(xi)
]

= f(xk),

(Hnf)
′(xk) =

m∑
i=0

[
h′i0(xk)f(xi) + h′i1(xk)f

′(xi)
]

= f ′(xk), k = 0,m,

hence, the polynomial Hnf given in (1.3) satisfies the interpolation conditions (1.1).
To prove uniqueness, assume there exists another polynomialGn (of degree at most n = 2m+1)

satisfying relations (1.1) and consider

Qn = Hn −Gn.

Then Qn is also a polynomial of degree at most n = 2m + 1. From the interpolation conditions, it
follows that

Qn(xi) = Hn(xi)−Gn(xi) = f(xi)− f(xi) = 0, i = 0, . . . ,m,

Q′
n(xi) = H ′

n(xi)−G′
n(xi) = f ′(xi)− f ′(xi) = 0, i = 0, . . . ,m.

So, Qn, a polynomial of degree at most 2m + 1, has m + 1 double roots. By the Fundamental
Theorem of Algebra, Qn must be identically zero, thus proving the uniqueness of Hn.

Example 1.2. One of the most widely used form of Hermite interpolation is the cubic Hermite
polynomial, which solves the interpolation problem with two double nodes a < b,

P (a) = f(a), P (b) = f(b),

P ′(a) = f ′(a), P ′(b) = f ′(b). (1.5)
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Solution. First of all, let us compute the degree. The degree of the polynomial is
[
2∗(number of

nodes) −1
]
, so, in this case,

n = 2 · 2− 1 = 3.

Letting x0 = a, x1 = b, with our previous notations and formulas, we have

ψ1(x) = (x− a)(x− b),

l0(x) =
x− b

a− b
, l′0(x) =

1

a− b
,

l1(x) =
x− a

b− a
, l′1(x) =

1

b− a
.

The Hermite fundamental polynomials are given by

h00(x) =
(
1− 2l′0(a)(x− a)

)(
l0(x)

)2
=

[
1 + 2

x− a

b− a

] [
b− x

b− a

]2
,

h10(x) =
(
1− 2l′1(b)(x− b)

)(
l1(x)

)2
=

[
1 + 2

b− x

b− a

] [
x− a

b− a

]2
,

h01(x) = (x− a)
(
l0(x)

)2
=

(x− a)(b− x)2

(b− a)2
,

h11(x) = (x− b)
(
l1(x)

)2
= −(x− a)2(b− x)

(b− a)2
.

So the cubic Hermite polynomial is

H3f(x) =

[
1 + 2

x− a

b− a

] [
b− x

b− a

]2
· f(a) +

[
1 + 2

b− x

b− a

] [
x− a

b− a

]2
· f(b)

+
(x− a)(b− x)2

(b− a)2
· f ′(a) − (x− a)2(b− x)

(b− a)2
· f ′(b).

1.3.2 Newton’s divided differences form

Just as in the case of Lagrange interpolation, Newton’s divided differences provide a more easily
computable form of the Hermite interpolation polynomial.

Consider 2m+ 2 distinct nodes z0, z1, . . . , z2m, z2m+1 and the Newton polynomial interpolating
a function f at these nodes.

N2m+1(x) = f(z0) + f [z0, z1](x− z0) + · · ·+ f [z0, . . . , z2m+1](x− z0) . . . (x− z2m),

4



with the error given by

R2m+1(x) = f(x)−N2m+1(x) = f [x, z0, . . . , z2m+1](x− z0) . . . (x− z2m+1).

We take the limits in the two relations above

z0, z1 → x0, z2, z3 → x1, . . . , z2i, z2i+1 → xi, . . . z2m, z2m+1 → xm.

Denoting by n = 2m+ 1, we get

Nn(x) = f(x0) + f [x0, x0](x− x0) + f [x0, x0, x1](x− x0)
2

+ f [x0, x0, x1, x1](x− x0)
2(x− x1) + . . . (1.6)

+ f [x0, x0, . . . , xm, xm](x− x0)
2 . . . (x− xm−1)

2(x− xm)

and for the remainder,

f(x)−Nn(x) = f [x, x0, x0, . . . , xm, xm](x− x0)
2 . . . (x− xm)

2. (1.7)

Proposition 1.3. Let [a, b] ⊂ R be the smallest interval containing the distinct nodes x0, . . . , xm
and f : [a, b] → R be a function of class C2m+2[a, b]. Then, for the two polynomials in (1.3) and

(1.6), we have

Hnf(x) = Nn(x),∀x ∈ [a, b], (1.8)

with the interpolation error

Rn(x) = f(x)−Hnf(x) =
[
ψm(x)

]2f (n+1)(ξx)

(n+ 1)!
, ξx ∈ (a, b). (1.9)

Proof. By the way it was constructed (in (1.6)), obviously the polynomial Nn has degree at most
n. Then, by the uniqueness of the Hermite interpolation polynomial, it suffices to show that Nn

satisfies the interpolation conditions (1.1).
From (1.7), it follows that

f(xi)−Nn(xi) = 0, i = 0, . . . ,m.
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Also, by the same relation, we have for the derivatives,

f ′(x)−N ′
n(x) = (x− x0)

2 . . . (x− xm)
2 ∂

∂x
f [x, x0, x0, . . . , xm, xm]

+ 2f [x, x0, x0, . . . , xm, xm]
m∑
i=0

[
(x− xi)

m∏
j=0
j ̸=i

(x− xj)
2

]
,

hence,

f ′(xi)−N ′
n(xi) = 0, i = 0, . . . ,m.

Thus,
Hnf(x) = Nn(x),∀x ∈ [a, b]

and the error formula (1.9) follows directly from (1.7) and the mean-value formula for divided
differences.

Example 1.4. Let us find the polynomial and the remainder for the Hermite interpolation problem
with two double nodes a < b, from Example 1.2.

Solution. We have

H3f(x) = f(a) + f [a, a](x− a) + f [a, a, b](x− a)2

+ f [a, a, b, b](x− a)2(x− b).

The divided differences table for two double nodes is

z0 = a f(a) −→ f [a, a] = f ′(a) −→ f [a, a, b] −→ f [a, a, b, b]

−→ −→ −→

z1 = a f(a) −→ f [a, b] =
f(b)− f(a)

b− a
−→ f [a, b, b]

−→ −→

z2 = b f(b) −→ f [b, b] = f ′(b)

−→

z3 = b f(b),
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where

f [a, a, b] =
f [a, b]− f ′(a)

b− a
,

f [a, b, b] =
f ′(b)− f [a, b]

b− a
,

f [a, a, b, b] =
f [a, b, b]− f [a, a, b]

b− a
=

f ′(b)− 2f [a, b] + f ′(a)

(b− a)2
.

The interpolation error is given by

f(x)−H3f(x) = (x− a)2(x− b)2f [x, a, a, b, b]

=
(x− a)2(x− b)2

24
f (4)(ξx),

with ξx belonging to the smallest interval that contains the points a, b and x.
We can find a bound for the error. Considering that on [a, b], the maximum of the function |(x −

a)(x − b)| occurs at the midpoint of the interval,
a+ b

2
, and that the maximum value is

(b− a)2

4
,

we have

max
x∈[a,b]

∣∣f(x)−H3f(x)
∣∣ ≤ (b− a)4

384
max
t∈[a,b]

∣∣f (4)(t)
∣∣.

Example 1.5 (Continuation of Example 1.1 in Lecture 4). Consider the function f : [0.5, 5] →
R, f(x) =

√
x and the nodes a = 1, b = 4. Let us compare Lagrange and Hermite approximations.

Solution. For the simple nodes a = 1, b = 4, we have the interpolation conditions

L1f(a) = f(a) = 1,

L1f(b) = f(b) = 2,

satisfied by the Lagrange polynomial of degree 1

L1f(x) =
1

3
x+

2

3
.
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If the nodes are double, the interpolation conditions are

H3f(a) = f(a) = 1,

H3f(b) = f(b) = 2,(
H3f

)′
(a) = f ′(a) = 1/(2

√
1) = 1/2,(

H3f
)′
(b) = f ′(b) = 1/(2

√
4) = 1/4.

The divided differences table is

z0 = 1 f(1) = 1 −→ f ′(1) = 1/2 −→ f [1,1,4] = −1/18 −→ f [1,1,4,4] = 1/108

−→ −→ −→

z1 = 1 f(1) = 1 −→ f [1, 4] = 1/3 −→ f [1, 4, 4] = −1/36

−→ −→

z2 = 4 f(4) = 2 −→ f ′(4) = 1/4

−→

z3 = 4 f(4) = 2,

The corresponding cubic Hermite interpolation polynomial is given by

H3f(x) = 1 +
1

2
(x− 1)− 1

18
(x− 1)2 +

1

108
(x− 1)2(x− 4),

with derivative (
H3f

)′
(x) =

1

2
− 1

9
(x− 1) +

1

108
(x− 1)

[
2(x− 4) + (x− 1)

]
.

Check that H3f found above satisfies the interpolation conditions:

H3f(1) = 1 = f(1),

H3f(4) = 1 +
3

2
− 1

18
· 9 = 2 = f(4),(

H3f
)′
(1) =

1

2
= f ′(1),(

H3f
)′
(4) =

1

2
− 1

3
+

1

108
· 9 =

1

4
= f ′(4).

The graphs of f and the two interpolation polynomials, L1, H3, on the interval [0.5, 5], are shown
in Figure 1. The interpolation errors are plotted in Figure 2.
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1.3.3 General case

Hermite interpolation problem. Given m+ 1 distinct nodes xi ∈ [a, b], i = 0,m,

x0, of multiplicity r0 + 1,

x1, of multiplicity r1 + 1,

. . .

xi, of multiplicity ri + 1,

. . .

xm of multiplicity rm + 1,

and the values f (j)(xi), i = 0, 1, . . . ,m, j = 0, . . . , ri, of an unknown function f : [a, b] → R
whose derivatives of order up to ri exist at xi, i = 0,m, find a polynomial P (x) of minimum
degree, satisfying the interpolation conditions

P (j)(xi) = f (j)(xi), i = 0,m, j = 0, ri. (1.10)

Above, there are

n+ 1
not
=

m∑
i=0

(ri + 1)

conditions, so the polynomial satisfying these relations will have degree at most n.

Theorem 1.6. There is a unique polynomial Hnf of degree at most n, satisfying the interpolation

conditions (1.10). This polynomial is called the Hermite interpolation polynomial of the function

f , relative to the nodes x0, x1, . . . , xm and the integers r0, r1, . . . , rm, and it can be written as

Hnf(x) =
m∑
i=0

ri∑
j=0

hij(x)f
(j)(xi). (1.11)

Remark 1.7.
1. The functions hij(x), i = 0,m, j = 0, ri, are called Hermite fundamental (basis) polynomials
and they satisfy the relations

h
(k)
ij (xl) = 0, l ̸= i, k = 0, rl,

h
(k)
ij (xi) = δjk, k = 0, ri.

(1.12)
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2. If we denote by

u(x) =
m∏
i=0

(x− xi)
ri+1,

ui(x) =
m∏
j=0
j ̸=i

(x− xj)
rj+1 =

u(x)

(x− xi)ri+1
,

(1.13)

then the fundamental polynomials hij(x) din (1.11) can be written as

hij(x) =
(x− xi)

j

j!

[ ri−j∑
k=0

(x− xi)
k

k!

[ 1

ui(x)

](k)
x=xi

]
ui(x). (1.14)

2. A more computable form can be found using Newton divided differences. Re-indexing the nodes
according to their multiplicity,

z0 = x0, . . . , zr0 = x0,

zr0+1 = x1, . . . , z(r0+1)+r1 = x1,

z(r0+1)+(r1+1) = x2, . . . , z(r0+1)+(r1+1)+r2 = x2,

. . .

zn−rm = xm, . . . , zn = xm,

the Hermite polynomial can be written in Newton’s form as

Nnf(x) = f(z0) + f [z0, z1](x− z0) + · · ·+ f [z0, . . . , zn](x− z0) . . . (x− zn−1), (1.15)

with interpolation error

Rn(x) = f(x)−Nn(x) = f [x, z0, . . . , zn](x− z0) . . . (x− zn)

=
u(x)

(n+ 1)!
f (n+1)(ξx), ξx ∈ (a, b). (1.16)

Example 1.8. Consider the case of a simple node x0 and a double node x1. Find the interpolant for
this data and an expression for the remainder.

Solution. We have the nodes

x0, of multiplicity r0 + 1 = 1,

x1, of multiplicity r1 + 1 = 2.
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so n+ 1 = 1 + 2 and the polynomial has degree n = 2.

The divided differences table:

x0 f(x0) −→ f [x0, x1] −→ f ′(x1)− f [x0, x1]

x1 − x0

−→ −→

x1 f(x1) −→ f ′(x1)

−→

x1 f(x1)

Then,

H2f(x) = f(x0) + f [x0, x1](x− x0) +
f ′(x1)− f [x0, x1]

x1 − x0
(x− x0)(x− x1)

= f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0) +

f ′(x1)

x1 − x0
(x− x0)(x− x1)

− f(x1)− f(x0)

(x1 − x0)2
(x− x0)(x− x1)

= h00f(x0) + h10f(x1) + h11f
′(x1)

and the remainder is given by

R2f(x) =
(x− x0)(x− x1)

2

3!
f ′′′(ξ),

with ξ belonging to the smallest interval containing x0 and x1.

Now, since H2f has degree 2 (small), we can find it directly: we seek it of the form

H2f(x) = ax2 + bx+ c

and determine coefficients a, b and c from the interpolation conditions:
H2f(x0) = f(x0)

H2f(x1) = f(x1)

(H2f)
′(x1) = f ′(x1)

,
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i.e., from the linear system 
x20a + x0b + c = f(x0)

x21a + x1b + c = f(x1)

2x1a + b = f ′(x1)

. (1.17)

The matrix of this system,

V =

 1 x0 x20

1 x1 x21

0 1 2x1

 ,
is called a generalized Vandermonde matrix. It is invertible and the elements of its inverse are the
coefficients of the fundamental polynomials h00, h10 and h11.

If the node x0 is double and x1 is simple, the corresponding Hermite polynomial and its error
are given by

H2f(x) = f(x0) + f ′(x0)(x− x0) +
f [x0, x1]− f ′(x0)

x1 − x0
(x− x0)

2,

R2f(x) =
(x− x0)

2(x− x1)

3!
f ′′′(ξ).

Example 1.9. Find a polynomial of minimum degree that interpolates the data f(0), f(1), f ′(1) and
f ′′(1) (so, a simple node and a triple one). Evaluate the error.

Solution. We have the nodes

x0 = 0, of multiplicity r0 + 1 = 1,

x1 = 1, of multiplicity r1 + 1 = 3.

Hence, we seek the Hermite polynomial of degree at most

n = 1 + 3− 1 = 3.

This will be of the form

H3f(x) = h00(x)f(0) + h10(x)f(1) + h11(x)f
′(1) + h12(x)f

′′(1).
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We compute the divided differences

0 f(0) −→ f(1)− f(0) −→ f ′(1)− f(1) + f(0) −→
f ′′(1)

2
− f ′(1) + f(1)− f(0)

−→ −→ −→

1 f(1) −→ f ′(1) −→ f ′′(1)

2

−→ −→

1 f(1) −→ f ′(1)

−→

1 f(1)

Then the interpolant is

H3f(x) = f(0) +
(
f(1)− f(0)

)
x+

(
f ′(1)− f(1) + f(0)

)
x(x− 1)

+
(f ′′(1)

2
− f ′(1) + f(1)− f(0)

)
x(x− 1)2

= −(x− 1)3f(0) + x(x2 − 3x+ 3)f(1)− x(x− 1)(x− 2)f ′(1) +
1

2
x(x− 1)2f ′′(1).

So the fundamental polynomials are

h00(x) = −(x− 1)3,

h10(x) = x(x2 − 3x+ 3),

h11(x) = −x(x− 1)(x− 2),

h12(x) =
1

2
x(x− 1)2,

with derivatives

h′00(x) = −3(x− 1)2, h′′00(x) = −6(x− 1),

h′10(x) = 3(x− 1)2, h′′10(x) = 6(x− 1),

h′11(x) = −(3x2 − 6x+ 2), h′′11(x) = −6(x− 1),

h′12(x) =
1

2
(x− 1)(3x− 2), h′′12(x) = 3x− 2.
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Now, we can better understand relations (1.12), as we can easily see that
h00(0) = 1

h00(1) = 0

h′00(1) = 0

h′′00(1) = 0

,


h10(0) = 0

h10(1) = 1

h′10(1) = 0

h′′10(1) = 0

,


h11(0) = 0

h11(1) = 0

h′11(1) = 1

h′′11(1) = 0

,


h12(0) = 0

h12(1) = 0

h′12(1) = 0

h′′12(1) = 1

.

Also, it is now very easy to check that H3f satisfies the interpolation conditions.

Alternatively, we can write the polynomial in the form

H3f(x) =
(
− f(0) + f(1)− f ′(1) +

1

2
f ′′(1)

)
x3 +

(
3f(0)− 3f(1) + 3f ′(1)− f ′′(1)

)
x2

+
(
− 3f(0) + 3f(1)− 2f ′(1) +

1

2
f ′′(1)

)
x+ f(0).

For the remainder, we have

R3f(x) =
u(x)

4!
f (iv)(ξ) =

x(x− 1)3

4!
f (iv)(ξ), ξ ∈ (0, 1).

Now,

u(x) = x(x− 1)3 = x4 − 3x3 + 3x2 − x,

u′(x) = 4x3 − 9x2 + 6x− 1 = (x− 1)2(4x− 1),

so u(x) ≤ 0 on [0, 1] and it has a local minimum at x =
1

4
. Thus,

|u(x)| ≤ |u(1/4)| =

∣∣∣∣∣14
(
−3

4

)3
∣∣∣∣∣ =

27

256
.

Then, we find an error bound as

|R3f(x)| ≤ 27

256 · 4!
max
t∈[0,1]

|f (iv)(t)| ≈ 0.0044 · ||f (iv)||.
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Special cases

1. If all ri = 0, i = 0,m, all the nodes are simple and we have the Lagrange interpolation
formula.

2. If we consider one single node, x0, of multiplicity n+1, the Hermite interpolation polynomial
is reduced to Taylor’s polynomial:

Hnf(x) = Tnf(x) = f(x0) +
x− x0
1!

f ′(x0) +
(x− x0)

2

2!
f ′′(x0) + . . .

+
(x− x0)

n

n!
f (n)(x),

(1.18)

with remainder
Rn(f)(x) =

(x− x0)
n+1

(n+ 1)!
f (n+1)(ξx). (1.19)

3. Consider two nodes, x0 = a, of multiplicity m+ 1 and x1 = b, of multiplicity n+ 1.

The Hermite polynomial has degree

(m+ 1) + (n+ 1)− 1 = m+ n+ 1.

With the notations from Remark 1.7, we have

u(x) = (x− a)m+1(x− b)n+1,

u0(x) = (x− b)n+1,

u1(x) = (x− a)m+1.

The Hermite polynomial is of the form

Hm+n+1f(x) =
m∑
j=0

h0j(x)f
(j)(a) +

n∑
i=0

h1i(x)f
(i)(b) (1.20)

and the fundamental polynomials are given by

h0j(x) =
(x− a)j

j!

[m−j∑
k=0

(x− a)k

k!

[ 1

(x− b)n+1

](k)
x=a

]
(x− b)n+1,

h1i(x) =
(x− b)i

i!

[ n−i∑
k=0

(x− b)k

k!

[ 1

(x− a)m+1

](k)
x=b

]
(x− a)m+1.
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In Newton’s form (1.15),

Hm+n+1f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (m)(a)

m!
(x− a)m

+ f [a, . . . , a︸ ︷︷ ︸
m+1

, b](x− a)m+1 + f [a, . . . , a︸ ︷︷ ︸
m+1

, b, b](x− a)m+1(x− b)

+ · · ·+ f [a, . . . , a︸ ︷︷ ︸
m+1

, b, . . . , b︸ ︷︷ ︸
n+1

](x− a)m+1(x− b)n,

with remainder

Rm+n+1 = f [x, a, . . . , a︸ ︷︷ ︸
m+1

, b, . . . , b︸ ︷︷ ︸
n+1

](x− a)m+1(x− b)n+1

=
f (m+n+2)(ξx)

(m+ n+ 2)!
(x− a)m+1(x− b)n+1, ξx ∈ (a, b).
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