1.3 Hermite Interpolation

Consider the following situation: For a moving object, we know the distances traveled d_{0}, d_{1}, \ldots, d_{m}, at times $t_{0}, t_{1}, \ldots, t_{m}$, and we want a polynomial approximation of the distance function $d=$ $d(t)$ on the entire interval containing the points t_{0}, \ldots, t_{m}. Obviously, this is a Lagrange interpolation problem and we already know how to find the interpolation polynomial.

Now, assume that, in addition, we also know the values of the velocities v_{i} of the object at times $t_{i}, i=\overline{0, m}$. We would expect that this additional information helps us find an even better approximation of the function d. However, from what we know about Lagrange interpolation, there is no way to include this data into our approximation. Since the velocity is the derivative with respect to time of the distance traveled, this means that we also have information about the derivatives of the function we want to interpolate. This is a Hermite interpolation problem. The ideas and computational formulas are similar to the ones we used to determine the Lagrange interpolation polynomial.

1.3.1 Interpolation with double nodes

For a variety of applications, as the one described above, it is convenient to consider polynomials $P(x)$ that interpolate a function $f(x)$ and in addition have the derivative polynomial $P^{\prime}(x)$ also interpolate the derivative function $f^{\prime}(x)$.

Hermite interpolation problem with double nodes. Given $m+1$ distinct nodes $x_{i}, i=\overline{0, m}$ and the values $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ of an unknown function f and its derivative, find a polynomial $P(x)$ of minimum degree, satisfying the interpolation conditions

$$
\begin{align*}
P\left(x_{i}\right) & =f\left(x_{i}\right) \\
P^{\prime}\left(x_{i}\right) & =f^{\prime}\left(x_{i}\right), i=\overline{0, m} \tag{1.1}
\end{align*}
$$

Since for each node there are two values (of the function and of its derivative) given, we call them double nodes.

There are $2 m+2$ conditions in (1.1), so we seek a polynomial of degree (at most) $n=2 m+1$. We determine this polynomial in a similar way to the construction of the Lagrange polynomial. Recall the notations:

$$
\begin{align*}
& \psi_{m}(x)=\left(x-x_{0}\right) \ldots\left(x-x_{m-1}\right)\left(x-x_{m}\right) \\
& l_{i}(x)=\frac{\left(x-x_{0}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{m}\right)}{\left(x_{i}-x_{0}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{m}\right)}=\frac{\psi_{m}(x)}{\left(x-x_{i}\right) \psi_{m}^{\prime}\left(x_{i}\right)}, \tag{1.2}
\end{align*}
$$

for $i=0,1, \ldots, m$.
Theorem 1.1. There is a unique polynomial $H_{n} f$ of degree at most n, satisfying the interpolation conditions (1.1). This polynomial can be written as

$$
\begin{equation*}
H_{n} f(x)=\sum_{i=0}^{m}\left[h_{i 0}(x) f\left(x_{i}\right)+h_{i 1}(x) f^{\prime}\left(x_{i}\right)\right] \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
h_{i 0}(x) & =\left[1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right]\left[l_{i}(x)\right]^{2} \\
h_{i 1}(x) & =\left(x-x_{i}\right)\left[l_{i}(x)\right]^{2}, i=0, \ldots, m . \tag{1.4}
\end{align*}
$$

$H_{n} f$ is called the Hermite interpolation polynomial of f at the double nodes $x_{0}, x_{1}, \ldots, x_{m}$. The functions $h_{i 0}(x), h_{i 1}(x), i=\overline{0, m}$ are called Hermite fundamental (basis) polynomials associated with these points.

Proof. First we will prove that the polynomial in (1.3) does satisfy all interpolation conditions (i.e., existence), and then we will show that it is the only one to do so (i.e., uniqueness).
The degree of polynomials l_{i} from (1.2) is m, so the degree of $h_{i 0}, h_{i 1}$ and $H_{n} f$ is $2 m+1=n$.
The derivatives of the Hermite fundamental polynomials are

$$
\begin{aligned}
h_{i 0}^{\prime}(x) & =-2 l_{i}^{\prime}\left(x_{i}\right)\left(l_{i}(x)\right)^{2}+2\left[1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right] l_{i}^{\prime}(x) l_{i}(x), \\
h_{i 1}^{\prime}(x) & =\left(l_{i}(x)\right)^{2}+2\left(x-x_{i}\right) l_{i}^{\prime}(x) l_{i}(x)
\end{aligned}
$$

Notice that $l_{i}(x), i=\overline{0, m}$ are the Lagrange fundamental polynomials, thus,

$$
l_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Then,

$$
\begin{aligned}
h_{i 0}\left(x_{j}\right) & =0, j \neq i \\
h_{i 0}\left(x_{i}\right) & =1 \cdot\left(l_{i}\left(x_{i}\right)\right)^{2}=1, \\
h_{i 1}\left(x_{j}\right) & =0, j \neq i, \\
h_{i 1}\left(x_{i}\right) & =0
\end{aligned}
$$

The values of the derivatives at the nodes are

$$
\begin{aligned}
h_{i 0}^{\prime}\left(x_{j}\right) & =0, j \neq i, \\
h_{i 0}^{\prime}\left(x_{i}\right) & =-2 l_{i}^{\prime}\left(x_{i}\right)+2 l_{i}^{\prime}\left(x_{i}\right)=0, \\
h_{i 1}^{\prime}\left(x_{j}\right) & =0, j \neq i, \\
h_{i 1}^{\prime}\left(x_{i}\right) & =1+0=1 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(H_{n} f\right)\left(x_{k}\right) & =\sum_{i=0}^{m}\left[h_{i 0}\left(x_{k}\right) f\left(x_{i}\right)+h_{i 1}\left(x_{k}\right) f^{\prime}\left(x_{i}\right)\right]=f\left(x_{k}\right), \\
\left(H_{n} f\right)^{\prime}\left(x_{k}\right) & =\sum_{i=0}^{m}\left[h_{i 0}^{\prime}\left(x_{k}\right) f\left(x_{i}\right)+h_{i 1}^{\prime}\left(x_{k}\right) f^{\prime}\left(x_{i}\right)\right]=f^{\prime}\left(x_{k}\right), k=\overline{0, m}
\end{aligned}
$$

hence, the polynomial $H_{n} f$ given in (1.3) satisfies the interpolation conditions (1.1).
To prove uniqueness, assume there exists another polynomial G_{n} (of degree at most $n=2 m+1$) satisfying relations (1.1) and consider

$$
Q_{n}=H_{n}-G_{n} .
$$

Then Q_{n} is also a polynomial of degree at most $n=2 m+1$. From the interpolation conditions, it follows that

$$
\begin{aligned}
Q_{n}\left(x_{i}\right) & =H_{n}\left(x_{i}\right)-G_{n}\left(x_{i}\right)=f\left(x_{i}\right)-f\left(x_{i}\right)=0, i=0, \ldots, m \\
Q_{n}^{\prime}\left(x_{i}\right) & =H_{n}^{\prime}\left(x_{i}\right)-G_{n}^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)=0, i=0, \ldots, m
\end{aligned}
$$

So, Q_{n}, a polynomial of degree at most $2 m+1$, has $m+1$ double roots. By the Fundamental Theorem of Algebra, Q_{n} must be identically zero, thus proving the uniqueness of H_{n}.

Example 1.2. One of the most widely used form of Hermite interpolation is the cubic Hermite polynomial, which solves the interpolation problem with two double nodes $a<b$,

$$
\begin{align*}
P(a) & =f(a), P(b)=f(b) \\
P^{\prime}(a) & =f^{\prime}(a), P^{\prime}(b)=f^{\prime}(b) \tag{1.5}
\end{align*}
$$

Solution. First of all, let us compute the degree. The degree of the polynomial is $[2 *$ (number of nodes) -1], so, in this case,

$$
n=2 \cdot 2-1=3
$$

Letting $x_{0}=a, x_{1}=b$, with our previous notations and formulas, we have

$$
\begin{aligned}
\psi_{1}(x) & =(x-a)(x-b) \\
l_{0}(x) & =\frac{x-b}{a-b}, \quad l_{0}^{\prime}(x)=\frac{1}{a-b}, \\
l_{1}(x) & =\frac{x-a}{b-a}, \quad l_{1}^{\prime}(x)=\frac{1}{b-a} .
\end{aligned}
$$

The Hermite fundamental polynomials are given by

$$
\begin{aligned}
& h_{00}(x)=\left(1-2 l_{0}^{\prime}(a)(x-a)\right)\left(l_{0}(x)\right)^{2}=\left[1+2 \frac{x-a}{b-a}\right]\left[\frac{b-x}{b-a}\right]^{2} \\
& h_{10}(x)=\left(1-2 l_{1}^{\prime}(b)(x-b)\right)\left(l_{1}(x)\right)^{2}=\left[1+2 \frac{b-x}{b-a}\right]\left[\frac{x-a}{b-a}\right]^{2} \\
& h_{01}(x)=(x-a)\left(l_{0}(x)\right)^{2}=\frac{(x-a)(b-x)^{2}}{(b-a)^{2}} \\
& h_{11}(x)=(x-b)\left(l_{1}(x)\right)^{2}=-\frac{(x-a)^{2}(b-x)}{(b-a)^{2}}
\end{aligned}
$$

So the cubic Hermite polynomial is

$$
\begin{aligned}
H_{3} f(x) & =\left[1+2 \frac{x-a}{b-a}\right]\left[\frac{b-x}{b-a}\right]^{2} \cdot f(a)+\left[1+2 \frac{b-x}{b-a}\right]\left[\frac{x-a}{b-a}\right]^{2} \cdot f(b) \\
& +\frac{(x-a)(b-x)^{2}}{(b-a)^{2}} \cdot f^{\prime}(a)-\frac{(x-a)^{2}(b-x)}{(b-a)^{2}} \cdot f^{\prime}(b) .
\end{aligned}
$$

1.3.2 Newton's divided differences form

Just as in the case of Lagrange interpolation, Newton's divided differences provide a more easily computable form of the Hermite interpolation polynomial.

Consider $2 m+2$ distinct nodes $z_{0}, z_{1}, \ldots, z_{2 m}, z_{2 m+1}$ and the Newton polynomial interpolating a function f at these nodes.

$$
N_{2 m+1}(x)=f\left(z_{0}\right)+f\left[z_{0}, z_{1}\right]\left(x-z_{0}\right)+\cdots+f\left[z_{0}, \ldots, z_{2 m+1}\right]\left(x-z_{0}\right) \ldots\left(x-z_{2 m}\right),
$$

with the error given by

$$
R_{2 m+1}(x)=f(x)-N_{2 m+1}(x)=f\left[x, z_{0}, \ldots, z_{2 m+1}\right]\left(x-z_{0}\right) \ldots\left(x-z_{2 m+1}\right)
$$

We take the limits in the two relations above

$$
z_{0}, z_{1} \rightarrow x_{0}, \quad z_{2}, z_{3} \rightarrow x_{1}, \ldots, \quad z_{2 i}, z_{2 i+1} \rightarrow x_{i}, \ldots z_{2 m}, z_{2 m+1} \rightarrow x_{m}
$$

Denoting by $n=2 m+1$, we get

$$
\begin{align*}
N_{n}(x) & =f\left(x_{0}\right)+f\left[x_{0}, x_{0}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{0}, x_{1}\right]\left(x-x_{0}\right)^{2} \\
& +f\left[x_{0}, x_{0}, x_{1}, x_{1}\right]\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)+\ldots \tag{1.6}\\
& +f\left[x_{0}, x_{0}, \ldots, x_{m}, x_{m}\right]\left(x-x_{0}\right)^{2} \ldots\left(x-x_{m-1}\right)^{2}\left(x-x_{m}\right)
\end{align*}
$$

and for the remainder,

$$
\begin{equation*}
f(x)-N_{n}(x)=f\left[x, x_{0}, x_{0}, \ldots, x_{m}, x_{m}\right]\left(x-x_{0}\right)^{2} \ldots\left(x-x_{m}\right)^{2} \tag{1.7}
\end{equation*}
$$

Proposition 1.3. Let $[a, b] \subset \mathbb{R}$ be the smallest interval containing the distinct nodes x_{0}, \ldots, x_{m} and $f:[a, b] \rightarrow \mathbb{R}$ be a function of class $C^{2 m+2}[a, b]$. Then, for the two polynomials in (1.3) and (1.6), we have

$$
\begin{equation*}
H_{n} f(x)=N_{n}(x), \forall x \in[a, b], \tag{1.8}
\end{equation*}
$$

with the interpolation error

$$
\begin{equation*}
R_{n}(x)=f(x)-H_{n} f(x)=\left[\psi_{m}(x)\right]^{2} \frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}, \xi_{x} \in(a, b) \tag{1.9}
\end{equation*}
$$

Proof. By the way it was constructed (in (1.6)), obviously the polynomial N_{n} has degree at most n. Then, by the uniqueness of the Hermite interpolation polynomial, it suffices to show that N_{n} satisfies the interpolation conditions (1.1).
From (1.7), it follows that

$$
f\left(x_{i}\right)-N_{n}\left(x_{i}\right)=0, i=0, \ldots, m
$$

Also, by the same relation, we have for the derivatives,

$$
\begin{aligned}
f^{\prime}(x)-N_{n}^{\prime}(x) & =\left(x-x_{0}\right)^{2} \ldots\left(x-x_{m}\right)^{2} \frac{\partial}{\partial x} f\left[x, x_{0}, x_{0}, \ldots, x_{m}, x_{m}\right] \\
& +2 f\left[x, x_{0}, x_{0}, \ldots, x_{m}, x_{m}\right] \sum_{i=0}^{m}\left[\left(x-x_{i}\right) \prod_{\substack{j=0 \\
j \neq i}}^{m}\left(x-x_{j}\right)^{2}\right],
\end{aligned}
$$

hence,

$$
f^{\prime}\left(x_{i}\right)-N_{n}^{\prime}\left(x_{i}\right)=0, i=0, \ldots, m
$$

Thus,

$$
H_{n} f(x)=N_{n}(x), \forall x \in[a, b]
$$

and the error formula (1.9) follows directly from (1.7) and the mean-value formula for divided differences.

Example 1.4. Let us find the polynomial and the remainder for the Hermite interpolation problem with two double nodes $a<b$, from Example 1.2.

Solution. We have

$$
\begin{aligned}
H_{3} f(x) & =f(a)+f[a, a](x-a)+f[a, a, b](x-a)^{2} \\
& +f[a, a, b, b](x-a)^{2}(x-b) .
\end{aligned}
$$

The divided differences table for two double nodes is
where

$$
\begin{aligned}
f[a, a, b] & =\frac{f[a, b]-f^{\prime}(a)}{b-a}, \\
f[a, b, b] & =\frac{f^{\prime}(b)-f[a, b]}{b-a}, \\
f[a, a, b, b] & =\frac{f[a, b, b]-f[a, a, b]}{b-a}=\frac{f^{\prime}(b)-2 f[a, b]+f^{\prime}(a)}{(b-a)^{2}} .
\end{aligned}
$$

The interpolation error is given by

$$
\begin{aligned}
f(x)-H_{3} f(x) & =(x-a)^{2}(x-b)^{2} f[x, a, a, b, b] \\
& =\frac{(x-a)^{2}(x-b)^{2}}{24} f^{(4)}\left(\xi_{x}\right),
\end{aligned}
$$

with ξ_{x} belonging to the smallest interval that contains the points a, b and x.
We can find a bound for the error. Considering that on $[a, b]$, the maximum of the function $\mid(x-$ $a)(x-b) \mid$ occurs at the midpoint of the interval, $\frac{a+b}{2}$, and that the maximum value is $\frac{(b-a)^{2}}{4}$, we have

$$
\max _{x \in[a, b]}\left|f(x)-H_{3} f(x)\right| \leq \frac{(b-a)^{4}}{384} \max _{t \in[a, b]}\left|f^{(4)}(t)\right|
$$

Example 1.5 (Continuation of Example 1.1 in Lecture 4). Consider the function $f:[0.5,5] \rightarrow$ $\mathbb{R}, f(x)=\sqrt{x}$ and the nodes $a=1, b=4$. Let us compare Lagrange and Hermite approximations.

Solution. For the simple nodes $a=1, b=4$, we have the interpolation conditions

$$
\begin{aligned}
L_{1} f(a) & =f(a)=1, \\
L_{1} f(b) & =f(b)=2,
\end{aligned}
$$

satisfied by the Lagrange polynomial of degree 1

$$
L_{1} f(x)=\frac{1}{3} x+\frac{2}{3}
$$

If the nodes are double, the interpolation conditions are

$$
\begin{aligned}
H_{3} f(a) & =f(a)=1, \\
H_{3} f(b) & =f(b)=2, \\
\left(H_{3} f\right)^{\prime}(a) & =f^{\prime}(a)=1 /(2 \sqrt{1})=1 / 2 \\
\left(H_{3} f\right)^{\prime}(b) & =f^{\prime}(b)=1 /(2 \sqrt{4})=1 / 4
\end{aligned}
$$

The divided differences table is

The corresponding cubic Hermite interpolation polynomial is given by

$$
H_{3} f(x)=1+\frac{1}{2}(x-1)-\frac{1}{18}(x-1)^{2}+\frac{1}{108}(x-1)^{2}(x-4)
$$

with derivative

$$
\left(H_{3} f\right)^{\prime}(x)=\frac{1}{2}-\frac{1}{9}(x-1)+\frac{1}{108}(x-1)[2(x-4)+(x-1)]
$$

Check that $H_{3} f$ found above satisfies the interpolation conditions:

$$
\begin{aligned}
H_{3} f(1) & =1=f(1) \\
H_{3} f(4) & =1+\frac{3}{2}-\frac{1}{18} \cdot 9=2=f(4) \\
\left(H_{3} f\right)^{\prime}(1) & =\frac{1}{2}=f^{\prime}(1) \\
\left(H_{3} f\right)^{\prime}(4) & =\frac{1}{2}-\frac{1}{3}+\frac{1}{108} \cdot 9=\frac{1}{4}=f^{\prime}(4) .
\end{aligned}
$$

The graphs of f and the two interpolation polynomials, L_{1}, H_{3}, on the interval $[0.5,5]$, are shown in Figure 1. The interpolation errors are plotted in Figure 2.

Fig. 1: Lagrange and Hermite interpolation with 2 nodes of the function \sqrt{x}

Fig. 2: Error of Lagrange and Hermite interpolation with 2 nodes of the function \sqrt{x}

1.3.3 General case

Hermite interpolation problem. Given $m+1$ distinct nodes $x_{i} \in[a, b], i=\overline{0, m}$,

$$
\begin{array}{r}
x_{0}, \text { of multiplicity } r_{0}+1, \\
x_{1}, \text { of multiplicity } r_{1}+1, \\
\ldots \\
x_{i}, \text { of multiplicity } r_{i}+1, \\
\ldots \\
x_{m} \text { of multiplicity } r_{m}+1,
\end{array}
$$

and the values $f^{(j)}\left(x_{i}\right), i=0,1, \ldots, m, j=0, \ldots, r_{i}$, of an unknown function $f:[a, b] \rightarrow \mathbb{R}$ whose derivatives of order up to r_{i} exist at $x_{i}, i=\overline{0, m}$, find a polynomial $P(x)$ of minimum degree, satisfying the interpolation conditions

$$
\begin{equation*}
P^{(j)}\left(x_{i}\right)=f^{(j)}\left(x_{i}\right), i=\overline{0, m}, j=\overline{0, r_{i}} . \tag{1.10}
\end{equation*}
$$

Above, there are

$$
n+1 \stackrel{\text { not }}{=} \sum_{i=0}^{m}\left(r_{i}+1\right)
$$

conditions, so the polynomial satisfying these relations will have degree at most n.
Theorem 1.6. There is a unique polynomial $H_{n} f$ of degree at most n, satisfying the interpolation conditions (1.10). This polynomial is called the Hermite interpolation polynomial of the function f, relative to the nodes $x_{0}, x_{1}, \ldots, x_{m}$ and the integers $r_{0}, r_{1}, \ldots, r_{m}$, and it can be written as

$$
\begin{equation*}
H_{n} f(x)=\sum_{i=0}^{m} \sum_{j=0}^{r_{i}} h_{i j}(x) f^{(j)}\left(x_{i}\right) \tag{1.11}
\end{equation*}
$$

Remark 1.7.

1. The functions $h_{i j}(x), i=\overline{0, m}, j=\overline{0, r_{i}}$, are called Hermite fundamental (basis) polynomials and they satisfy the relations

$$
\begin{align*}
h_{i j}^{(k)}\left(x_{l}\right) & =0, \quad l \neq i, k=\overline{0, r_{l}} \\
h_{i j}^{(k)}\left(x_{i}\right) & =\delta_{j k}, \quad k=\overline{0, r_{i}} . \tag{1.12}
\end{align*}
$$

2. If we denote by

$$
\begin{align*}
& u(x)=\prod_{\substack{i=0}}^{m}\left(x-x_{i}\right)^{r_{i}+1} \\
& u_{i}(x)=\prod_{\substack{j=0 \\
j \neq i}}^{m}\left(x-x_{j}\right)^{r_{j}+1}=\frac{u(x)}{\left(x-x_{i}\right)^{r_{i}+1}} \tag{1.13}
\end{align*}
$$

then the fundamental polynomials $h_{i j}(x)$ din (1.11) can be written as

$$
\begin{equation*}
h_{i j}(x)=\frac{\left(x-x_{i}\right)^{j}}{j!}\left[\sum_{k=0}^{r_{i}-j} \frac{\left(x-x_{i}\right)^{k}}{k!}\left[\frac{1}{u_{i}(x)}\right]_{x=x_{i}}^{(k)}\right] u_{i}(x) \tag{1.14}
\end{equation*}
$$

2. A more computable form can be found using Newton divided differences. Re-indexing the nodes according to their multiplicity,

$$
\begin{aligned}
z_{0} & =x_{0}, \ldots, z_{r_{0}}=x_{0} \\
z_{r_{0}+1} & =x_{1}, \ldots, z_{\left(r_{0}+1\right)+r_{1}}=x_{1} \\
z_{\left(r_{0}+1\right)+\left(r_{1}+1\right)} & =x_{2}, \ldots, z_{\left(r_{0}+1\right)+\left(r_{1}+1\right)+r_{2}}=x_{2} \\
& \cdots \\
z_{n-r_{m}} & =x_{m}, \ldots, z_{n}=x_{m}
\end{aligned}
$$

the Hermite polynomial can be written in Newton's form as

$$
\begin{equation*}
N_{n} f(x)=f\left(z_{0}\right)+f\left[z_{0}, z_{1}\right]\left(x-z_{0}\right)+\cdots+f\left[z_{0}, \ldots, z_{n}\right]\left(x-z_{0}\right) \ldots\left(x-z_{n-1}\right), \tag{1.15}
\end{equation*}
$$

with interpolation error

$$
\begin{align*}
R_{n}(x) & =f(x)-N_{n}(x)=f\left[x, z_{0}, \ldots, z_{n}\right]\left(x-z_{0}\right) \ldots\left(x-z_{n}\right) \\
& =\frac{u(x)}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right), \xi_{x} \in(a, b) . \tag{1.16}
\end{align*}
$$

Example 1.8. Consider the case of a simple node x_{0} and a double node x_{1}. Find the interpolant for this data and an expression for the remainder.

Solution. We have the nodes

$$
\begin{array}{ll}
x_{0}, & \text { of multiplicity } r_{0}+1=1 \\
x_{1}, & \text { of multiplicity } r_{1}+1=2
\end{array}
$$

so $n+1=1+2$ and the polynomial has degree $n=2$.
The divided differences table:

$$
\begin{array}{l|llll}
x_{0} & f\left(x_{0}\right) & \longrightarrow & f\left[x_{0}, x_{1}\right] & \longrightarrow \\
& & \\
x_{1} & f\left(x_{1}\right) & \longrightarrow & f^{\prime}\left(x_{1}\right)
\end{array}
$$

Then,

$$
\begin{aligned}
H_{2} f(x) & =f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\frac{f^{\prime}\left(x_{1}\right)-f\left[x_{0}, x_{1}\right]}{x_{1}-x_{0}}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)+\frac{f^{\prime}\left(x_{1}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& -\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =h_{00} f\left(x_{0}\right)+h_{10} f\left(x_{1}\right)+h_{11} f^{\prime}\left(x_{1}\right)
\end{aligned}
$$

and the remainder is given by

$$
R_{2} f(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)^{2}}{3!} f^{\prime \prime \prime}(\xi)
$$

with ξ belonging to the smallest interval containing x_{0} and x_{1}.
Now, since $H_{2} f$ has degree 2 (small), we can find it directly: we seek it of the form

$$
H_{2} f(x)=a x^{2}+b x+c
$$

and determine coefficients a, b and c from the interpolation conditions:

$$
\left\{\begin{aligned}
H_{2} f\left(x_{0}\right) & =f\left(x_{0}\right) \\
H_{2} f\left(x_{1}\right) & =f\left(x_{1}\right) \\
\left(H_{2} f\right)^{\prime}\left(x_{1}\right) & =f^{\prime}\left(x_{1}\right)
\end{aligned}\right.
$$

i.e., from the linear system

$$
\left\{\begin{array}{rl}
x_{0}^{2} a+x_{0} b+c & =f\left(x_{0}\right) \tag{1.17}\\
x_{1}^{2} a+x_{1} b+c & =f\left(x_{1}\right) \\
2 x_{1} a+b & =f^{\prime}\left(x_{1}\right)
\end{array} .\right.
$$

The matrix of this system,

$$
V=\left[\begin{array}{ccc}
1 & x_{0} & x_{0}^{2} \\
1 & x_{1} & x_{1}^{2} \\
0 & 1 & 2 x_{1}
\end{array}\right]
$$

is called a generalized Vandermonde matrix. It is invertible and the elements of its inverse are the coefficients of the fundamental polynomials h_{00}, h_{10} and h_{11}.

If the node x_{0} is double and x_{1} is simple, the corresponding Hermite polynomial and its error are given by

$$
\begin{aligned}
H_{2} f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f\left[x_{0}, x_{1}\right]-f^{\prime}\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)^{2} \\
R_{2} f(x) & =\frac{\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)}{3!} f^{\prime \prime \prime}(\xi)
\end{aligned}
$$

Example 1.9. Find a polynomial of minimum degree that interpolates the data $f(0), f(1), f^{\prime}(1)$ and $f^{\prime \prime}(1)$ (so, a simple node and a triple one). Evaluate the error.

Solution. We have the nodes

$$
\begin{aligned}
& x_{0}=0, \text { of multiplicity } r_{0}+1=1, \\
& x_{1}=1, \text { of multiplicity } r_{1}+1=3
\end{aligned}
$$

Hence, we seek the Hermite polynomial of degree at most

$$
n=1+3-1=3 .
$$

This will be of the form

$$
H_{3} f(x)=h_{00}(x) f(0)+h_{10}(x) f(1)+h_{11}(x) f^{\prime}(1)+h_{12}(x) f^{\prime \prime}(1)
$$

We compute the divided differences

Then the interpolant is

$$
\begin{aligned}
H_{3} f(x) & =f(0)+(f(1)-f(0)) x+\left(f^{\prime}(1)-f(1)+f(0)\right) x(x-1) \\
& +\left(\frac{f^{\prime \prime}(1)}{2}-f^{\prime}(1)+f(1)-f(0)\right) x(x-1)^{2} \\
& =-(x-1)^{3} f(0)+x\left(x^{2}-3 x+3\right) f(1)-x(x-1)(x-2) f^{\prime}(1)+\frac{1}{2} x(x-1)^{2} f^{\prime \prime}(1)
\end{aligned}
$$

So the fundamental polynomials are

$$
\begin{aligned}
h_{00}(x) & =-(x-1)^{3}, \\
h_{10}(x) & =x\left(x^{2}-3 x+3\right), \\
h_{11}(x) & =-x(x-1)(x-2), \\
h_{12}(x) & =\frac{1}{2} x(x-1)^{2},
\end{aligned}
$$

with derivatives

$$
\begin{aligned}
& h_{00}^{\prime}(x)=-3(x-1)^{2}, \quad h_{00}^{\prime \prime}(x)=-6(x-1), \\
& h_{10}^{\prime}(x)=3(x-1)^{2}, \quad h_{10}^{\prime \prime}(x)=6(x-1), \\
& h_{11}^{\prime}(x)=-\left(3 x^{2}-6 x+2\right), \quad h_{11}^{\prime \prime}(x)=-6(x-1), \\
& h_{12}^{\prime}(x)=\frac{1}{2}(x-1)(3 x-2), \quad h_{12}^{\prime \prime}(x)=3 x-2 .
\end{aligned}
$$

Now, we can better understand relations (1.12), as we can easily see that

$$
\left\{\begin{array}{l}
h_{00}(0)=1 \\
h_{00}(1)=0 \\
h_{00}^{\prime}(1)=0 \\
h_{00}^{\prime \prime}(1)=0
\end{array},\left\{\begin{array}{l}
h_{10}(0)=0 \\
h_{10}(1)=1 \\
h_{10}^{\prime}(1)=0 \\
h_{10}^{\prime \prime}(1)=0
\end{array},\left\{\begin{array}{l}
h_{11}(0)=0 \\
h_{11}(1)=0 \\
h_{11}^{\prime}(1)=1 \\
h_{11}^{\prime \prime}(1)=0
\end{array},\left\{\begin{array}{l}
h_{12}(0)=0 \\
h_{12}(1)=0 \\
h_{12}^{\prime}(1)=0 \\
h_{12}^{\prime \prime}(1)=1
\end{array}\right.\right.\right.\right.
$$

Also, it is now very easy to check that $H_{3} f$ satisfies the interpolation conditions.
Alternatively, we can write the polynomial in the form

$$
\begin{aligned}
H_{3} f(x) & =\left(-f(0)+f(1)-f^{\prime}(1)+\frac{1}{2} f^{\prime \prime}(1)\right) x^{3}+\left(3 f(0)-3 f(1)+3 f^{\prime}(1)-f^{\prime \prime}(1)\right) x^{2} \\
& +\left(-3 f(0)+3 f(1)-2 f^{\prime}(1)+\frac{1}{2} f^{\prime \prime}(1)\right) x+f(0)
\end{aligned}
$$

For the remainder, we have

$$
R_{3} f(x)=\frac{u(x)}{4!} f^{(i v)}(\xi)=\frac{x(x-1)^{3}}{4!} f^{(i v)}(\xi), \xi \in(0,1)
$$

Now,

$$
\begin{aligned}
u(x) & =x(x-1)^{3}=x^{4}-3 x^{3}+3 x^{2}-x \\
u^{\prime}(x) & =4 x^{3}-9 x^{2}+6 x-1=(x-1)^{2}(4 x-1)
\end{aligned}
$$

so $u(x) \leq 0$ on $[0,1]$ and it has a local minimum at $x=\frac{1}{4}$. Thus,

$$
|u(x)| \leq|u(1 / 4)|=\left|\frac{1}{4}\left(-\frac{3}{4}\right)^{3}\right|=\frac{27}{256}
$$

Then, we find an error bound as

$$
\left|R_{3} f(x)\right| \leq \frac{27}{256 \cdot 4!} \max _{t \in[0,1]}\left|f^{(i v)}(t)\right| \approx 0.0044 \cdot\left\|f^{(i v)}\right\| .
$$

Special cases

1. If all $r_{i}=0, i=\overline{0, m}$, all the nodes are simple and we have the Lagrange interpolation formula.
2. If we consider one single node, x_{0}, of multiplicity $n+1$, the Hermite interpolation polynomial is reduced to Taylor's polynomial:

$$
\begin{align*}
H_{n} f(x) & =T_{n} f(x)=f\left(x_{0}\right)+\frac{x-x_{0}}{1!} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\ldots \tag{1.18}\\
& +\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}(x)
\end{align*}
$$

with remainder

$$
\begin{equation*}
R_{n}(f)(x)=\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \tag{1.19}
\end{equation*}
$$

3. Consider two nodes, $x_{0}=a$, of multiplicity $m+1$ and $x_{1}=b$, of multiplicity $n+1$.

The Hermite polynomial has degree

$$
(m+1)+(n+1)-1=m+n+1
$$

With the notations from Remark 1.7, we have

$$
\begin{aligned}
u(x) & =(x-a)^{m+1}(x-b)^{n+1} \\
u_{0}(x) & =(x-b)^{n+1} \\
u_{1}(x) & =(x-a)^{m+1}
\end{aligned}
$$

The Hermite polynomial is of the form

$$
\begin{equation*}
H_{m+n+1} f(x)=\sum_{j=0}^{m} h_{0 j}(x) f^{(j)}(a)+\sum_{i=0}^{n} h_{1 i}(x) f^{(i)}(b) \tag{1.20}
\end{equation*}
$$

and the fundamental polynomials are given by

$$
\begin{aligned}
& h_{0 j}(x)=\frac{(x-a)^{j}}{j!}\left[\sum_{k=0}^{m-j} \frac{(x-a)^{k}}{k!}\left[\frac{1}{(x-b)^{n+1}}\right]_{x=a}^{(k)}\right](x-b)^{n+1} \\
& h_{1 i}(x)=\frac{(x-b)^{i}}{i!}\left[\sum_{k=0}^{n-i} \frac{(x-b)^{k}}{k!}\left[\frac{1}{(x-a)^{m+1}}\right]_{x=b}^{(k)}\right](x-a)^{m+1}
\end{aligned}
$$

In Newton's form (1.15),

$$
\begin{aligned}
H_{m+n+1} f(x) & =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(m)}(a)}{m!}(x-a)^{m} \\
& +f[\underbrace{a, \ldots, a}_{m+1}, b](x-a)^{m+1}+f[\underbrace{a, \ldots, a}_{m+1}, b, b](x-a)^{m+1}(x-b) \\
& +\cdots+f[\underbrace{a, \ldots, a}_{m+1}, \underbrace{b, \ldots, b}_{n+1}](x-a)^{m+1}(x-b)^{n},
\end{aligned}
$$

with remainder

$$
\begin{aligned}
R_{m+n+1} & =f[x, \underbrace{a, \ldots, a}_{m+1}, \underbrace{b, \ldots, b}_{n+1}](x-a)^{m+1}(x-b)^{n+1} \\
& =\frac{f^{(m+n+2)}\left(\xi_{x}\right)}{(m+n+2)!}(x-a)^{m+1}(x-b)^{n+1}, \xi_{x} \in(a, b)
\end{aligned}
$$

