
5.4 Tests for the Parameters of One Population

Let X be a population characteristic, with pdf f(x; θ), mean E(X) = µ and variance V (X) = σ2.
Let X1, X2, . . . , Xn be sample variables.

Tests for the mean of a population, θ = µ

We test the hypotheses
H0 : µ = µ0, versus one of

H1 :


µ < µ0

µ > µ0

µ ̸= µ0,

(5.1)

under the assumption that either X is approximately Normally N(µ, σ) distributed or that the sample
is large (n > 30).

Case σ known ( ztest )
We use the test statistic

TS = Z =
X − µ

σ√
n

∈ N(0, 1), (5.2)

with observed value

Z0 =
X − µ0

σ√
n

. (5.3)

Then, as before, at the α ∈ (0, 1) significance level, the rejection region for each test will be given
by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{|Z0| ≥ z1−α

2
}

(5.4)

and the P -value will be computed as

P =


P (Z ≤ Z0 | H0) = Φ(Z0)

P (Z ≥ Z0 | H0) = 1− Φ(Z0)

P (|Z| ≥ |Z0| | H0) = 2 (1− Φ(|Z0|)) ,
(5.5)
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since N(0, 1) is symmetric, where

Φ(x) =
1√
2π

x∫
−∞

e−
t2

2 dt

is Laplace’s function, the cdf for the Standard Normal N(0, 1)distribution.

Case σ unknown ( ttest )
In this case, we use the test statistic

TS = T =
X − µ

s√
n

∈ T (n− 1), (5.6)

with observed value

T0 =
X − µ0

s√
n

. (5.7)

Similarly to the previous case, we find the rejection region for the three alternatives as

RR :


{T0 ≤ tα}
{T0 ≥ t1−α}
{|T0| ≥ t1−α

2
},

(5.8)

and compute the P -value by

P =


P (T ≤ T0 | H0) = F (T0)

P (T ≥ T0 | H0) = 1− F (T0)

P (|T | ≥ |T0| | H0) = 2 (1− F (|T0|)) ,
(5.9)

where the cdf F and the quantiles refer to the T (n− 1) distribution.

Tests for a population proportion, θ = p

Let us recall that, when estimating a population proportion p, if the sample size is large enough
(n > 30), then the variable

Z =
p− p√
p(1− p)

n

(5.10)
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has an approximately N(0, 1) distribution, where p is the sample proportion. So this case fits the
general Z-test framework.
To test

H0 : p = p0,

with one of the alternatives

H1 :


p < p0

p > p0

p ̸= p0.

, (5.11)

we use the test statistic TS = Z from (5.10). Then, as before, at the α ∈ (0, 1) significance level,
the rejection region for each test will be given by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{|Z0| ≥ z1−α

2
},

(5.12)

and the P -value will be computed as

P =


P (Z ≤ Z0 | H0) = Φ(Z0)

P (Z ≥ Z0 | H0) = 1− Φ(Z0)

P (|Z| ≥ |Z0| | H0) = 2 (1− Φ(|Z0|)) ,
(5.13)

since N(0, 1) is symmetric, where Φ(x) =
1√
2π

x∫
−∞

e−
t2

2 dt is Laplace’s function, the cdf for the

Standard Normal N(0, 1) distribution.

Example 5.1. A company is receiving a large shipment of items. For quality control purposes, they
collect a sample of 200 items and find 24 defective ones in it.
a) The manufacturer claims that at most 1 in 10 items in the shipment is defective. At the 5%

significance level, does the data confirm or contradict his claim?
b) Find the P -value of the test in part a).

Solution.
We have a sample of size n = 200 for which the sample proportion is

p =
24

200
=

3

25
= 0.12.

3



a) The manufacturer claims that at most 1 in 10 items is defective, i.e. that p ≤ 0.1. So, we are
testing a right- tailed alternative

H0 : p = 0.1

H1 : p > 0.1.

If we decide to reject H0, that means the data contradicts the manufacturer’s claim, whereas if we
do not reject it, it means the data is insufficient to contradict his claim, so we consider it to be true.
We have a significance level α = 0.05, so for the rejection region we need the quantile

z1−α = z0.95 = 1.645

and the rejection region is
RR = [1.645,∞).

The test statistic is
Z =

p− p√
p(1− p)

n

and its observed value is
Z0 =

0.12− 0.1√
0.1 · 0.9
200

= 0.943.

Since Z0 /∈ RR, we do not reject H0 at this significance level, i.e. conclude that the data seems to
confirm the manufacturer’s claim that at most 10% of items are defective. Notice that even though
the sample proportion was 0.12, bigger than 0.1, the inference on the entire population proportion
is that it does not exceed 0.1 (data from a sample may be misleading, if it is not used properly ...)

b) The P -value is

P = P (Z ≥ Z0) = 1− P (Z ≤ 0.943) = 1− Φ(0.943) = 0.173.

Since
α = 0.05 < 0.173 = P,

the decision is to not reject the null hypothesis. i.e. accept the manufacturer’s claim.
Notice that the significance test tells us more! Since the P -value is so large (remember, it is com-
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parable to a probability of an error, so a small quantity), not only at the 5% significance level we
decide to accept H0, but at any reasonable significance level the decision would be the same. That
means that the data strongly suggests that H0 is true and should not be rejected. So, even more we
see that we should be careful not to extrapolate the property of one sample to the entire population.

5.5 Tests for Comparing the Parameters of Two Populations

Assume we have two characteristics X(1) and X(2), relative to two populations, with means µ1 =

E(X(1)), µ2 = E(X(2)) and variances σ2
1 = V (X(1)), σ

2
2 = V (X(2)), respectively.

Recall that we draw from both populations random samples of sizes n1 and n2, respectively, that are
independent. Denote the two sets of random variables by

X11, . . . , X1n1 and X21, . . . , X2n2 .

Then we have two sample means and two sample variances, given by

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j

and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
,

respectively. In addition, denote by

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers (“pools”) the sample data
from both samples.

When comparing the means or proportions of two populations, we estimate their difference,
whereas for comparing their variances, the ratio of the variances will be estimated.

We will use the following theoretical results.

Proposition 5.2. Assume X(1) ∈ N(µ1, σ1) and X(2) ∈ N(µ2, σ2). Then
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a) Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1);

b) T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2);

c) T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n), where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

;

d) F =
s21/σ

2
1

s22/σ
2
2

∈ F (n1 − 1, n2 − 1).

Proposition 5.3. If the samples are large enough (n1 + n2 > 40), then parts a), b) and c) of

Proposition 5.2 still hold.

Fisher (F) Distribution

In many cases, two population variances need to be compared. Such inference is used for the
comparison of accuracy, stability, uncertainty, or risks arising in two populations.

Consider, for instance, two mutual fund investments that promise the same expected return.
However, one of them recorded a 10% higher volatility over the last 15 days. Is this a significant
evidence for a conservative investor to prefer the other mutual fund? Volatility is essentially the
standard deviation of returns. This is a case where we should be able to compare variances (or
standard deviations) of two populations.
Moreover, recall (from the construction of CI’s for the difference of means) that we have several
cases, depending on whether or not the population variances are known (assumed) to be equal or
not. Rather than “assuming” equality of the population variances, we can now test that assertion, by
comparing them based on data from samples.

Comparison of variances can be accomplished using the Fisher-Snedecor (F) distribution.
This distribution was first considered in 1918 by a famous English statistician and biologist, Sir
Ronald Fisher (1890-1962) and developed and formalized in 1934 by an American mathematician
George Snedecor (1881-1974). A random variable X follows a Fisher (F) distribution with param-
eters m,n ∈ N (degrees of freedom), if its density function is

f(x) =
1

β(m
2
, n
2
)

(m
n

)m
2
x

m
2
−1

(
1 +

m

n
x
)−m+n

2
, x > 0,
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where β(a, b) =
1∫
0

xa−1(1 − x)b−1dx, a, b > 0, is Euler’s Beta function. Its density has a right-

skewed shape (see Figure 1). Since this is asymmetric, we no longer have the same relationship

0

1− α

f
α/2 f1−α/2

F distribution pdf

Fig. 1: Fisher (F) Distribution pdf and quantiles

between its quantiles, that we have seen for the Normal or Student distributions (i.e., qα = −q1−α).
However, there is an important property of the F distribution:

Proposition 5.4. If the variable X has a F (m,n) distribution, then its reciprocal
1

X
has a F (n,m)

distribution. As a consequence, the following relation holds for F -quantiles:

f1−α,m,n =
1

fα,n,m
, ∀α ∈ (0, 1), (5.14)

where the quantile f1−α,m,n refers to the F (m,n) distribution and fα,n,m is for the F (n,m) distri-

bution.

Tests for the difference of means, θ = µ1 − µ2

We test the hypotheses

H0 : µ1 − µ2 = 0,

H1 :


µ1 − µ2 < 0

µ1 − µ2 > 0

µ1 − µ2 ̸= 0,

equivalent to

H0 : µ1 = µ2,

H1 :


µ1 < µ2

µ1 > µ2

µ1 ̸= µ2,

(5.15)
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under the assumption that either X(1) and X(2) have approximately Normal distributions or that the
samples are large enough (n1 + n2 > 40).

Case σ1, σ2 known
We use the test statistic

TS = Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1), (5.16)

with observed value

Z0 =
X1 −X2√
σ2
1

n1

+
σ2
2

n2

. (5.17)

Then, as before, at the α ∈ (0, 1) significance level, the rejection region for each test will be given
by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{|Z0| ≥ z1−α

2
}

(5.18)

and the P -value will be computed as

P =


P (Z ≤ Z0 | H0) = Φ(Z0)

P (Z ≥ Z0 | H0) = 1− Φ(Z0)

P (|Z| ≥ |Z0| | H0) = 2 (1− Φ(|Z0|)) ,
(5.19)

since N(0, 1) is symmetric, where

Φ(x) =
1√
2π

x∫
−∞

e−
t2

2 dt

is Laplace’s function, the cdf for the Standard Normal N(0, 1)distribution.
Case σ1 = σ2 unknown ( ttest2 )
The test statistic is

TS = T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2), (5.20)
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with observed value

T0 =
X1 −X2

sp

√
1

n1

+
1

n2

. (5.21)

Similarly to the previous case, we find the rejection region for the three alternatives as

RR :


{T0 ≤ tα}
{T0 ≥ t1−α}
{|T0| ≥ t1−α

2
},

(5.22)

and compute the P -value by

P =


P (T ≤ T0 | H0) = F (T0)

P (T ≥ T0 | H0) = 1− F (T0)

P (|T | ≥ |T0| | H0) = 2 (1− F (|T0|)) ,
(5.23)

where the cdf F and the quantiles refer to the T (n1 + n2 − 2) distribution.

Case σ1, σ2 unknown ( ttest2 )
We now use the test statistic

TS = T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n), (5.24)

where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

.

The observed value of the test statistic is

T ∗
0 =

X1 −X2√
s21
n1

+
s22
n2

. (5.25)

The rejection regions and P -values for the three alternatives are again as in equations (5.22)-(5.23),
with T0 replaced by T ∗

0 from (5.25). The cdf F and the quantiles refer to the T (n) distribution.

Remark 5.5. The same Matlab command ttest2 performs a T -test for the difference of two popu-
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lation means, when the variances are not assumed equal, with the option vartype set on “unequal”
(the default being “equal”, when it can be omitted).

Tests for the ratio of variances, θ =
σ2
1

σ2
2

( vartest2 )

Assuming that both X(1) and X(1) have Normal distributions, we test the hypotheses

H0 :
σ2
1

σ2
2

= 1,

H1 :



σ2
1

σ2
2

< 1

σ2
1

σ2
2

> 1

σ2
1

σ2
2

̸= 1,

<=>

H0 : σ2
1 = σ2

2,

H1 :


σ2
1 < σ2

2

σ2
1 > σ2

2

σ2
1 ̸= σ2

2,

<=>

H0 : σ1 = σ2,

H1 :


σ1 < σ2

σ1 > σ2

σ1 ̸= σ2.

(5.26)

The test statistic used is

TS = F =
s21/σ

2
1

s22/σ
2
2

∈ F (n1 − 1, n2 − 1), (5.27)

with observed value

F0 =
s21
s22
. (5.28)

The F (n1 − 1, n2 − 1) distribution is not symmetric, but proceeding as before, we find the rejection
region for the three alternatives as

RR :


{F0 ≤ fα}
{F0 ≥ f1−α}
{F0 ≤ fα

2
or F0 ≥ f1−α

2
}.

(5.29)

and the P -values given by

P =


P (F ≤ F0 | H0) = F (F0)

P (F ≥ F0 | H0) = 1− F (F0)

2 ·min{P (F ≤ F0 | H0), P (F ≥ F0 | H0)} = 2 ·min{F (F0), 1− F (F0)},
(5.30)

where the cdf F and the quantiles refer to the F (n1 − 1, n2 − 1) distribution.
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Example 5.6. Suppose the strengths to a certain load of two types of material, M1 and M2, are
studied, knowing that they are approximately Normally distributed. The more weight they can resist
to, the stronger they are. Two independent random samples are drawn and they yield the following
data.

M1 M2

n1 = 25 n2 = 16

X1 = 380 X2 = 370

s21 = 537 s22 = 196

a) At the 5% significance level, do the variances of the two populations seem to be equal or not?
b) At the same significance level, does the data suggest that on average, M1 is stronger than M2?
(In both parts, perform both hypothesis and significance testing).

Solution.
a) First, we compare the variances of the two populations, so we know which way to proceed for
comparing the means. We want to know if they are equal or not, so it is a two-tailed test. Hence,
our hypotheses are

H0 : σ2
1 = σ2

2

H1 : σ2
1 ̸= σ2

2.

The observed value of the test statistic is

F0 =
s21
s22

=
537

196
= 2.7398.

For α = 0.05, n1 = 25 and n2 = 16, the quantiles for the F (24, 15) distribution are

fα
2

= f0.025 = 0.4103

f1−α
2

= f0.975 = 2.7006.

Thus, the rejection region for our test is

RR = (−∞, 0.4103] ∪ [2.7006,∞)

and clearly, F0 ∈ RR. Thus we reject H0 in favor of H1, i.e. we conclude that the data suggests that
the population variances are different.
Let us also perform a significance test. The P -value of this (two-tailed) test is

P = 2 ·min{P (F ≤ F0), P (F ≥ F0)} = 2 ·min{0.9765, 0.0235} = 0.0469.
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Since our α > P , the “minimum rejection significance level”, we reject H0.
Note. We now know that for instance, at 1% significance level (or any level less than 4.69%), we
would have not rejected the null hypothesis. This goes to show that the data can be “misleading”.
Simply comparing the values of the sample functions does not necessarily mean that the same thing
will be true for the corresponding population parameters. Here, s21 is much larger than s22, yet at 1%
significance level, we would have concluded that the population variances seem to be equal.

b) Next we want to compare the population means. If M1 is to be stronger than M2 on average,
than we must perform a right-tailed test:

H0 : µ1 = µ2

H1 : µ1 > µ2

Which one of the tests for the difference of means should we use? The answer is in part a). At this
significance level, the variances are unknown and different.
Then the value of the test statistic is, by (5.25)

T ∗
0 =

X1 −X2√
s21
n1

+
s22
n2

=
380− 370√
537

25
+

196

16

= 1.7218.

To find the rejection region, we compute

c = 0.6368, n = 38.9244 ≈ 39

and the quantile for the T (39) distribution

t1−α = t0.95 = 1.6849.

Then the rejection region of the test is

RR = [1.6849,∞),

which includes the value T ∗
0 , so we reject H0 in favor of H1. Thus, we conclude that yes, the data

suggests that material M1 is, on average, stronger than material M2.
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On the other hand, the P -value of this test is

P = P (T ∗ ≥ T ∗
0 ) = 1− F (T ∗

0 ) = 1− F (1.7218) = 0.0465,

where F is the cdf of the T (39) distribution. Again, the P -value is lower than α = 0.05, which
forces the rejection of H0.

Tests for the difference of means, paired data, θ = µ1 − µ2 ( ttest )

Recall that in many applications, we want to compare the means of two populations, when two
random samples (one from each population) are available, which are not independent, where each
observation in one sample is naturally or by design paired with an observation in the other sample.

In such cases, both samples have the same length, n:

X11, . . . , X1n and X21, . . . , X2n

and we consider the sample of their differences,

D1, . . . , Dn,

where
Di = X1i −X2i, i = 1, n.

For this sample, we have

Xd =
1

n

n∑
i=1

Di, the sample mean and

s2d =
1

n− 1

n∑
i=1

(
Di −Xd

)2
, the sample variance.

Then, it is known that when n is large enough (n > 30) or the two populations that the samples are
drawn from have approximately Normal distributions N(µ1, σ1), N(µ2, σ2), the statistic

T =
Xd − (µ1 − µ2)

sd√
n

(5.31)
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has a Student T (n − 1) distribution, so we can use it as a test statistic for testing the hypotheses
(5.15). Its observed value is

T0 =
Xd

sd√
n

. (5.32)

Then, as before, we determine the rejection region corresponding to the three alternatives to be

RR :


{T0 ≤ tα}
{T0 ≥ t1−α}
{|T0| ≥ |t1−α

2
|}

(5.33)

and compute the P -value by

P =


P (T ≤ T0 | H0) = F (T0)

P (T ≥ T0 | H0) = 1− F (T0)

P (|T | ≥ |T0| | H0) = 2 (1− F (|T0|)) ,
(5.34)

where the quantiles and the cdf F refer to the T (n− 1) distribution.

Example 5.7. Information about ocean weather can be extracted from radar returns with the aid of
special algorithms. A study is conducted to estimate the difference in wind speed as measured on
the ground, at 12 specified times, using two methods simultaneously. These data result:

Times 1 2 3 4 5 6 7 8 9 10 11 12

Method I 4.46 3.99 3.73 3.29 4.82 6.71 4.61 3.87 3.17 4.42 3.76 3.3
Method II 4.08 3.94 5.00 5.2 3.92 6.21 5.95 3.07 4.76 3.25 4.89 4.8

Assuming the measurements taken by the two methods are approximately Normally distributed,
at the 1% significance level, does the data suggest that, on average, the two sets of measurements
differ?

Solution. By looking at the data, we see that at some times the measurement taken by the first
method is higher, at others, the one given by the second. So we cannot say if, on average, these
differences will cancel each other, to yield about the same mean value.

So, we want to test
H0 : µ1 = µ2

H1 : µ1 ̸= µ2,
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a two-tailed alternative. The samples yield the following data: sample size n = 12, sample mean
Xd = −0.4117 and sample variance s2d = 1.2973, so sd = 1.139.
The observed value of the test statistic from (5.32) is

T0 =
Xd

sd√
n

= −1.2521.

For α = 0.01, the quantiles for the T (11) distribution are

tα/2 = t0.005 = −3.1058,

t1−α/2 = −tα/2 = 3.1058,

so the rejection region is

RR = (−∞,−3.1058] ∪ [3.1058,∞).

Since T0 /∈ RR, we cannot reject the null hypothesis, which means we decide that the two popula-
tion means are approximately equal.
On the other hand, the P -value of this test is

P = 2 (1− F (|T0|)) = 0.2365,

We have
α = 0.01 < 0.2365 = P,

the minimum rejection level, so the decision is to not reject the null hypothesis. Notice that, again,
the P -value is much larger than any conceivable significance level α, so that means that the data
strongly suggests that H0 should not be rejected, i.e., that the two population means do not differ.

Remark 5.8. The Matlab command ttest that performs a T -test for one population mean (in the
general case, when σ is not known), can also be used for a paired T -test.
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Tests for comparing population proportions, θ = p1 − p2

Similarly, in this case, if the samples are large enough (n1 + n2 > 40), then the variable

Z =
p1 − p2 − (p1 − p2)√

p1q1
n1

+
p2q2
n2

∈ N(0, 1), (5.35)

where p1 and p2 are the two sample proportions. To test

H0 : p1 − p2 = 0, versus

H1 :


p1 − p2 < 0

p1 − p2 > 0

p1 − p2 ̸= 0,

which is equivalent to
H0 : p1 = p2, versus

H1 :


p1 < p2

p1 > p2

p1 ̸= p2,

(5.36)

we use TS = Z from (5.35) as test statistic. Let us see what the observed value Z0 would be. Since
under the null hypothesis, p1 = p2, it makes sense to estimate both proportions in (5.35) by the
overall proportion

p̂ =
n1p1 + n2p2
n1 + n2

, (5.37)

called the pooled proportion (a proportion that takes into account data from both samples). Then
the observed value of the test statistic Z0 is

Z0 =
p1 − p2√

p̂(1− p̂)

(
1

n1

+
1

n2

) . (5.38)

The rejection regions and P -values for the three alternatives are then given by equations (5.18)-
(5.19), with Z0 from (5.38).

Example 5.9. Recall Example 5.1: A company is receiving a large shipment of items. For quality
control purposes, they collect a sample of 200 items and find 24 defective ones in it.
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Suppose now that the company is trying a new supplier. A sample of 150 items produced by the
second supplier contains 21 defective parts. At the 5% significance level, does the new supplier
seem worse than the first one?

Solution. For the first supplier the data was n1 = 200, p1 = 0.12, for the new one, we have
n2 = 150 and p2 = 0.14. Considering that now 14% of items are defective and with the first
supplier the percentage was 12%, the company is in a serious bind: it is afraid that the second
supplier may be worse than the first one. Now, “worse” would mean that for the entire populations
the proportions satisfy p1 < p2. So, we perform a left-tailed test

H0 : p1 = p2

H1 : p1 < p2.

For a left-tailed test and significance level α = 0.05, the rejection region is

RR = (−∞, z0.05] = (−∞,−1.654].

The pooled proportion from (5.16) is

p̂ =
n1p1 + n2p2
n1 + n2

=
24 + 21

350
= 0.1286.

Then the observed value of the test statistic (from (5.38)) is

Z0 =
p1 − p2√

p̂(1− p̂)

(
1

n1

+
1

n2

) = −0.5531.

Since Z0 /∈ RR, we do not reject the null hypothesis, i.e. we conclude that overall, the second
supplier is not worse than the first one.
For significance testing, the P - value of the test is

P = P (Z ≤ Z0) = P (Z ≤ −0.5531) = Φ(−0.5531) = 0.29,

again, very large, much larger than this (or any reasonable) α, so the decision is to not reject H0, a
decision that seems strongly supported by the data.
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5.6 Summary of hypothesis and significance testing

We can use data to verify statements and test hypotheses. Essentially, we measure the evidence
provided by the data against the null hypothesis H0. Then we decide whether it is sufficient for
rejecting it or not. Given a significance level α ∈ (0, 1), we can construct acceptance and rejection
regions, compute a suitable test statistic, and make a decision depending on which region it belongs
to.

Alternatively, we may compute a P -value of the test. It shows how significant the evidence
against H0 is. Low P -values suggest rejection of the null hypothesis. The P -value of a test is the
boundary between levels α-to-reject and α-to-accept. It also represents the probability of observing
the same or more extreme sample than the one that was actually observed.

We already mentioned that in practice, significance testing is preferred, i.e., computing the P -
value and comparing it to the significance level α (and that is how hypothesis testing is implemented
in any software). That is much more efficient from the computational perspective, as computation
of the quantiles can be rather expensive.

In fact, in practice, a significance level α is hardly ever specified. Instead, just the P -value is
computed. Since the null hypothesis is always in the form of an equality

H0 : θ = θ0,

whichever alternative we are testing (left-, right-, or two-tailed), to reject H0 (when P is “small”)
means that the data shows that there are significant differences (statistically speaking) from what
it states. How “significant”? That depends on how small the P -value is. The following levels are
customary for how “significant” the differences are:

P > 0.05 ⇒ not significant,

0.01 < P ≤ 0.05 ⇒ significant,

0.001 < P ≤ 0.01 ⇒ distinctly significant,

P ≤ 0.001 ⇒ very significant.
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