
2 Measures of Variability

Once we have located the central values of a set of data, it is important to measure the variability,
whether the data values are tightly clustered or spread out. At the heart of Statistics lies variability:
measuring it, reducing it, distinguishing random from real variability, identifying the various sources
of real variability and making decisions in the presence of it. We need to know how “unstable” the
data is and how much the values differ from its average or from other middle values. These numbers
will have small values for closely grouped data (little variation) and larger values for more widely
spread out data (large variation).

The measures of variation will also help us assess the reliability of our estimates and the accuracy
of our forecasts.

2.1 Quantiles, percentiles and quartiles

Consider the primary data X = {x1, . . . , xN}. The first two measures of variation give a very
general idea of the spread in the data values.

Definition 2.1. The range ( range ) of X is the difference

xmax − xmin.

If the values of X are sorted in increasing order, then the range is xN − x1.

Definition 2.2. The mean absolute deviation ( mad ) of X is the mean of the absolute value of the

deviations from the mean, i.e. the value

MAD1 =
1

N

N∑
i=1

|xi − x|.

The median absolute deviation ( mad ) of X is the median of the absolute value of the deviations

from the median, i.e. the value

MAD2 = median{|xi −M |}.

Like the median, the median absolute deviation is not influenced by extreme values, whereas the
mean absolute deviation is.
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Next, following the idea behind the definition of the median, we define values that divide the
data into certain percentages. We simply replace 0.5 in its definition by some probability 0 < p < 1.

Definition 2.3. Let X be a set of data sorted increasingly, p ∈ (0, 1) and k = 1, 2, . . . , 99.

(1) A sample p-quantile ( quantile ) is any number that exceeds at most 100p% of the sample and

is exceeded by at most 100(1− p)% of the sample.

(2) A k-percentile ( prctile ) Pk is a (k/100)-quantile. So, Pk exceeds at most k% and is exceeded

by at most (100− k)% of the data

(3) The quartiles of X are the values

Q1 = P25, Q2 = P50 = M and Q3 = P75.

xmin Q1 Q2 Q3 xmax

25% 25% 25% 25%

Fig. 1: Quartiles

Definition 2.4. Let X be a set of sorted data with quartiles Q1, Q2 and Q3.

(1) The interquartile range ( iqr ) is the difference between the third and the first quartile

IQR = Q3 −Q1. (2.1)

(2) The interquartile deviation or the semi interquartile range is the value

IQD =
IQR

2
=

Q3 −Q1

2
. (2.2)

(3) The interquartile deviation coefficient or the relative interquartile deviation is the value

IQDC =
IQD

M
=

Q3 −Q1

2Q2

. (2.3)
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Remark 2.5.
1. The interquartile deviation is an absolute measure of variation and it has an important property:
the range M ± IQD contains approximately 50% of the data.
2. The interquartile deviation coefficient IQDC varies between −1 and 1, taking values close to 0

for symmetrical distributions, with little variation and values close to ±1 for skewed data with large
variation.

Example 2.6. Let us use again the data from Example 1.6 from last time, about the CPU times (in
seconds) for N = 30 randomly chosen jobs (sorted ascendingly):

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

and compute various measures of variation.

Solution. For this example, the range is

139− 9 = 130 seconds

and the mean and median absolute deviations are

MAD1 = 19.6133,

MAD2 = 13.5.

To determine the quartiles, notice that 25% of the sample equals 30/4 = 7.5 and 75% of the
sample is 90/4 = 22.5 observations. From the ordered sample, we see that the 8th element, 34, has
7 observations to its left and 22 to its right, so it has no more than 7.5 observations to the left and no

more than 22.5 observations to the right of it. Hence, Q1 = 34.
Similarly, the third quartile is the 23rd smallest element, Q3 = 59. Recall from last time that the

second quartile (the median) si Q2 = M = 42.5. Then

IQR = 59− 34 = 25,

IQD = IQR/2 = 12.5,

IQDC = IQD/Q2 = 0.2941.
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The interval
M ± IQD = [30, 55]

contains 14 observations.
The value of the IQDC is close neither to 0, nor to the values ±1. So the data doesn’t show

strong symmetry or strong asymmetry. This may be due to the extreme values 9 and/or 139.

Example 2.7. A computer maker sells extended warranty on the produced computers. It agrees to
issue a warranty for x years if it knows that only 10% of computers will fail before the warranty ex-
pires. It is known from past experience that lifetimes of these computers have a Gamma distribution
with parameters α = 60 and λ = 1/5 years. Compute x and advise the company on the important
decision under uncertainty about possible warranties.

Solution. We just need to find the tenth percentile of the specified Gamma distribution and let
x = P10. In Matlab, that would be computed (as the inverse of the cdf) by

x = gaminv(0.1, 60, 1/5) = 10.0624.

Thus, the company can issue a 10-year warranty rather safely.

Remark 2.8. For populations or very large data sets, calculating exact percentiles can be computa-
tionally very expensive since it requires sorting all the data values. Machine learning and statistical
software use special algorithms (such as linear interpolation) to get an approximate percentile that
can be calculated very quickly and is guaranteed to have a certain accuracy.

Outliers

The interquartile range is also involved in another important aspect of statistical analysis, namely
the detection of outliers. An outlier, as the name suggests, is basically an atypical value, “far away”
from the rest of the data, that does not seem to belong to the distribution of the rest of the values in
the data set.

We have seen how the mean is very sensitive to outliers. Other statistical procedures can be
gravely affected by the presence of outliers in the data. Thus, the problem of detecting and locating
an outlier is an important part of any statistical data analysis process.

How to classify a value as being “extreme”? First, we could use a simple property, known as the
“3σ rule”. This is an application of Chebyshev’s inequality

P (|X − E(X)| < ε) ≥ 1− V (X)

ε2
, ∀ε > 0.
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If we use the classical notations E(X) = µ, V (X) = σ2, Std(X) = σ for the mean, variance and
standard deviation of X and take ε = 3σ, we get

P (|X − µ| < 3σ) ≥ 1− σ2

9σ2

=
8

9
≈ .89.

This is saying that it is very probable (at least 0.89 probable) that |X − µ| < 3σ, or, equivalently,
that µ − 3σ < X < µ + 3σ. In words, the 3σ rule states that most of the values that any random

variable takes, at least 89%, lie within 3 standard deviations away from the mean. This property is
true in general, for any distribution, but especially for unimodal and symmetrical ones, where that
percentage is even higher.

Based on that, one simple procedure would be to consider an outlier any value that is more than
2.5 standard deviations away from the mean, and an extreme outlier a value more than 3 standard
deviations away from the mean.

A more general approach, that works well also for skewed data, is to consider an outlier any
observation that is outside the range[

Q1 −
3

2
IQR, Q3 +

3

2
IQR

]
= [Q1 − 3IQD, Q3 + 3IQD] .

Also, the coefficient 3/2 can be replaced by some other number to decrease or enlarge the
interval of “normal” values (or, equivalently, the domain that covers the outliers):

[Q1 − w · IQR, Q3 + w · IQR] , w = 0.5, 1, 1.5.

For our example on CPU times of processors, we have

Q1 −
3

2
IQR = −3.5,

Q3 +
3

2
IQR = 96.5,

so observations outside the interval [−3.5, 96.5] are considered outliers. In this case, there is only
one, the value 139.
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Boxplots

All the information we discussed above is summarized in a graphical display, called a boxplot
( boxplot ), a plot in which a rectangle is drawn to represent the second and third quartiles (so
the interquartile range), with a line inside for the median value and which indicates which values
are considered extreme. The “whiskers” of the boxplot are the endpoints of the interval on which
normal values lie (so everything outside the whiskers is considered an outlier).

For the data in Example 2.6, the boxplot is displayed in Figure 2.
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Fig. 2: Quartiles, Interquartile Range, Outliers

A boxplot can be displayed vertically (default) or horizontally, as in Figure 2. The box can have
a “notch” (indentation) at the value of the median, as in Figure 3(a). The width of the interval of the
whiskers can be changed. The interval that determines the outliers (i.e., outside of which values are
considered too extreme, outliers) is

[Q1 − w · IQR,Q3 + w · IQR].

The default value is w = 1.5. With the smaller whiskers, boxplot displays more data points as
outliers. In Figure 3(b), the whisker size is set to w = 0.5. Then, outliers are all the values outside
the interval [Q1 − 0.5 · IQR,Q3 + 0.5 · IQR] = [21.5, 71.5]. These would be 9, 15, 19 (too small)
and 82, 89, 139 (too large).
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Fig. 3: Boxplots

 

Fig. 4: Multiple boxplots
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Boxplots are also very useful when we want to compare data from different samples (see Figure
4). We can compare the interquartile ranges, to examine how the data is dispersed between each
sample. The longer the box, the more dispersed the data.

2.2 Moments, variance, standard deviation and coefficient of variation

The idea of the mean can be generalized, by taking various powers of the values in the data.

Definition 2.9.

(1) The moment of order k is the value

νk =
1

N

N∑
i=1

xk
i , νk =

1

N

n∑
i=1

fix
k
i , (2.4)

for primary and for grouped data, respectively.

(2) The central moment of order k ( moment ) is the value

µk =
1

N

N∑
i=1

(xi − x)k, µk =
1

N

n∑
i=1

fi(xi − x)k (2.5)

for primary and for grouped data, respectively.

(3) The variance ( var ) is the value

σ2 =
1

N

N∑
i=1

(xi − x)2, σ2 =
1

N

n∑
i=1

fi(xi − x)2 (2.6)

for primary and for grouped data, respectively. The quantity σ =
√
σ2 is the standard devia-

tion ( std ).

Remark 2.10.
1. A more efficient computational formula for the variance is

σ2 =
1

N

(
N∑
i=1

x2
i −

1

N

( N∑
i=1

xi

)2)
=

1

N

(
N∑
i=1

x2
i −Nx2

)
, (2.7)

which follows straight from the definition.
2. We will see later that when the data represents a sample (not the entire population), a better
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formula is

s2 =
1

N − 1

N∑
i=1

(xi − x)2 =
1

N − 1

( N∑
i=1

x2
i −Nx2

)
,

s2 =
1

N − 1

n∑
i=1

fi(xi − x)2 =
1

N − 1

( N∑
i=1

fix
2
i −Nx2

)
,

(2.8)

for the sample variance for primary or grouped data. The reason the sum is divided by N − 1

instead of N will have to do with the “bias” of an estimator and will be explained later on in the
next chapter. To fully explain why using N leads to a biased estimate involves the notion of degrees

of freedom, which takes into account the number of constraints in computing an estimate. The
sample observations x1, . . . , xN are independent (by the definition of a random sample), but when
computing the variance, we use the variables x1 − x, . . . , xN − x. Notice that by subtracting the
sample mean x from each observation, there exists a linear relation among the elements, namely

N∑
k=1

(xk − x) = 0

and, thus, we lose 1 degree of freedom due to this constraint. Hence, there are only N−1 degrees of
freedom. So, we will use (2.7) to compute the variance of a set of data that represents a population
and (2.8) for the variance of a sample.

Example 2.11. Consider again our previous example on CPU times (in seconds) for N = 30 ran-
domly chosen jobs:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

Recall that for this data the sample mean was x = 48.2333 seconds. The sample variance is

s2 =
(70− 48.2333)2 + . . .+ (19− 48.2333)2

30− 1
=

20391

29
≈ 703.1506 sec2.

Alternatively, using (2.7),

s2 =
702 + . . .+ 192 − 30 · 48.23332

30− 1
=

90185− 69794

29
≈ 703.1506 sec2.

The sample standard deviation is

s =
√
703.1506 ≈ 26.1506 sec.
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By the 3σ rule, using x and s as estimates for the population mean µ and population standard
deviation σ, we may infer that at least 89% of the tasks performed by this processor require between
x− 3s = −30.2185 and x+ 3s = 126.6851 (so less than 126.6851) seconds of CPU time.

Definition 2.12. The coefficient of variation is the value

CV =
s

x
.

Remark 2.13.
1. The coefficient of variation is also known as the relative standard deviation (RSD).
2. It can be expressed as a ratio or as a percentage. It is useful in comparing the degrees of variation
of two sets of data, even when their means are different.
2. The coefficient of variation is used in fields such as Analytical Chemistry, Engineering or Physics
when doing quality assurance studies. It is also widely used in Business Statistics. For example, in
the investing world, the coefficient of variation helps brokers determine how much volatility (risk)
they are assuming in comparison to the amount of return they can expect from a certain investment.
The lower the value of the CV, the better the risk-return trade off.

3 Sample Theory

In inferential Statistics, we will have the following situation: we are interested in studying a char-
acteristic (a random variable) X, relative to a population P of (known or unknown) size N . The
difficulty or even the impossibility of studying the entire population, as well as the merits of choos-
ing and studying a random sample from which to make inferences about the population of interest,
have already been discussed in the previous chapter. Now, we want to give a more rigorous and pre-
cise definition of a random sample, in the framework of random variables, one that can then employ
probability theory techniques for making inferences.

3.1 Random Samples and Sample Functions

We choose n objects from the population and actually study Xi, i = 1, n, the characteristic of
interest for the ith object selected. Since the n objects were randomly selected, it makes sense that
for i = 1, n, Xi is a random variable, one that has the same distribution (pdf) as X , the characteristic
relative to the entire population. Furthermore, these random variables are independent, since the
value assumed by one of them has no effect on the values assumed by the others. Once the n objects
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have been selected, we will have n numerical values available, x1, . . . , xn, the observed values of
the sample variables X1, . . . , Xn.

Definition 3.1. A random sample of size n from the distribution of X , a characteristic relative to

a population P, is a collection of n independent random variables X1, . . . , Xn, having the same

distribution as X. The variables X1, . . . , Xn, are called sample variables and their observed values

x1, . . . , xn, are called sample data.

Remark 3.2. The term random sample may refer to the objects selected, to the sample variables, or
to the sample data. It is usually clear from the context which meaning is intended. In general, we
use capital letters to denote sample variables and corresponding lowercase letters for their observed
values, the sample data.

We are able now to define sample functions, or statistics, in the more precise context of random
variables.

Definition 3.3. A sample function or statistic is a random variable

Yn = hn(X1, . . . , Xn),

where hn : Rn → R is a measurable function. The value of the sample function Yn is yn =

hn(x1, . . . , xn).

We will revisit now some sample numerical characteristics discussed in the previous sections and
define them as sample functions. That means they will have a pdf, a cdf, a mean value, variance,
standard deviation, etc. A sample function will, in general, be an approximation for the corre-
sponding population characteristic. In that context, the standard deviation of the sample function is
usually referred to as the standard error.

In what follows, {X1, . . . , Xn} denotes a sample of size n drawn from the distribution of some
population characteristic X .

3.2 Sample Mean

Definition 3.4. The sample mean is the sample function defined by

Xn =
1

n

n∑
i=1

Xi (3.1)
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and its value is xn =
1

n

n∑
i=1

xi.

Now that the sample mean is defined as a random variable, we can discuss its numerical charac-
teristics.

Proposition 3.5. Let X be a population characteristic with mean E(X) = µ and variance V (X) =

σ2. Then

E
(
X
)
= µ and V

(
X
)
=

σ2

n
. (3.2)

Proof. Since X1, . . . , Xn are identically distributed, with the same distribution as X , E(Xi) =

E(X) = µ and V (Xi) = V (X) = σ2, ∀i = 1, n. Then, by the usual properties of expectation, we
have

E
(
X
)
= E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ.

Further, since X1, . . . , Xn are also independent, by the properties of variance, it follows that

V
(
X
)
= V

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V (Xi) =
1

n2
nσ2 =

σ2

n
.

Remark 3.6. As a consequence, the standard deviation of X is

Std(X) =

√
V (X) =

σ√
n
.

So, when estimating the population mean µ from a sample of size n by the sample mean X , the
standard error of the estimate is σ/

√
n, which oftentimes is estimated by s/

√
n. Either way, notice

that as n increases and tends to ∞, the standard error decreases and approaches 0. That means that
the larger the sample on which we base our estimate, the more accurate the approximation.

3.3 Sample Moments and Sample Variance

Definition 3.7. The statistic

νk =
1

n

n∑
i=1

Xk
i (3.3)
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is called the sample moment of order k and its value is
1

n

n∑
i=1

xk
i .

The statistic

µk =
1

n

n∑
i=1

(Xi −X)k (3.4)

is called the sample central moment of order k and its value is
1

n

n∑
i=1

(xi − x)k.

Remark 3.8. Just like for theoretical (population) moments, we have

ν1 = X,

µ1 = 0,

µ2 = ν2 − ν2
1.

Next we discuss the characteristics of these new sample functions.

Proposition 3.9. Let X be a characteristic with the property that for k ∈ N, the theoretical moment

ν2k = ν2k(X) = E
(
X2k

)
exists. Then

E (νk) = νk and V (νk) =
1

n

(
ν2k − ν2

k

)
. (3.5)

Proof. First off, the condition that ν2k exists for X ensures the fact that all theoretical moments of
X of order up to k also exist. The rest follows as before. We have

E (νk) =
1

n

n∑
i=1

E(Xk
i ) =

1

n

n∑
i=1

E(Xk) =
1

n
nνk = νk

and

V (νk) =
1

n2

n∑
i=1

V (Xk
i ) =

1

n2

n∑
i=1

V (Xk)

=
1

n2
n
(
ν2k − ν2

k

)
=

1

n

(
ν2k − ν2

k

)
.

13



Proposition 3.10. Let X be a characteristic with variance V (X) = µ2 = σ2 and for which the

theoretical moment ν4 = E (X4) exists. Then

E (µ2) =
n− 1

n
σ2, (3.6)

V (µ2) =
n− 1

n3

[
(n− 1)µ4 − (n− 3)σ4

]
.

Proof. We only prove the first assertion, as it is the most important and oftenly used property of µ2.

Using Proposition 3.9, Remark 3.8, the properties of expectation and the fact that X1, . . . , Xn are
independent and identically distributed, we have

E (µ2) = E (ν2)− E
(
ν2
1

)
= ν2 − E

(( 1
n

n∑
i=1

Xi

)2)

= ν2 −
1

n2
E
( n∑

i=1

X2
i + 2

∑
i<j

XiXj

)
= ν2 −

1

n2

[
n∑

i=1

E
(
X2

i

)
+ 2

∑
i<j

E(Xi)E(Xj)

]

= ν2 −
1

n2

[
nν2 + 2

n(n− 1)

2
ν2
1

]
= ν2 −

1

n
ν2 −

n− 1

n
ν2
1

=
n− 1

n

(
ν2 − ν2

1

)
=

n− 1

n
σ2.

Remark 3.11. Notice that the sample central moment of order 2 is the first statistic whose expected
value is not the corresponding population function, in this case the theoretical variance. This is the
motivation for the next definition.

Definition 3.12. The statistic

s2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.7)

is called the sample variance and its value is
1

n− 1

n∑
i=1

(xi − x)2.

The statistic s =
√
s2 is called the sample standard deviation.
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Remark 3.13. Notice that the sample central moment of order 2 is no longer equal to the sample
variance, as we are used. In fact, we have

s2 =
n

n− 1
µ2.

Then, by Proposition 3.10, we have for the sample variance

E
(
s2
)

= µ2 = σ2, (3.8)

V
(
s2
)

=
1

n(n− 1)

[
(n− 1)µ4 − (n− 3)σ4

]
and, again, the estimation of σ2 by s2 (or of σ by s) has a standard error that decreases as the sample
size increases:

Std(s2) =

√
1

n(n− 1)

(
(n− 1)µ4 − (n− 3)σ4

)
−→ 0, as n → ∞.
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