
Histograms and Frequency Polygons

When data is grouped into classes, the best way to visualize the frequency distribution is by con-
structing a histogram ( hist/histogram ). A histogram is a type of bar graph, where classes are
represented by rectangles whose bases are the class lengths and whose heights are chosen so that
the areas of the rectangles are proportional to the class frequencies. If the classes have all the same
length, then the heights will be proportional to the class frequencies.

A histogram shows the shape of a pdf (probability distribution/density function) or pmf (proba-
bility mass function) of data, checks for homogeneity, and suggests possible outliers.

A frequency histogram consists of columns, one for each class (bin), whose height is deter-
mined by the number of observations in the bin.

A relative frequency histogram has the same shape but a different vertical scale. Its column
heights represent the proportion of all data that appeared in each bin.

If relative frequencies are considered (so the proportionality factor is N, the total number of
observations), then the total areas of all rectangles will be equal to 1. For a large volume of data
grouped into a reasonably large number of classes, the histogram gives a rough approximation of
the density function (pdf) of the population from which the sample data was drawn.

An alternative in that sense (the sense of roughly approximating the shape of the density func-
tion) to histograms are frequency polygons, obtained by joining the points with coordinates (xi, fi),

i = 1, n (x−coordinates are the class marks and y−coordinates are the class frequencies).

Example 4.4. Recall Example 4.3 from last time, about the CPU times (in seconds) for N = 30

randomly chosen jobs:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

We constructed the grouped frequency distribution tables for these data for n = 10 and for n = 6

classes. Figure 1 shows the corresponding histogram and frequency polygon for grouped data ((a)
and (b)). Also in Fig. 1, we show histograms for n = 4 and n = 12 bins, respectively. It is obvious
that n = 4 is too small and n = 12 is too large for the number of bins. The values n = 6 and n = 10

seem to be the best (in terms of the information they provide), especially n = 10.
For 10 classes, let us take a closer look, see Figure 2. What information can we draw from these

histograms?

• the continuous distribution (continuous because time varies continuously) of the CPU times
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(a) n = 10 bins
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(c) n = 4 bins

0 20 40 60 80 100 120 140

0

1

2

3

4

5

6

7

(d) n = 12 bins

Fig. 1: Histograms and Frequency Polygons, Example 4.4
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is not symmetric, it is skewed to the right, as we see 5 columns to the right of the highest
column and only 2 columns to the left;

• the value 139 stands alone suggesting that it is in fact an outlier;

• a Gamma family of distributions seems appropriate for CPU times, see the dashed curve in
Figure 2;

• there is no indication of heterogeneity; all data points except x = 139 form a rather homoge-
neous group that fits the sketched Gamma curve.

Fig. 2: Approximation of the pdf, Example 4.4

Stem-and-Leaf Plots

Stem-and-leaf plots are similar to histograms, although they carry more information. Namely, they
also show how the data are distributed within columns. To construct a stem-and-leaf plot, we need
to draw a stem and a leaf. The first one or several digits form a “stem”, and the next digit forms a
“leaf”. Other digits are dropped; in other words, the numbers get rounded. For example, the number
139 can be written as

13 9
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with 13 going to the stem and 9 to the leaf, or as

1 3

with 1 joining the stem, 3 joining the leaf, and the digit 9 being dropped. In the first case, the leaf
unit equals 1 and the stem unit is 10, while in the second case, the leaf unit is 10 and the stem unit is
102, showing that the (rounded) number is not 13, but 130. The stem and leaf units must be carefully

specified for each such plot.

Example 4.5. For the CPU times in Example 4.4 (sorted increasingly),

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

let us draw a stem-and-leaf plot with leaf unit 1 (i.e., the last digits form a leaf). The remaining
digits go to the stem. Each CPU time is then written as

10 “stem” + “leaf”,

making the following stem-and-leaf plot

0 9

1 5 9

2 2 4 5

3 0 4 5 5 6 6 7 8

4 2 3 6 8

5 4 5 6 6 9

6 2 9

7 0

8 2 2 9

9

10

11

12

13 9
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Turning this plot by 90 degrees counterclockwise, we get a histogram with 10−unit bins (be-
cause each stem unit equals 10). Thus, all the information seen on a histogram can be obtained here
too. In addition, now we can see individual values within each column.

Stem-and-leaf plots can also be used to compare two samples. For this purpose, one can put two
leaves on the same stem.

Example 4.6. The following two samples represent transmission times (in seconds) of signals -
known as “pings”- from two different locations.

L1: 0.0156, 0.0396, 0.0355, 0.0480, 0.0419, 0.0335, 0.0543, 0.0350,

0.0280, 0.0210, 0.0308, 0.0327, 0.0215, 0.0437, 0.0483,

L2: 0.0298, 0.0674, 0.0387, 0.0787, 0.0467, 0.0712, 0.0045, 0.0167,

0.0661, 0.0109, 0.0198, 0.0039.

Let us sort the two samples in increasing order.

L1: 0.0156, 0.0210, 0.0215, 0.0280, 0.0308, 0.0327, 0.0335, 0.0350

0.0355, 0.0396, 0.0419, 0.0437, 0.0480, 0.0483, 0.0543,

L2: 0.0039, 0.0045, 0.0109, 0.0167, 0.0198, 0.0298, 0.0387, 0.0467

0.0661, 0.0674, 0.0712, 0.0787.

Since all numbers start with 0.0..., we choose a stem unit of 0.01, a leaf unit of 0.001 and drop the
last digit. We construct the following two stem-and-leaf plots (two in one), one to the left (L1) and
one to the right (L2) of the stem.

0 3 4

5 1 0 6 9

1 1 8 2 9

0 2 3 5 5 9 3 8

1 3 8 8 4 6

4 5

6 6 7

7 1 8

Looking at these two plots, we can see about the same average ping from the two locations. Also, we
realize that the first location has a more stable connection, because its pings have lower variability
(i.e., lower variance).
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Scatter Plots and Time Plots

Scatter plots are used to see and understand a relationship between two variables. These can be
temperature and humidity, experience and salary, age of a network and its speed, number of servers
and the expected response time, etc. To study the relationship, both variables are measured on each
sampled item. For example, temperature and humidity during each of n days, age and speed of n
networks, or experience and salary of n randomly chosen computer scientists are recorded. Then, a
scatter plot consists of n points on an (x, y)-plane, with x- and y-coordinates representing the two
recorded variables.

Example 4.7. Protection of a personal computer largely depends on the frequency of running an-
tivirus software on it. One can set to run it every day, once a week, once a month, etc. During a
scheduled maintenance of computer facilities, a computer manager records the number of times the
antivirus software was launched on each computer during 1 month (variable X) and the number of
detected viruses (worms) (variable Y ). The data for 30 computers are given in the table below.

X 30 30 30 30 30 30 30 30 30 30 30 15 15 15 10

Y 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0

X 10 10 6 6 5 5 5 4 4 4 4 4 1 1 1

Y 0 2 0 4 1 2 0 2 1 0 1 0 6 3 1

Is there a connection between the frequency of running antivirus software and the number of worms
in the system? A scatter plot of these data is given in Figure 3(a). It clearly shows that the number
of worms reduces, in general, when the antivirus is employed more frequently. This relationship,
however, is not certain because no worm was detected on some “lucky” computers although the
antivirus software was launched only once a week (4 times a month) on them.

Looking at the scatter plot in Figure 3(a), the manager realized that a portion of data is hidden
there because there are identical observations. For example, no worms were detected on 8 computers
where the antivirus software is used daily (30 times a month). Then, Figure 3(a) may be misleading.
When the data contain identical pairs of observations, the points on a scatter plot are often depicted
with either numbers or letters (e.g., “A” for 1 point, “B” for two identical points, “C” for three, ...,
“H” for eight, etc.). You can see the result in Figure 3(b).
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Fig. 3: Scatter plots for Example 4.7

When we study time trends and development of variables over time, we use time plots. These
are scatter plots with x-variable representing time.

Example 4.8. Here is how the world population increased between 1950 and 2012 (Figure 4). We
can clearly see that the population increases at an almost steady rate.

Fig. 4: Time plot of the world population in 1950–2012, Example 4.8

The actual data will be given and studied, later on in Chapter 5 (Correlation and Regression).
We will estimate the trends seen on time plots and scatter plots and even make forecasts for the
future.
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Chapter 3. Calculative Descriptive Statistics

In the previous chapter we have considered some graphical methods for getting an idea of the
shape of the density function of the population from which the sample data was drawn. Some
characteristics, such as symmetry, regularity can be observed from these graphical displays of the
data. Next, we consider some statistics that allow us to summarize the data set analytically. Simple
descriptive statistics measuring the location, spread, variability and other characteristics can be
computed immediately. It is hoped that these will give us some idea of the values of the parameters
that characterize the entire population from which the sample was pooled. We are looking mainly
at two types of statistics: measures of central tendency, i.e. values that locate the observations with
highest frequencies (so, where most of the data values lie) and measures of variability, that indicate
how much the values are spread out.

1 Measures of Central Tendency

These are values that tend to locate in some sense the “middle” of a set of data. The term “average”
is often associated with these values. Each of the following measures of central tendency can be
called the “average” value of a set of data.

1.1 Mean

Definition 1.1. The (arithmetic) mean ( mean ) of the data x1, . . . , xN is the value

xa =
1

N

N∑
i=1

xi. (1.1)

For grouped data,

(
xi

fi

)
i=1,n

,

xa =
1

N

n∑
i=1

fixi.

Remark 1.2. Some immediate properties of the arithmetic mean are the following:
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1. The sum of all deviations from the mean is equal to 0. Indeed,

N∑
i=1

(xi − xa) =
N∑
i=1

xi −Nxa = 0.

2. The mean minimizes the mean square deviation, i.e. for every a ∈ R,

N∑
i=1

(xi − a)2 ≥
N∑
i=1

(xi − xa)
2 .

A straightforward computation leads to

N∑
i=1

(xi − a)2 =
N∑
i=1

[(xi − xa)− (a− xa)]
2

=
N∑
i=1

(xi − xa)
2 − 2(a− xa)

N∑
i=1

(xi − xa)

+ N (a− xa)
2

≥
N∑
i=1

(xi − xa)
2 ,

since the second term is 0 and the third term is always nonnegative.

Definition 1.3. The geometric mean ( geomean ) of the data x1, . . . , xN is the value

xg = N
√
x1 . . . xN . (1.2)

For grouped data,

(
xi

fi

)
i=1,n

,

xg =
N

√
xf1
1 . . . xfn

n .

The geometric mean is used in Economics Statistics for price study. One of its distinctive fea-
tures is that it emphasizes the relative deviations from central tendency, as opposed to the absolute
deviations, emphasized by the arithmetic mean.
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Definition 1.4. The harmonic mean ( harmmean ) of the data x1, . . . , xN is the value

xh =
N

N∑
i=1

1

xi

. (1.3)

For grouped data,

(
xi

fi

)
i=1,n

,

xh =
N

n∑
i=1

fi
xi

.

The harmonic mean has applications in Economics Statistics in the study of time norms.

Remark 1.5.
1. For any set of data x1, . . . , xN , the well-known means inequality holds:

xh ≤ xg ≤ xa,

with equality holding if and only if x1 = . . . = xN .

2. The most widely used is the arithmetic mean. When nothing else is mentioned, we simply say
mean, instead of arithmetic mean, and use the simplified notation x.

Example 1.6. Let us recall the example from the previous chapter (Example 4.3), where to evaluate
the effectiveness of a processor, a sample of CPU times for N = 30 randomly chosen jobs (in
seconds) was considered:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

The mean CPU time is

x =
70 + 36 + . . .+ 56 + 19

30
= 48.2333 seconds.

We may conclude that the mean CPU time of all the jobs handled by that particular processor is
about the same, “near” 48.2333 seconds. In other words, we try to estimate the population mean by
the sample mean. How good would that approximation be? We will learn later how to assess the
accuracy of our estimates.
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Example 1.7. Let us assume that the value x = 139 (that seemed extreme, out of place, when we
looked at the histogram) was not in this sample. Then the mean would be

x1 = 45.1034,

somewhat lower.
Now, in the other direction, let us suppose that the CPU time of one more job (a heavier one) is
recorded and it is found to be 30 minutes = 1800 seconds. The mean of the new sample is

x2 = 104.7419 seconds,

way larger than the first value!

1.2 Median

One disadvantage of the sample mean is its sensitivity to extreme observations. As we have seen in
the previous example, one extreme value can significantly shift the value of the mean, to the point
where it becomes almost irrelevant.
The next measure of location is the median, which is much less sensitive than the mean.

Definition 1.8. The median ( median ) is the value M that divides a set of ordered data X into two

equal parts, i.e. the value with the property that it is exceeded by at most a half of observations and

is preceded by at most a half of observations.

A sample is always discrete, since it consists of a finite number of observations. Then, comput-
ing a sample median is similar to the case of discrete distributions. In simple random sampling, all
observations are equally likely, and thus, equal probabilities on each side of a median translate into
an equal number of observations. There are two cases, depending on the sample size N .

If the sorted primary data is
x1 ≤ . . . ≤ xN ,

then

M =

 xk+1, if N = 2k + 1
xk + xk+1

2
, if N = 2k

.

Remark 1.9. The median may or may not be one of the values in the data.

Example 1.10. Let us find the median for the data in Example 1.6 (the CPU times).
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Since there are N = 30 observations, there are two middle values, the 15th and the 16th entries.

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

Then the median is M = 42.5.

Remark 1.11. For an even number of observations, the median can be chosen to be any number
between the two middle values. So in the previous example, we could say that any number in the
interval (42, 43) is a median.

Example 1.12. Let us add again the extreme value of 30 minutes = 1800 seconds. The new sample

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139 1800

has 31 observations, there is only one middle value (the 16th entry), so the median of the new sample
is

M2 = 43.

Notice that the new value differs very little from the previous one and is still relevant, unlike the
mean. So the median is a robust statistic, not being influenced (so much) by outliers.

1.3 Mode

Definition 1.13. A mode Mo of a random variable X is a value with the highest pdf, i.e., it is the

point with the highest concentration of probability, Mo = argmax{f(x)}. A sample mode, xmo,

of a set of data is a most frequent value.

Remark 1.14. Notice from the wording of the definition that the mode may not be unique. A
distribution can have one mode − unimodal, two modes − bimodal, three modes − trimodal, or
more − multimodal.
When the pdf of a continuous distribution has multiple local maxima, it is common to refer to all of
the local maxima as modes of the distribution.
If every value occurs only once in a sample, we say that there is no mode.
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Fig. 5: Normal Distribution (unimodal)

a b

1

b − a

0

Fig. 6: Uniform Distribution (multimodal)
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0

Fig. 7: χ2 Distribution (no mode)

For data drawn from symmetric distributions, we have

x = M = xmo.

This is true, for instance, for the Normal distribution which is unimodal (Figure 5). For a Uniform
U(a, b) distribution, all values in the interval [a, b] are modes (Figure 6), while the χ2(1) distribution
(with ν = 1 degree of freedom) has no mode (Figure 7).
In general,

xmo ≈ x− 3(x−M).

This empirical formula was given by K. Pearson.

Example 1.15. In our example about the CPU times (Example 1.6), the values 35, 36, 56 and 82 ap-
pear twice, while all the other values have a frequency of 1. So all four are modes, this is multimodal
data.

9 15 19 22 24 25 30 34 35 35
36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139
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(b) n = 6 bins

Fig. 8: Modal class

If we group the data into 10 classes, then the modal class is the third one, (35, 48], with modal mark
41.5 (Figure 8(a)). If we have only 6 classes, then the second one is the modal class, [30.7, 52.4),
with mark 41.55 (Figure 8(b)).
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