
5 Multivariate Regression

Another thing that may improve a regression model is to (cautiously!) take into consideration more
predictors, while still keeping the function linear.

In Example 1.3 in Lecture 9 (about house prices), we discussed predicting price of a house based
on its area. We decided that perhaps this prediction is not very accurate due to a high variability
among house prices. What is the source of this variability? Why are houses of the same size priced
differently? Certainly, area is not the only important parameter of a house. Prices are different due
to different design, location, number of rooms and bathrooms, presence of a basement, a garage, a
swimming pool, different size of a backyard, etc. When we take all this information into account,
we’ll have a rather accurate description of a house and hopefully, a rather accurate prediction of its
price.

Now we introduce multiple linear regression that will connect a response Y with several predic-
tors X(1), X(2), . . . , X(k), through the conditional expectation

E(Y | X(1) = x(1), . . . , X(k) = x(k)). (5.1)

A multivariate linear regression model assumes that the curve of regression of the response Y is
of the form

ŷ = Ĝ
(
x(1), . . . , x(k);β0, . . . ,βk

)
= β0 + β1x

(1) + · · ·+ βkx
(k), (5.2)

a linear function of predictors x(1), . . . , x(k). Here, the coefficient β0 is called the intercept, while
the coefficients β1, . . . ,βk are called slopes.

In order to estimate all the parameters of model (5.2), we collect a sample of n multivariate

observations 

X1 =
(
X

(1)
1 , X

(2)
1 . . . , X

(k)
1

)
X2 =

(
X

(1)
2 , X

(2)
2 . . . , X

(k)
2

)
...

...
...

Xn =
(
X

(1)
n , X

(2)
n . . . , X

(k)
n

) .

Essentially, we collect a sample of n units (say, houses) and measure all k predictors on each
unit (area, number of rooms, etc.). Also, we measure responses, Y1, . . . , Yn. We then estimate
β0,β1, . . . ,βk by the method of least squares, generalizing it from the univariate case to multivari-
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ate regression. So, we minimize the sum of squared errors

S =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(
yi − β0 − β1x

(1) − · · · − βkx
(k)
)2

.

To make the writing easier, we put everything in vector-matrix form. We make the following nota-
tions for the response vector Y and the predictor matrix X:

Y =


Y1

...
Yn

 , X =


1 X1

...
...

1 Xn

 =


1 X

(1)
1 . . . X

(k)
1

...
...

...
1 X

(1)
n . . . X

(k)
n


Notice that we augmented the predictor matrix with a column of 1’s because now the multivariate
regression model (5.2) can be written in matrix form as


ŷ1
...
ŷn

 =


1 X

(1)
1 . . . X

(k)
1

...
...

...
1 X

(1)
n . . . X

(k)
n




β0

β1
...
βk

 .

If we denote by

ŷ =


ŷ1
...
ŷn

 and β =


β0

β1
...
βk

 ,

then the fitted values will be computed as

ŷ = Xβ

and the least squares problem reduces to minimizing

S(β) =
n∑

i=1

(yi − ŷi)
2 = (Y − ŷ)T (Y − ŷ) = (Y −Xβ)T (Y −Xβ)

The minimum of the function above is attained at

β = (XTX)−1XTY. (5.3)
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Example 5.1. A computer manager needs to know how efficiency of her new computer program
depends on the size of incoming data. Efficiency will be measured by the number of processed
requests per hour. Applying the program to data sets of different sizes, she gets the following
results:

Data size (gigabytes), x 6 7 7 8 10 10 15
Processed requests, y 40 55 50 41 17 26 16

In general, larger data sets require more computer time, and therefore, fewer requests are processed
within 1 hour.
a) (Univariate linear regression) Find the equation of the regression line. Suppose we need to start
processing requests that refer to x∗ = 16 gigabytes of data. To analyze the program efficiency, use
univariate linear regression to predict y∗, the number of requests processed within 1 hour.
b) (Multivariate linear regression) The computer manager tries to improve the model by adding
another predictor. She decides that in addition to the size of data sets, efficiency of the program may
depend on the database structure. In particular, it may be important to know how many tables were
used to arrange each data set. Putting all this information together, she has the following data:

Data size (gigabytes), x1 6 7 7 8 10 10 15
Number of tables, x2 4 20 20 10 10 2 1
Processed requests, y 40 55 50 41 17 26 16

Find the equation of the curve of regression and use it to predict the number of requests processed
per hour y∗, for x∗

1 = 16 gigabytes of data and x∗
2 = 2 tables.

Solution.
a) For our data, we have n = 7 and

x = 9, y = 35,

sx = 3.06, sy = 15.56,

ρ = −0.81.

The equation of the line of regression is

y = −4.14x+ 72.29.
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Notice the negative slope. It means that increasing incoming data sets by 1 gigabyte, we expect to
process 4.14 fewer requests per hour.

According to this, the predicted value for x∗ = 16 gigabytes is

y∗ = −4.14 · 16 + 72.29 = 6 requests processed within 1 hour.

b) For bivariate linear regression, the predictor matrix and the response vector are

X =



1 6 4

1 7 20

1 7 20

1 8 10

1 10 10

1 10 2

1 15 1


, Y =



40

55

50

41

17

26

16


.

We have

XTX =

 7 63 67

63 623 519

67 519 1021

 , (XTX)−1 =

 3.69 −0.3 −0.09

−0.3 0.03 0.006

−0.09 0.006 0.004

 and XTY =

 245

1973

2098

 .

From (5.3), we get

β = (XTX)−1XTY =

 52.7

−2.87

0.85

 .

Thus, the regression equation is now

ŷ = 52.7− 2.87x1 + 0.85x2,(
number of

requests

)
= 52.7− 2.87

(
size of

data

)
+ 0.85

(
number of

tables

)
.

With this new model, the predicted value y∗ is

y∗ = 52.7− 2.87 · 16 + 0.85 · 2 = 8.48 requests processed per hour.
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Remark 5.2. One could also find a multivariate regression function that is not linear, but polynomial
(of higher degree), exponential, logarithmic, etc. When using multivariate regression, for accurate
estimation and efficient prediction, it is important to select the right subset of predictors.

6 ANOVA and R-square

6.1 ANOVA - Preliminaries

Analysis of variance (ANOVA) explores variation among the observed responses. A portion of this
variation can be explained by predictors. The rest is attributed to “error”.

Fig. 1: House prices

Let us recall Example 1.3 in Lecture 9. We see on Figure 1 that there exists some variation
among the house sale prices on. Why are the houses priced differently? Obviously, the price
depends on the house area, and bigger houses tend to be more expensive. So, to some extent,
variation among prices is explained by variation among house areas. However, two houses with the
same area may still have different prices. These differences cannot be explained by the area.
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The total variation among observed responses is measured by the total sum of squares

SSTOT =
n∑

i=1

(yi − y)2 = (n− 1)s2y.

This is the variation of yi about their sample mean regardless of our regression model. A portion
of this total variation is attributed to predictor X and the regression model connecting the predictor
with the response. This portion is measured by the regression sum of squares

SSREG =
n∑

i=1

(ŷi − y)2.

This is the portion of total variation explained by the model. Since the centroid (x, y) belongs to the
regression line, we have y = b1x+ b0, so we can write

SSREG =
n∑

i=1

(b0 + b1x− y)2

=
n∑

i=1

(y − b1x+ b1x− y)2

=
n∑

i=1

b21(x− x)2

= b21Sxx = b21(n− 1)s2x.

The rest of total variation is attributed to “error”. It is measured by the sum of squares error SSERR.
This is the portion of total variation not explained by the model. It is the sum of squared residuals
that the method of least squares minimizes. Regression and error sums of squares partition SSTOT

into two parts,
SSTOT = SSREG + SSERR.

The goodness of fit, appropriateness of the predictor and the chosen regression model can be judged
by the proportion of SSTOT that the model can explain.

Definition 6.1. R-square, or coefficient of determination is the proportion of the total variation

explained by the model,

R2 =
SSREG

SSTOT

= 1− SSERR

SSTOT

. (6.1)
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It is always between 0 and 1, with high values generally suggesting a good fit.
In univariate regression, R-square also equals the squared sample correlation coefficient

R2 =
SSREG

SSTOT

=
b21(n− 1)s2x
(n− 1)s2y

=

(
b1
sx
sy

)2

=

(
ρ
sy
sx

sx
sy

)2

= ρ2. (6.2)

Example 6.2 (World Population, Continued). Let us recall Example 1.1 (Lecture 9). By least square
estimation, we found

x = 1985, y = 4991.5

sx = 24.5, sy = 1884.6

ρ = 0.9972, b0 = −147300.5, b1 = 76.72

and the equation of the line of regression

y = −147300.5 + 76.72x.

Now, we further compute

SSTOT = (n− 1)s2y = 4.972 · 107,

SSREG = b21(n− 1)s2x = 4.944 · 107,

SSERR = SSTOT − SSREG = 2.83 · 105.

Then
R2 =

SSREG

SSTOT

= ρ2 = 0.9943 or 99.43%,

very high! This is a very good fit although some portion of the remaining 0.57% of total variation
can still be explained by adding non-linear terms into the model.

6.2 Univariate ANOVA and F-test

For further analysis, we introduce standard regression assumptions. We will assume that observed
responses yi are independent Normal random variables with mean

E(Yi) = β0 + β1xi
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and constant variance σ2. So, responses Y1, . . . , Yn have different means but the same variance.
Predictors xi are considered non-random. As a consequence, regression estimates b0 and b1 also
have Normal distribution.

This variance of the responses, σ2, is equal to the mean squared deviation of responses from
their respective expectations. Let us estimate it.

First, we estimate each expectation

E(Yi) = G(xi) = β1xi + β0

by
Ĝ(xi) = b0 + b1xi = ŷi.

Then, we consider deviations ei = yi− ŷi, square them, and add. We obtain the error sum of squares

SSERR =
n∑

i=1

e2i .

Then, we divide this sum by its number of degrees of freedom, this is how variances are estimated.
Let us compute the degrees of freedom for all three SS in the regression ANOVA.

The total sum of squares

SSTOT = (n− 1)s2y has dfTOT = n− 1 degrees of freedom,

because it is computed directly from the sample variance s2y.
Out of them, the regression sum of squares

SSREG has dfREG = 1 degree of freedom,

because the regression line, which is just a straight line, has dimension 1.
This leaves dfERR = n− 2 degrees of freedom for the error sum of squares, so that

dfTOT = dfREG + dfERR.

Note that we could find the number of degrees of freedom by subtracting from the sample size n the
number of estimated parameters, 2 (β0 and β1).

Then the regression variance is

s2 =
SSERR

n− 2
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and it estimates σ2 = Var(Y ) unbiasedly.

ANOVA F-test

We want to test how significant is a predictor X for the estimate of a response Y , i.e., how much
changes in X will produce significant changes in Y , via the linear relationship G(x) = β1x+ β0.

A non-zero slope β1 indicates significance of the model, relevance of predictor X in the infer-
ence about response Y and existence of a linear relation among them. It means that a change in X

causes changes in Y . In the absence of such relation, E(Y ) = β0 remains constant. Therefore, to
see if X is significant for the prediction of Y , we test the hypotheses

H0 : β1 = 0

H1 : β1 ̸= 0.
(6.3)

There are several ways of testing the hypotheses (6.3). One of the most popular method of
testing significance of a model is the ANOVA F-test. It compares the portion of variation explained
by regression with the portion that remains unexplained. Significant models explain a relatively
large portion.

Each portion of the total variation is measured by the corresponding sum of squares, SSREG for
the explained portion and SSERR for the unexplained portion (error). Dividing each sum of squares
by the number of degrees of freedom, we obtain the mean squares

MSREG =
SSREG

dfREG

= SSREG ,

MSERR =
SSERR

dfERR

=
SSERR

n− 2
.

We see that the sample regression variance is the mean squared error

s2 = MSERR.

Under the null hypothesis

H0 : β1 = 0,

both mean squares, MSREG and MSERR are independent, and their ratio F has an F-distribution
with parameters dfREG = 1 and dfERR = n− 2 degrees of freedom. Then the ratio

F =
MSREG

MSERR

=
SSREG

s2
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is the test statistic used to test significance of the entire regression model. The ANOVA F-test is
always right-tailed, because only large values of the F-statistic show a large portion of explained
variation and the overall significance of the model.

A standard way to present analysis of variance is the ANOVA Table 1.

Sum Degrees Mean
Source of squares of freedom Squares F

SS df MS = SS/df

Model SSREG =
n∑

i=1

(ŷi − y)2 1 MSREG = SSREG
MSREG

MSERR

Error SSERR =
n∑

i=1

(yi − ŷi)
2 n− 2 MSERR =

SSERR

n− 2

Total SSTOT =
n∑

i=1

(yi − y)2 n− 1

Table 1: Univariate ANOVA

Example 6.3. Recall Example 5.1 about the efficiency of a new computer program (number of
processed requests per hour, Y , for data sets of different sizes, X). Let us find the ANOVA table
and discuss it.

Solution. We already computed

b1 = −4.14, b0 = 72.29.

Further, we compute

SSTOT = Syy = 1452,

SSREG = b21Sxx = 961.14,

SSERR = SSTOT − SSREG = 490.86,

F =
(n− 2)SSREG

SSERR

= 9.79.

10



We have the ANOVA table

Sum Degrees Mean
Source of squares of freedom Squares F
Model 961.14 1 961.14 9.79
Error 490.86 5 98.17
Total 1452 6

The regression variance is estimated by

s2 = MSERR = 98.17.

R-square is

R2 =
SSREG

SSTOT

=
961.14

1452
= 0.662 or 66.2%.

That is, 66.2% of the total variation of the number of processed requests is explained by sizes of
data sets only.
The F-statistic of 9.79 is not significant at the 0.025 level, but significant at the 0.05 level, so, data
size is moderately significant in predicting number of processed requests.

6.3 Multivariate ANOVA and F-test

Next, we consider multiple linear regression that will connect a response Y with several predictors
X(1), X(2), . . . , X(k). A multivariate linear regression model assumes that the curve of regression
of the response Y is of the form

ŷ = f
(
x(1), . . . , x(k); β0, . . . , βk

)
= β0 + β1x

(1) + · · ·+ βkx
(k), (6.4)

We can again partition the total sum of squares measuring the total variation of responses into
the regression sum of squares and the error sum of squares. The total sum of squares is still

SSTOT =
n∑

i=1

(yi − y)2 = (y − y)T (y − y)
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with dfTOT = n− 1 degrees of freedom, where we denote by

y =


y
...
y

 = y


1
...
1

 .

Again, SSTOT = SSREG + SSERR, where

SSREG =
n∑

i=1

(ŷi − y)2 = (ŷ − y)T (ŷ − y)

is the regression sum of squares and

SSERR =
n∑

i=1

(yi − ŷ)2 = (y − ŷ)T (y − ŷ) = eTe

is the error sum of squares, the quantity that we minimized when we applied the method of least
squares (e is the vector of residuals). The multivariate regression model defines a k-dimensional
regression plane where the fitted values belong to. Therefore, the regression sum of squares has

dfREG = k

degrees of freedom, whereas by subtraction,

dfERR = dfTOT − dfREG = n− k − 1

degrees of freedom are left for SSERR. This is the sample size n minus k estimated slopes and 1

estimated intercept.
For multivariate regression, we can then write the ANOVA Table 2.
The coefficient of determination

R2 =
SSREG

SSTOT

again measures the proportion of the total variation explained by regression. When we add new
predictors to our model, we explain additional portions of SSTOT. Therefore, R2 can only go up.
Thus, we should expect to increase R2 and generally, get a better fit by going from univariate to
multivariate regression.
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Sum Degrees Mean
Source of squares of freedom Squares F

SS df MS = SS/df

Model SSREG = (ŷ − y)T (ŷ − y) k MSREG =
SSREG

k

MSREG

MSERR

Error SSERR = (y − ŷ)T (y − ŷ) n− k − 1 MSERR =
SSERR

n− k − 1

Total SSTOT = (y − y)T (y − y) n− 1

Table 2: Multivariate ANOVA

The regression variance σ2 = Var(Y ) is then estimated by the mean squared error

s2 =
SSREG

n− k − 1
.

It is an unbiased estimator of σ2 that can be used in further inference.
The ANOVA F-test in multivariate regression tests significance of the entire model. The model

is significant as long as at least one slope is not zero. Thus, we are testing

H0 : β1 = · · · = βk = 0

H1 : at least one βj ̸= 0.

We compute the F-statistic

F =
MSREG

MSERR

=
SSREG/k

SSERR/(n− k − 1)

and check it against the F-distribution with k and (n − k − 1) degrees of freedom. Again, this is
always a right-tailed test. Only large values of F correspond to large SSREG indicating that fitted
values ŷi are far from the overall mean y, and therefore, the expected response really changes along
the regression plane according to predictors.
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With the usual notations,

β =


β0

β1

...
βk

 , b =


b0

b1
...
bk

 = β̂,

recall that the least squares estimate of β is given by

b = β̂ = (XTX)−1XTy.

For a given vector of predictors X∗ = (X
(1)
∗ = x

(1)
∗ , . . . , X

(k)
∗ = x

(k)
∗ ), we estimate the expected

response by
ŷ∗ = x∗b.

Example 6.4. Let us revisit Example 5.1 about the efficiency of a new computer program, where
to predict the response Y , the number of processed requests per hour, we consider two predictors,
X(1), the data size and X(2), the number of tables. Construct the multivariate ANOVA table.

Solution. The total sum of squares is still

SSTOT = Syy = 1452.

It is the same for all the models with this response.
Recall the predictor matrix and the response vector

X =



1 6 4

1 7 20

1 7 20

1 8 10

1 10 10

1 10 2

1 15 1


, Y =



40

55

50

41

17

26

16


,
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for which

XTX =

 7 63 67

63 623 519

67 519 1021

 , (XTX)−1 =

 3.69 −0.3 −0.09

−0.3 0.03 0.006

−0.09 0.006 0.004

 and XTY =

 245

1973

2098

 .

So, we obtained

b = (XTX)−1XTY =

 52.7

−2.87

0.85

 .

From here, we can now compute a vector of fitted values

ŷ = Xb =



38.9

49.6

49.6

38.2

32.5

25.7

10.5


.

Then we get (we have already computed y = 35)

SSREG = (ŷ − y)T (ŷ − y) = 1143.3 and SSERR = (y − ŷ)T (y − ŷ) = 308.7.

We have now 2 degrees of freedom for the model because we now use two predictor variables.
The ANOVA table is then completed as

Sum Degrees Mean
Source of squares of freedom Squares F
Model 1143.3 2 571.7 7.41
Error 308.7 4 77.2
Total 1452 6
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The regression variance σ2 is now estimated by

s2 = MSERR = 77.2.

R-square is now

R2 =
SSREG

SSTOT

= 0.787 or 78.7%,

which is 12.5% higher than in Example 6.3. These additional 12.5% of the total variation are
explained by the new predictor x2 that is used in the model in addition to x1. R-square can only

increase when new variables are added.
The ANOVA F-test statistic is now of 7.41 with 2 and 4 degrees of freedom. It shows that the model
is significant at the level of 0.05, but not at the level of 0.025 (as before).

6.4 Adjusted R-square

Multivariate regression opens an almost unlimited opportunity for us to improve prediction by
adding more and more X-variables into our model. On the other hand, we mentioned the fact
that overfitting a model leads to a low prediction power. Moreover, it will often result in large vari-
ances σ2(bj) and therefore, unstable regression estimates. Then, how can we build a model with the
right, optimal set of predictors X(j) that will give us a good, accurate fit? One way is to consider
the adjusted R-square criterion.

It can be shown mathematically that R2, the coefficient of determination, can only increase when
we add predictors to the regression model. No matter how irrelevant it is for the response Y , any new
predictor can only increase the proportion of explained variation. Therefore, R2 is not a fair criterion
when we compare models with different numbers of predictors k. Including irrelevant predictors
should be penalized whereas R2 can only reward for this. A fair measure of goodness-of-fit is the
adjusted R-square.

Definition 6.5. Adjusted R-square is the quantity

R2
adj = 1− SSERR/(n− k − 1)

SSTOT/(n− 1)
= 1− SSERR/dfERR

SSTOT/dfTOT

. (6.5)

The adjusted R-square is a criterion of variable selection that rewards for adding a predictor only
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if it considerably reduces the error sum of squares. Comparing it to

R2 =
SSREG

SSTOT

=
SSTOT − SSERR

SSTOT

= 1− SSERR

SSTOT

,

adjusted R-square includes degrees of freedom into its formula. This adjustment may result in a
penalty when a useless X-variable is added to the regression mode. Let us explain that. Indeed, if
we add a non-significant predictor, the number of estimated slopes k will increase by 1. However,
if this variable is not able to explain any variation of the response, the sums of squares, SSREG

and SSERR, will remain the same. Then, SSERR/(n− k − 1) will increase and R2
adj will decrease,

penalizing us for including such a poor predictor.
So, we choose a model with the highest adjusted R-square.

Example 6.6. For our previous example, the adjusted R-square for the model with one predictor x1

(data size) is

R2
1,adj = 1− SSERR/(n− k − 1)

SSTOT/(n− 1)
= 1− 490.86/5

1452/6
= 0.5943.

When an extra predictor was added, x2 (number of tables), we get an adjusted R-square of

R2
2,adj = 1− SSERR/(n− k − 1)

SSTOT/(n− 1)
= 1− 308.7/4

1452/6
= 0.6811.

By adding another predictor, we increased the adjusted R-square with 8.68%. That shows that the
number of tables is a significant predictor for the number of processed requests and that it improved
the model.

6.5 Categorical predictors and dummy variables

Careful model selection is one of the most important steps in practical statistics. In regression, only
a wisely chosen subset of predictors delivers accurate estimates and good prediction. At the same
time, any useful information should be incorporated into our model. We conclude this chapter with
a note on using categorical (non-numerical) predictors in regression modeling.

Often a good portion of the variation of response Y can be explained by attributes rather than
numbers. Examples are
- computer manufacturer (Dell, IBM, Hewlett Packard, Apple, etc.);
- operating system (Unix, Windows, DOS, etc.);
- color (white, blue, red, green, etc.).
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Unlike numerical predictors, attributes have no particular order. For example, it is totally wrong

to code operating systems with numbers (1 = Unix, 2 =Windows, 3 = DOS), create a new predictor
X(k+1), and include it into the regression model. If we do so, it puts Windows right in the middle
between Unix and DOS and tells that changing an operating system from Unix to Windows has
exactly the same effect on the response Y as changing it from Windows to DOS!

However, performance of a computer really depends on the operating system, manufacturer, type
of the processor and other categorical variables. How can we use them in our regression model? We
need to create so-called dummy variables. A dummy variable is binary, taking values 0 or 1,

Z
(j)
i =

{
1, if unit i in the sample has category j

0, otherwise

For a categorical variable with C categories, we create (C−1) dummy predictors, Z(1), . . . ,Z(C−1).
They carry the entire information about the attribute. Sampled items from category C will be marked
by all (C − 1) dummies equal to 0.
Notice that if we make the mistake of creating C dummies for an attribute with C categories (one
dummy per category), this would cause a linear relation

Z(1) + · · ·+ Z(C) = 1.

A column of 1’s is already included into the predictor matrix X, and therefore, such a linear relation
will cause singularity of (XTX) when we compute the least squares estimates b = (XTX)−1XTy.
Thus, it is necessary and sufficient to have only (C − 1) dummy variables.

Fitting the model, all dummy variables are included into the predictor matrix X as columns.

Example 6.7. Consider the program efficiency study in Example 6.4. The computer manager makes
another attempt to improve the prediction power. This time she would like to consider the fact
that the first four times the program worked under the operational system A and then switched to
the operational system B. Introduce a dummy variable responsible for the operational system and
include it into the regression analysis.

Data size (gigabytes), x1 6 7 7 8 10 10 15
Number of tables, x2 4 20 20 10 10 2 1
Operational system, x3 A A A A B B B
Processed requests, y 40 55 50 41 17 26 16
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Estimate the new regression equation. Does the new variable improve the goodness of fit?

Solution. Let zi = 1 for the operational system A and zi = 0 for the operational system B. With
the addition of this dummy variable, the predictor matrix and the response vector are

X =



1 6 4 1

1 7 20 1

1 7 20 1

1 8 10 1

1 10 10 0

1 10 2 0

1 15 1 0


and y =



40

55

50

41

17

26

16


.

The vector of regression slopes is then

b = (XTX)−1XTy =


24.20

−0.60

0.57

18.78

 .

Then, the estimated regression equation is now

ŷ = 24.20− 0.60x(1) + 0.57x(2) + 18.78z.

The new adjusted R-square is now

R2
adj = 0.8260,

which is higher than the previous adjusted R-square with 14.49%. That shows that including the
operating system among predictors improved the goodness of fit.

The ANOVA F-test statistic is now of 10.49 with 3 and 3 degrees of freedom. It shows that the
model is significant at the level of 0.05, but not at the level of 0.025.
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7 Significant Correlation

We briefly mention here just one more procedure, testing if two sets of data (the response and one
predictor) are linearly correlated or not. That means, we test the hypotheses

H0 : ρ = 0

H1 : ρ ̸= 0,

a two-tailed test for the correlation coefficient.
We compute the (absolute value of the) sample correlation coefficient |ρ| and compare its value

to the ones in the Pearson Table of critical values, with df = n − 2. If the absolute value of the
calculated Pearson’s correlation coefficient is greater than the critical value from the table, then
we reject the null hypothesis that there is no correlation, i.e. we conclude that there is significant

correlation. How “significant”? We have the same levels as before.

|ρ| < ρ0.05 ⇒ not significant,

ρ0.05 ≤ |ρ| < ρ0.01 ⇒ (moderately) significant,

ρ0.01 ≤ |ρ| < ρ0.001 ⇒ distinctly significant,

|ρ| ≥ ρ0.001 ⇒ very significant.

In Example 6.2 about the world population, we found a correlation coefficient of ρ = 0.9972

between the predictor “year” and the response “world population”, for a sample of size n = 15. We
see from the table that with df = 13, this ρ is very significant, being larger than ρ0.001 = 0.76.

In Example 6.3, the correlation coefficient between predictor “data size” and response “number
of processed requests” is ρ = −0.81 for a sample of size n = 7. For df = 5, we find from the table
that

ρ0.05 = 0.75 < |ρ| = 0.81 < ρ0.01 = 0.87,

so, this is a moderately significant correlation.
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