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Chapter 1

Basic concepts for K2M

operators

Since the K2M operators technique is an important tool in mathematical
economics, we start this section by presenting the concept of K2M operator.

Let X a vector space over R. A subset A of X is called a linear subspace
if for all x, y ∈ A x + y ∈ A and for all x ∈ X and each λ ∈ R we have that
λ · x ∈ A. If A is a nonempty subset of X, then spanA is, by definition, the
intersection of all subspaces which contains A, i.e., the smallest linear subspace
containing A. We have the following characterization of the span.

spanA = {x ∈ X|x =
n∑

i=1

λi · xi, with xi ∈ A, λi ∈ R, n ∈ N}.

Similarly, coA is the intersection of all convex subsets of X which contains
A, i.e. coA is the smallest convex set which contains A. We have the following
characterization of the span.

coA = {x ∈ X|x =
n∑

i=1

λi · xi, with xi ∈ A, λi ∈ [0, 1],
n∑

i=1

λi = 1, n ∈ N}.

Of course, coA ⊂ spanA.
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Definition 10.1. A family {Ai| i ∈ I} of sets is said to have the finite
intersection property if the intersection of each finite subfamily is not empty.

Definition 10.2. Let X be a vector space and Y a nonempty subset of
X. The multivalued operator G : Y → P (X) is called a Knaster-Kuratowski-
Mazurkiewicz operator (briefly K2M operator) if and only if

co{x1, . . . , xn} ⊂
n⋃

i=1

G(xi), for each finite subset {x1, . . . , xn} ⊂ Y.

For example, let G : [−2, 2] → P (R), G(x) = [−1+x3

5 , 1+x3

5 ].

Then
⋃

x∈[−2,2]

G(x) = [−9
5
,
9
5
].

Since, for every x ∈ [−2,−9
5)∪(9

5 , 2] we have that x /∈ G(x), we immediately
get that G is not a KKM operator.

The main property of K2M operators is given in:
Theorem 10.3. (K2M principle) Let X be a vector topological space, Y

a nonempty subset of X and G : Y → P (X) a K2M operator such that G(x)
is closed, for each x ∈ Y . Then the family {G(x)| x ∈ Y } of sets has the finite
intersection property.

As an immediate consequence we obtain the following theorem:
Corollary 10.4. (Ky Fan) Let X be a vector topological space, Y a

nonempty subset of X and G : Y → Pcl(X) a K2M operator. If at least
one of the sets G(x), x ∈ Y is compact, then

⋂
x∈Y

G(x) 6= ∅.

We observe that same conclusion can be reached in another way, by in-
volving an auxiliary family of sets and a suitable topology on X.

Corollary 10.5. (Ky Fan) Let X be a vector space, Y a nonempty subset
of X and G : Y → P (X) a K2M operator. Assume that there is a multivalued
operator T : Y → P (X) such that G(x) ⊂ T (x) for each x ∈ X and⋂

x∈Y

T (x) =
⋂
x∈Y

G(x).

If there is some topology on X such that each T (x) is compact, then⋂
x∈Y

G(x) 6= ∅.
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Chapter 2

Game theory

If X, Y are two nonempty sets and A,B : X → P (Y ) are two multivalued
operators, then by definition x0 ∈ X is said to be a coincidence point for A

and B if

A(x0) ∩B(x0) 6= ∅.

In this case, we denote C(A,B) := {x ∈ X|A(x0) ∩ B(x0) 6= ∅}-the set of all
coincidence points of A and B.

The following general coincidence result follows from the K2M principle.
Theorem 12.1. (Ky Fan) Let E,F vector topological spaces and X ∈

Pcp,cv(E), Y ∈ Pcp,cv(F ). Let A,B : X → P(Y ) two multivalued operators
satisfying the following assumptions:

i) A(x) ∈ Pop(Y ) and B(x) ∈ Pcv(Y ), for each x ∈ X

ii) A−1(y) ∈ Pcv(X) and B−1(y) ∈ Pop(X), for each y ∈ Y .
Then there exists an element x0 ∈ X such that A(x0)

⋂
B(x0) 6= ∅, i.e.

C(A,B) 6= ∅.
Proof. Let Z = X × Y and G : X × Y → P(E × F ) be given by

G(x, y) = Z \ (B−1(y)×A(x)).

Because G(x, y) ∈ Pcl(X × Y ) and X × Y is compact we get that G(x, y) ∈
Pcp(X × Y ).

5



It is easy to observe that:

Z =
⋃

(x,y)∈Z

(B−1(y)×A(x)) (12.1).

Indeed, for the inclusion ” ⊆ ”, let (x0, y0) ∈ Z be arbitrarily. Choose an
(x, y) ∈ A−1(y0) × B(x0) 6= ∅, which is equivalent with (x0, y0) ∈ B−1(y) ×
A(x). The reverse inclusion is obvious.

From (12.1) we have that ⋂
z∈Z

G(z) = ∅.

From the first Corollary of K2M principle G cannot be a K2M operator.
Hence there exist z1, z2, . . . , zn ∈ Z such that

co{z1, . . . , zn} 6⊂
n⋃

i=1

G(zi),

which means that there is a w ∈ co{z1, . . . , zn},

w =
n∑

i=1

λizi

with

w 6∈
n⋃

i=1

G(zi).

Because Z is convex and zi ∈ Z, for each i = 1, n we obtain that w ∈ Z.
Hence

w ∈ Z \
n⋃

i=1

G(zi) =
n⋂

i=1

(B−1(yi)×A(xi)).

Since

w =

(
n∑

i=1

λixi,
n∑

i=1

λiyi

)
it follows that

n∑
i=1

λixi ∈ B−1(yi) and
n∑

i=1

λiyi ∈ A(xi), for each i = 1, n.
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Successively we have:

yi ∈ B

(
n∑

i=1

λixi

)
and xi ∈ A−1

(
n∑

i=1

λiyi

)
, for each i = 1, n ⇒

n∑
i=1

λiyi ∈ B

(
n∑

i=1

λixi

)
and

n∑
i=1

λixi ∈ A−1

(
n∑

i=1

λiyi

)
⇒

n∑
i=1

λiyi ∈ B

(
n∑

i=1

λixi

)
and

n∑
i=1

λiyi ∈ A

(
n∑

i=1

λixi

)
.

Writing

x0 :=
n∑

i=1

λixi and y0 :=
n∑

i=1

λiyi

we get that y0 ∈ A(x0) ∩B(x0) and hence C(A,B) 6= ∅. �

We give now an immediate application to game theory, by establishing a
general version of the von Neumann min-max principle due to Sion.

Recall that a functional f ;X → R on a topological space is called:
(a) lower semicontinuous if {x ∈ X|f(x) > r} is open for each r ∈ R;
(b) upper semicontinuous if {x ∈ X|f(x) < r} is open for each r ∈ R.

Also, if X is a convex set of a vector space, then f is said to be:
(i) quasi-concave if {x ∈ X|f(x) > r} is convex for each r ∈ R;
(ii) quasi-convex if {x ∈ X|f(x) < r} is convex for each r ∈ R.

Let E,F vector topological spaces and X ∈ Pcp,cv(E), Y ∈ Pcp,cv(F ).
By definition, a point (x∗, y∗) ∈ X × Y is called a saddle point for f if

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y), for each (x, y) ∈ X × Y.

The above condition is equivalent with

max
x∈X

f(x, y∗) = f(x∗, y∗) = min
y∈Y

f(x∗, y).

Moreover, in this case (x∗, y∗) ∈ X × Y is a saddle point for f if and only if

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).
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If P and Q are two players having X and respectively Y their the strategies
set, then for x ∈ X and y ∈ Y the value f(x, y) represents the gain of P and
so, the lost of Q. If (x∗, y∗) ∈ X × Y is a saddle point for f then

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y), for each (x, y) ∈ X × Y.

Hence, if Q choose the strategy y∗, then the gain of P is at most f(x∗, y∗) and
the maximum will be attained if P has the strategy x∗. Also, if P choose the
strategy x∗, the the lost of Q is at least f(x∗, y∗) and the minimum will be
obtained if Q has the strategy y∗. In this way, (x∗, y∗) ∈ X × Y assures the
optimal balance between the interests of the two players.

The following result was proved by John von Neumann in 1927 for the case
of Rn. We present here the version based on Sion’s proof.

Theorem 12.2. (Min-max principle) Let E,F vector topological spaces
and X ∈ Pcp,cv(E), Y ∈ Pcp,cv(F ). Let f : X × Y → R satisfying:

i) y → f(x, y) is lower semicontinuous and quasi-convex for each x ∈ X

ii) x → f(x, y) is upper semicontinuous and quasi-concave for each fixed
y ∈ Y .

Then
max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Proof. Because of upper semicontinuity, max
x∈X

f(x, y) exists for each y ∈
Y and it is a lower semicontinuous function of y, so min

y∈Y
max
x∈X

f(x, y) exists.

Similarly, max
x∈X

min
y∈Y

f(x, y) exists too. Since f(x, y) ≤ max
x∈X

f(x, y) we have:

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y),

and therefore
max
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y).

We shall prove now that the strict inequality cannot hold. For, assume it did.
Then there exists some real r with:

max
x∈X

min
y∈Y

f(x, y) < r < min
y∈Y

max
x∈X

f(x, y).
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Define A,B : X → P(Y ) by:

A(x) = {y ∈ Y |f(x, y) > r} and B(x) = {y ∈ Y |f(x, y) < r}.

These multivalued operators would satisfy the coincidence result of Ky Fan.
Indeed, A(x) is open by the lower semicontinuity of y → f(x, y), each B(x)

is convex by the quasi-convexity of y → f(x, y) and it is nonempty because
max
x∈X

min
y∈Y

f(x, y) < r. Since

A−1(y) = {x ∈ X|f(x, y) > r}

and
B−1(y) = {x ∈ X|f(x, y) < r},

we find in the same way that each A−1(y) is nonempty and convex and each
B−1(y) is open. Then, by Ky Fan coincidence result there is (x0, y0) ∈ X × Y

with y0 ∈ A(x0)
⋂

B(x0), which gives the contradiction r < f(x0, y0) < r. The
proof is complete. �.
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Chapter 3

Variational inequalities

An application of the K2M principle to the theory of variational inequalities
will be now presented.

Let (H, (·, ·)) be a Hilbert space and X be any subset of H. We recall that
an operator f : X → H is monotone decreasing on X if

(f(x)− f(y), x− y) ≤ 0, for all x, y ∈ X.

Theorem 13.1. (Hartman-Stampacchia) Let H be a Hilbert space, X a
closed bounded convex subset of H and f : X → H monotone decreasing and
continuous.
Then there exists an element y0 ∈ X such that

(f(y0), y0 − x) ≥ 0, for all x ∈ X.

Proof. For each x ∈ X, let G(x) = {y ∈ X|(f(y), y − x) ≥ 0}. We will
prove that ⋂

x∈X

G(x) 6= ∅.

We will establish first that G is a K2M operator. Indeed, let y0 ∈

co{x1, . . . , xn}. Suppose, by contradiction, that y0 /∈
n⋃

i=1

G(xi). Then we have

(f(y0), y0 − xi) < 0, for each i ∈ {1, · · · , n}. Since all the xi would lie in
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the half-space {x ∈ H|(f(y0), y0) < (f(y0), x)}, so also would co{x1, . . . , xn}
and therefore, since y0 ∈ co{x1, . . . , xn}, we have got the contradiction
(f(y0), y0) < (f(y0), y0). Thus G is a K2M operator.

Consider now the multivalued operator T : X → P(H) given by:

T (x) = {y ∈ X|(f(x), y − x) ≥ 0}.

We show that T satisfies the requirements of the second Corollary of K2M

principle.
(i) G(x) ⊂ T (x), for all x ∈ X. For, let y ∈ G(x). Then (f(y), y−x) ≥ 0.

By the monotonicity of f we have that (f(y)− f(x), y − x) ≤ 0 and so

0 ≤ (f(y), y − x) ≤ (f(x), y − x).

It follows y ∈ T (x).
(ii)

⋂
x∈X

T (x) =
⋂

x∈X

G(x). For, it is enough to show

⋂
x∈X

T (x) ⊂
⋂

x∈X

G(x).

Assume y0 ∈
⋂

x∈X

T (x). Choose any x ∈ X and let zt = tx + (1 − t)y0 =

y0 − t(y0 − x). Because X is convex, we have that zt ∈ X, for each 0 ≤ t ≤ 1.
Since y0 ∈ T (zt), for each t ∈ [0, 1], we find that (f(zt), y0 − zt) ≥ 0 for all
t ∈ [0, 1]. This means that t(f(zt), y0−x) ≥ 0, for all t ∈ [0, 1] and in particular,
that (f(zt), y0 − x) ≥ 0, for t ∈]0, 1]. Let t → 0. From the continuity of f , we
obtain that f(zt) → f(y0) and therefore we have (f(y0, y0 − x) ≥ 0. Thus
y0 ∈ G(x), for each x ∈ X and the second assumption is proved.

(iii) We now equip H with the weak topology. Then X, as a closed
bounded convex set in a Hilbert space, is weakly compact. Therefore, each
T (x), being the intersection of the closed half-space {y ∈ H|(f(x), y) ≥
(f(x), x)} with X is, for the same reason, weakly compact.

All the requirements of the second Corollary of K2M principle are satisfied
and hence

⋂
x∈X

G(x) 6= ∅. The proof is complete. �
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Part II

Other Techniques in

Mathematical Economics
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Chapter 4

Maximal elements

The following theorems give sufficient conditions for a multivalued operator
on a compact set to have a maximal element. They also allow us to extend
the classical results of equilibrium theory to cover consumers whose prefer-
ences may not be representable by utility functions. The problem faced by a
consumer is to choose a consumption pattern given his income and prevailing
prices. In a market economy, a consumer must purchase his consumption vec-
tor at the market prices. The set of all admissible commodity vectors that he
can afford at prices p, given an income M (or Mi) is called the budget set and
will be denoted by A (or Ai). The budget set can be represented as:

A = {x ∈ X|p · x ≤ M}.

Of course, the budget set can be also empty. An important feature of the
budget set is that it is positively homogeneous of degree zero in prices and
income. That is, it remains unchanged if the price vector and income are
multiplied by the same positive number. If X = Rm

+ and p > 0 then the
budget set is compact. If some prices are allowed to be zero, then the budget
set is no longer compact.

Let us denote by U(x) the set of all consumption vectors which the con-
sumer strictly prefer to x, i. e.

U(x) = {y ∈ A|y is strictly preferred to x}.
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Obviously, U : A ( A and it is called the preference multifunction or the
multivalued operator of preferences. A vector x∗ ∈ A is an optimal preference
for a given consumer if and only if U(x∗) = ∅. Such elements x∗ are also called
U-maximal or simply maximal. The set of all maximal vectors in the budget
set is called the consumer’s demand set.

Remark 15.1. Let us remark that if a binary relation U on a set Y is
given as follows: it associates to each x ∈ Y a set U(x) ⊂ Y , which may be
interpreted as the set of those elements in Y that are ”better” or ”larger”
than x, then we obtain in fact a multivalued operator U : Y ( Y , defined by
U(x) = {y ∈ Y |y is better than x}.

Theorem 15.2. (Sommenschein) Let Y ⊂ Rm
+ be compact and convex and

let U : Y ( Y a multivalued operator such that:
i) x /∈ co U(x), for all x ∈ Y

ii) If y ∈ U−1(x) then there exists some z ∈ Y (possibly z = y) such
that y ∈ int U−1(z).

Then the U -maximal set is nonempty and compact.
Proof. We have that

{x ∈ Y |U(x) = ∅} =
⋂
x∈Y

(Y − U−1(x)).

By hypothesis (ii) we have that⋂
x∈Y

(Y − U−1(x)) =
⋂
z∈Y

(Y − int U−1(z)).

This latter intersection is compact. Define a multivalued operator by

F (x) = Y − int U−1(x), for each x ∈ Y.

Each F (x) is compact. If y ∈ co {xi|i ∈ {1, · · · , n}} then y ∈ ∪n
i=1F (xi).

Indeed, if we suppose that y /∈ ∪n
i=1F (xi) then y ∈ U−1(xi), for all i, and so

xi ∈ U(y), for all i. But then y ∈ co {xi|i ∈ {1, · · · , n}} ⊂ co U(y), which
violates (i). It then follows from the K2M corollary that

⋂
x∈y

F (x) 6= ∅. 2
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Remark 15.3. Arrow applied Sonnenschein result to the problem of ex-
istence of equilibrium in a political model.

Corollary 15.4. (Ky Fan lemma-Alternate statement) Let Y ⊂ Rm
+ be

compact and let U : Y ( Y a multivalued operator such that:
i) x /∈ U(x), for all x ∈ Y

ii) U(x) is convex, for each x ∈ Y

iii) GrafU is open in Y × Y .
Then the U -maximal set is nonempty and compact.
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Chapter 5

Walras type price equilibrium

Recall that a price p is a free disposal equilibrium price if f(p) ≤ 0, where
f denotes the singlevalued excess demand operator.

Theorem 16.1. (Hartman-Stampacchia) Let Y a compact and convex sub-
set of Rm

+ and let f : Y → Rm
+ be continuous. Then there exists an element

p∗ ∈ Y such that

p∗ · f(p∗) ≥ p · f(p∗), for all p ∈ Y.

Furthermore the set of all such p∗ is compact.
Proof. Define a binary relation U on Y by: q ∈ U(p) if and only if q ·f(p) >

p · f(p). Obviously we got a multivalued operator

U(p) := {q ∈ Y |q · f(p) > p · f(p)}, for each p ∈ Y.

Since f is continuous U has open graph. Also U(p) is convex and p /∈ U(p), for
each p ∈ Y . Thus by Ky Fan lemma (alternative statement) there is a p∗ ∈ Y

such that U(p∗) = ∅., i. e. for each p ∈ Y it is not true that p·f(p∗) > p∗ ·f(p∗).
Thus for all p ∈ Y we have p∗ · f(p∗) ≥ p · f(p∗). Conversely, any such p∗ is
U -maximal, so the U -maximal set is compact by the same lemma. 2

Theorem 16.2. Let Y be a compact convex set in Rm+1
+ and let f : Y →

Rm+1
+ be continuous and satisfy p · f(p) ≤ 0, for all p.

Then the set {p ∈ Y |f(p) ≤ 0} of free disposal equilibrium prices is
nonempty and compact.
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Proof. Compactness is immediate. From Hartman-Stampacchia theorem
and Walras’ law there is an element p∗ ∈ Y such that

p · f(p∗) ≤ p∗ · f(p∗) ≤ 0, for all p ∈ Y.

Thus f(p∗) ≤ 0. 2
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Chapter 6

The excess demand

multifunction

If we denote by E the excess demand multifunction, then p is an equilibrium
price if 0 ∈ E(p) and it is called a free disposal equilibrium price if there exists
an element z ∈ E(p) such that z ≤ 0.

An auxiliary result is:
Lemma 17.1. Let C ⊂ Rm be a closed convex and let K ⊂ Rm be compact

convex.
Then K ∩ C∗ 6= ∅ if and only if for each p ∈ C there exists z ∈ K such

that p · z ≤ 0.

The following theorem is fundamental with respect to the existence of
a market equilibrium of an economy and generalizes a similar result for a
singlevalued excess demand operator.

Theorem 17.2. (Gale-Debreu-Nikaido) Let E : ∆ → Pcp,cv(Rm
+ ) be an u.

s. c. multivalued operator such that for each p ∈ ∆ we have p · z ≤ 0, for all
z ∈ E(p). Put N = −Rn+1

+ .
Then the set {p ∈ ∆|N ∩ E(p) 6= ∅} of free disposal equilibrium prices is

nonempty and compact.
Proof. For each p ∈ ∆ set

U(p) = {q|q · z > 0, for all z ∈ E(p)}.
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Then U(p) is convex for each p and p /∈ U(p). Also U(p) is open for each p.
Indeed, if q ∈ U−1(p), we have p · z > 0 for all z ∈ E(q). Then, since E is
upper semicontinuous E+({x|p · x > 0}) is a neighborhood of q in U−1(p).

Now p is U -maximal if and only if

for each q ∈ ∆ there is a z ∈ E(p) such that q · z ≤ 0.

Using an auxiliary result (see lemma below), it follows that p is U -maximal if
and only if E(p)∩N 6= ∅. Thus by Sonnenschein theorem the set {p|E(p)∩N 6=
∅} is nonempty and compact. 2
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