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The extension monoid product
of preinjective and preprojective Kronecker modules

IsTvAN SzOLLOsT
Communicated by A. Szendres

Abstract. Let P P’ be preprojective and [, I’ preinjective Kronecker mod-
ules. Working with the extension monoid product we give conditions for the
existence -of short exact sequences of the form 0 — P — I — I' —+ 0 {(and
dually for 0 = P’ = P — I —+ 0). We show that the existence of these short
exact sequences is equivalent with the existence of certain short exact se-
quences of preinjective (respectively preprojective) Kronecker modules, hence
they obey the combinatorial rule described in [11].

1. Introduction and motivation

‘We begin by putting together a short compilation of definitions and well-
known facts about the category of Kronecker modules. The calculations, justifica-
tions and proofs leading to these results can be found in many standard textbocks
on representation theory of algebras, see for example [1], [7], [2], [6].

Let K be the Kronecker quiver, i.e.lthe quiver having two vertices and two
parallel arrows:
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676 1. SzduLdsi

and » an arbitrary field. The path algebra of the Kronecker quiver is the Kronecker
algebre and we will denote it by «K. A finite dimensional right module cver
the Kronecker algebra is called a Kronecker module. We denote by mod-«K the
category of finite dimensional right modules over the Kronecker algebra,

A (finite dimensional) x-linear representation of the quiver X is a quadruple
M = (Vi,Va;¢aq,¢p) where V1,V, are finite dimensional s-vector spaces (corre-
sponding to the vertices) and ¢q, g : Va — Vi are x-linear maps (corresponding
to the arrows). Thus a k-linear representation of K associates vector spaces to
the vertices and compatible k-linear functions (or equivalently, matrices) to the ar-
rows. Let us denote by rep-xK the category of finite dimensional x-representations

" of the Kronecker quiver. There is a well-known equivalence of categories between

mod-£K and rep-wJ, so that every Kronecker module can be identified with a
representation of K.

The simple Kronecker modules {up to isomorphism) are

S1efE=0 and S2:08—=.

For a Kronecker module M we denote by dimM its dimension. The dimension of M
is a vector dimM = ({dim M)y, (dim M)q) = (mg, (M), mg,(M)), where mg, {3)
is the number of factors isomorphic with the simple module S; in a composition

— Pox
series of M, i = 1,2. Regarded as a representation, M:V, £— V4, we have that
vg
dimM = (dim,, V1, dim,, Va).

The defect of M € mod-xK with dimM = (a,b) is defined in the Kronecker
case ag dM = b — a.

An indecomposable module M € mod-xK is a member in one of the following
three families: preprojectives, regulars and preinjectives. In what follows we give
some details on these families.

The preprojective indecomposable Kronecker modules are determined up to
isomorphism by their dimension vector. For n € N we will denote by P, the
indecomposable preprojective module of dimension (n + 1,n). So Py and P are
the projective indecomposable modules (Fy = Sy being simple). Tt is known that
{(up to isomorphism) P, = (k™" k™; f,g), where choosing the canonical basis in
&™ and k™, the matrix of f:x™ — ™ (respectively of gk —» 1) is (%)
(respectively ( L(.Jﬂ)) Thus in this case

B
(%)

where F,, is the n X n identity matrix. We have for the defect P, = —1,

P gntt

?
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The extension monoid product ... 677

We define a preprojective Kronecker module P as being a direct sum of inde-
composable preprojective modules: P = P, & P, @ --- @ Py,, where wo use the
convention that a1 < e <+ < ap.

The preinjective indecomposable Kronecker modules are also determined up
to isomorphism by their dimension vector. For n € N we will denote by I, the
indecomposable preinjective module of dimension (n,n+ 1), So I and f1 are the
injective indecomposable modules (£ = Sy being simple). It is known that (up
to isomorphism) I, = (s®,&™*!; f, g), where choosing the canonical basis in x”*?
and £™, the matrix of f : k"™ — k™ (respectively of g : 5™t — x™) is (B, 0)
{respectively (0 £, )). Thus in this case

{Ex0)
Tair™ £ g,
(0 En)
where B, is the n x n identity matrix. We have for the defect 81, = 1.

We define & preinjective Kronecker module I' as being a direct sum of indecom-
posable preinjective modules: I =1, &1, @ - & I,,, where we use the convention
that 1 > ag > --- > ay.

The reqular indecomposable Kronecker modules are those indecomposable
modules M € mod-xK which are neither preprojective nor preinjective. A reg-
ular indecomposable i8 isomorphic as representation with one of the following (fx
denotes the multiplication by X, id is the identity function and n > 1):

* Roo(n): [X]/(X”)i: s[X]/(X™);

e Ry(n):s[X]/($(X)™) f: K[X]/(¢{X)™), where ¢ is a monic polynomial with
deg ¢ > 2, irreducible i 111 n,

o Rp(n):w[X|/((X - &)™) = x[X]/((X — @)™), where k € x (hence Ri(n) is

just a notation for Ry k(n))

This is consistent with everything claimed about Kronecker modules so far, since B

we have the following isomorphism g of representationﬂ

id
K IS

S —
Caxym
¢ g
id

RIX/(@(X)™) T w[X]/(¢(X)™)

-
X

Here ¢ is an arbitrary monic irreducible polynomial, with deg¢ = d > j‘gwhere D
g:6™ = k[ X/ (X)), glko, k1o e kna—1) = Ko+ B X 4o + kg1 X" /
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678 I. Szdrnést

(p(X)y™) for any (ko,k1,. -, kng_1) € &™¢ and Cy(x)n 18 the companion matrix of
the polynomial ¢{X)”. We also have the isomorphism

W[X1/(X) ::_— SIXT/(X™)

01

where g:r™ — g[X]/(X™) ig defined ag before and Jé") = o is the
_—
0
nilpotent Jordan block of degree n.

To simplify notations and terminology, let us introduce the following set:
P = {co}UrU{¢ | ¢ is a monic irreducible polynomial of degree dege > 2 over x}

and call an element p € P of this set simply a “point”. We will denote by d, the

1, p € {co} Us,
We also use the
degd, peP\({o}Ur).

degree of the point p, where d, = {
convention R,{0} =0, for any p € P.

Hence the dimension of a regular indecomposable will be dimR,(n) =
(ndy, ndp) and we have for the defect R, (n) = 0.

It is known that R,(n) is uniserial, i.e.] there is only one chain of submodules
0C M C - C My = Epin) with M;/M,1 = Rp(1) and AM; a direct sum
of regular indecomposables. Regular modules form an extension closed abelian
subcategory of mod-xK.

If & = k& iz algebraically closed, then all irreducible polynomials are of the
form ¢(X) = X — k and the companion matrix Ctx—py» 18 similar fo J,g”)g where
J‘,g") is the n x n Jordan block J{™ = kE, + J{™. Tn this case P = {oc} U and
the regular indecomposables are

Fo

By
Rp(n): K™ £ K for & € K and Roo(n): x™ E— k™
B Jén)

A module R € mod-xK will be called a regular Kronecker module if it is a
direct sum of regular indecomposables. If A = (A1, A, ..., Am) 18 & partition, then
we use the notation Bp(A) = Rp(A) @ (M) @ @ Bp(Anm).
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The category mod-xk lis a)is a KrquSchmﬁ'dt cetegory, meaning that every
module M € mod-xK hag a unique decomposition

M=(FPy@ & P,)® (@perRp(\)) & Iy, & - @ 1a,,),

where
® (c1,...,cn) is a finite increasing sequence of nonnegative integers;
o \P) (A1,...,As) s & nonzero partition for finitely many p € 7,
o (di,...,dm) is a finite decreasing sequence of nonnegative integers.

The integer sequences (c1, ..., ¢,) and {dy, . .., dy,) together with the partitions A
corresponding to every p € P are called the Kronecker invariants of the module M.
Hence Kronecker invariants determine a module M € mod-x& up to isomorphism.
The following well-known lemmas (to be found for example in [9]) summarize
some facts on morphisms, extensions and short exact sequences in mod-xK:

Lemma 1. Denoting by R, P and I o preprojective, a reqular, respectively o prein-
jective Kronecker module, we have (where m,n,t,t1,t2 € N, p € P and dy is the
degree of the point p):

(a) Hom(R,P) = Hom(I,P) = Hom(I,R) = Ext'(P,R} = Ext'(P,I) =
Ext'(R, ) =0.

(b) Forn < m, we have dim, Hom(Py, Pp) =m —n + 1 and Ext (P, Pr) = 0;
otherwise Hom(P,, Py,) = 0 and dim,, Ext! (P, Py) = n—m—1. In particulor
End(P,) 2 x and Ext! (P, B,) = 0.

(c) Forn > m, we have dim, Hom(ly, I,) = n—m + 1 and Ext! (I, L) = 0;
otherwise Hom(In, In) = 0 and dim, Ext!(,, I,,) = m —n— 1. In porticular
End(I,) = & and Ext'(l,, ) = 0.

(@) Ip#p', then Hom(Ry(ts), By (t2)) = Fxt! (Ry(tr), By (12)) = 0.

(e} dim, Hom(P,, I,) = n +m and dim, Extl(Im, P)=m+n+2

(fy dim, Hom(P,, Rp(t)) = dim, Hom(Rp(t), I,) = dpt and
dimy, Bxt! (Rp(t), Pn) = dimy Ext* (1., Rp(t)) = dpt.

(g) dim, Hom(Rp(t1), Ry(ta)) = dimy, Ext'(Ru(t1), Rp(t2)) = dp min(ty, t3).

Lemma 2, If there is a short evact sequence 0 — M' —+ M — M” — 0 of
Kronecker modules, then dimM = dimM' + AmM"” and M = M’ + OM”.

The category of Kronecker modules has been extensively studied because the
Kronecker algebra is a very imporiant example of a tame hereditary algebra, More-
over, the calegory has also a geometric interpretation, since it is derived equivalent
with the category Coh(IP'(k)) of coherent sheaves on the projective line (see [3]).
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680 1. SzOLLést

Moreover, Kronecker modules correspond to matrix pencils in linear algebra, so
the Kronecker algebra relates representation theory with numerical linear algebra
and matrix theory. Recall that a matriz pencil over a field x is & matrix 4 + AB
where A, B are matrices over x of the same size and ) is an indeterminate. This
correspondence and the connection to an important open problem in the theory of
matrix pencils (the matrix subpencil problem) is made clear in [4] and [10].

In this paper we continue the investigation of the short exact sequences of
Kronecker modules, started in [11] and [20].

2. Extensions of Kronecker modules over arbitrary fields

For d € N? let My == {[M]|M € mod-xK,dimM = d} be the set of isomor-
phism classes of Kronecker modules of dimension d. Following Reineke in [5] for
subsets A C My, B C M, we define

AxB = {[X] € Mgy.|90 > N = X — M — 0 exact for some [M] € A,[N] € B}.

So the product .4 + B is the set of isoclasses of all extensions of modules A with
[M] € A by modules N with [N] € B. This is in fact Reineke’s extension monoid
product using isomorphism classes of modules instead of modules. It is important
to know (see [5]) that the product above is associative, i.e. lfor AC Mg, B M,
C < My, we have (A+B) «C = A (B+C). Also {[0]} .4 = A {[0]} = .4, We will
call the operation “+” simply the extension monoid produci.

Remark 3. For M, N € mod-<K and & finite, the product {{M]} = {[N]} coincides
with the set {[M]iN]} of terms in the RingelftHall product [M][N] (see Section 4
from [11]}).

The aimn of this section is to present recent results on some products of the
form {|M]}+{[N]}, ie. lthe description of all extensions of N by M. It is important
to note that by saying “an extension of ¥ by M™ we mean a module X, which is
a middle term in Ext'(M, N). We emphasize that all the results are valid over an
arbitrary field &.
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The extension monoid product ... . 681

Theorem 4, We have the following rules for the monoid product of various Kro-
necker modules:
(a) {[P]} +={|R1} = {[I]} = {[P® R I}, where P,R,I € mod-xK are arbitrary
preprojective, reqular respectively preinjective modul&ﬂ
(b) {[R]} = {[R]} = {[R]} = {|R]}, moreover this set contains only regulars (for
R, R € mod-«K arbitrary regulars)
(c) {IL]} «{[L]} =
{ll: & 1]}, i-j=-1,
e Ll e @ Ll sy ® ey} i< -1
(@) {[Rl} = {{R]} =
{{P o P}, i—Jj< -1,
T P e PP P, .., [Py @ Piesy]}, i-d> -1
(&) {[Fn—1-al} * {[B]} = Rn U {[P & In_1.4]}, where

Ry = {[Bpy (£1)B - @Ry, ()] | 5 € N* i # py if i £ 4, by - - +Eody, =0},

() (]} * R = R {[Fin]} URpmt % {{Tensa]} U+ - U {[Eml}.
(8) R * {1Pal} = ([P} # R U{[Prstal} # Rrncs U+~ U{[Pragn]}.

The claims (a), (b), (¢) and (d} are direct consequences of results presented in
Section 4 of [9] (formulas for the corresponding Ringel{Hall products) and the field
independence of short exact sequences of preinjective and preprojective modules,

as shown in Theorem 3.3 from [10]. The remaining claims are proved in [8],

Taking into account that middle terms in short exact sequences of preinjective
and preprojective Kronecker modules do not depend on the base field x, we can
restate Theorem 8 from [11] in the following way:

Theorem 5. If a1 = -0, 20,00 = - 2 by 20ander = - 2 ¢ =0 are
nonnegative integers, then (Lo, @ -&I; ) € {[lo, @ S, 1} {[l6, @ B Ly, ]} if and
ondy ifr=n+p, 35:{L ... ,n}—={1l,.. ,n+p}, da {L,...,p} = {L,...,n+p}
both functions strictly increasing with Tma NImg = § and Bm_‘; =>0,1<4<n,
1<3<p, such thatvVee {1,...,n+p}

R : R A - TE |
b; Z,s(lgjgg) m}, where i = g7 (6), £ € ImP,

(21) Cg — : . 1
aj -+ 2 s<am My, where j=a (£), £ ¢ Ima.
1<i<n
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682 I, SzoLLbsr

Example 6. In mod-«K we have that
e ®le@ L@ 0L L l)c{[lsdld o} «{[l:®ld ]}

Using the notations from Theorem 5, we have p = 4, n = 3, v = 7 and the two
strictly increasing functions are 8 : {1,2,3} — {1,..., 7} with 8(1) =1, $(2) = 4,
B(3) =6 and o : {1,...,4} = {1,...,7} with a(l) = 2, o(2) = §, «3) = 5,
a(4) = 7. For the values m¥, 1 < i < n, 1 < j < p, we have m| = mj = 3,
mj = mi = 4 and mf = 0 in all other cases. Hence there exists a short exact

sequence

0= In@®hd L d e Lhodhd a2 L:5Le1 &) —0,

illustrated as follows:

-4 =0
|

3210

129 8

S0, less formally, Theorem 5 claims that [l., @ @I | € {[fo, @ & I ]} *
{[{o, ® - @ Ip,]} if and only if the sequence ¢1 > -+ = ¢ = 0 is obtainad by
merging the sequences a3 2 -+ 2 ap = 0 and by > --- = by > 0 and by applying
the “box dropping rule” illustrated in the picture above. This rule says that in
the middle term boxes can be dropped only te the right and only from cclumns
corresponding to elements of the sequence by > --- > b, = 0 on top of columns
corresponding to elements of the sequence a1 > --+ > ap = 0. The values mg- from
the theorem denote the number of boxes dropped from the column corresponding

to the element b; on top of the column corresponding to the element e;.

As immediate consequences of Theorem 5, we get the following two corollaries:
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All rights reserved @ Baolyai Instituie, University of Szeged




r,(a[(ow

The extension monoid product ... 683

Corollary 7. Let I, I" € mod-sK be preinjective Kronecker modules, where I =
In® @l ,I'=I,& &1, and " =Ty, &---® Iy, Then there is o short
exact sequence

O—h@@h, 2 1,@® @l 2Ly ® DLy, =0
if and only if there is o short exact sequence

0-— Ib1+m® e @Ibn-}-m — Icl-l-'m. & ®Icq.+m — Iﬂ;l+m o @]ép+m -0

for some m € N.

Proof. Resu.ltsTimmediately from (2.1} in Theorem 5.

Covollary 8., For by > -+ > by, > 0, ¢ 2 -+ > ¢p 2 0 and a = 0 nonnegative
integers, we have that

Loy @ - @ Lo, ] € {[{a]} @01}

fandonlyifp=n+1l,co=b—my, .., 1 =b_1—1y_1,q= aiZi;i My,

Ot =01, ooy Ol = by for somel e {1, .., n+1} andm; > 0, i =1, n.

i, i<,

Proof, Just teke 8:{1,..., L..on+ 1}, 80 = and
roof. Just take f:{ nt — { 7 }, B {i-l-l, i1 an
) 3 M, i<£,
ar{l} = {1,...,n + 1}, al) = [ for the functions and m} = {0 .y for

i Z—!

the nonnegative integer values from Theorem 5.
]

‘We will also need Lemma 5 from [11] rewritten using the extension monoid
product:

Lemma 9. Letay > -+ > ay, be a decreasing and (b, ..., by) an arbitrary sequence
of nonnegative integers such that {by,...,bn) > (a1,...,an) Il @® - @I ] €
o Y% # {[ ]} then (1, .. oyen) = (01, .., an )

Acta Sci. Moth, {Szeged),Tz:x--y(201t)
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634 1. SzdLLbsan

Remark 10. For two arbitrary sequences (ag,...,an) and (by,. .., bs) we say that
(bl,...,bn) 2 (al,...,aﬂ) if b¢ Z [¢5] for ¢ =W.

3. The extension monoid product of a preinjective
and a preprojective Kronecker module

In the sequel we prove that the preinjective elements of the extension monoid
product of a preprojective and a preinjective Kronecker module can be described by
the extension monoid product of two preinjectives. Or, equivalently, we show that
the existence of short exact sequences of the form 0 = P — I — I' — 0 depends
on the existence of certain short exact sequences of the form 0 — 7 — N LN g,
where P is preprojective and I, I’,1",T,T are preinjective Kronecker modules.

Lemma 11. Letdy > - > dy > 0 and e1 2 --- > ¢r = 0 be nonnegative integers.
Then [Tey @ -+ @ I | € {[La, ®--- @ Iyg,|} * {[Pn]} o and only if r = ¢ — 1 and
we have ¢1 = dy +my,....c0 = di + 1y, g1 = dig, ..., 0q-1 = dy for some
te{l,...,qg— 1} withm; > 0,i=1,1 and}:izlmi =dig+n+1l.

Proof. By applying first the rule (¢}, and repeatedly rule {e) then (f) from Theo-
rem 4 we can write the following sequence of inclusions:

{Is, - @ qu]} * {[Pn]}
D tg )+ # () = {[Pal}

(1_38){[1{11]} # oot (g b {[Pa]} # {[7a,]}

STy oo (Tl (e ld # LP) (Ul o % {1 )

Stttal) v w ((al) # Ray ) {lagaly -5 {0,

{“—‘—f)){[Idl]} Foeoeo ({[Iﬂ"z—fl]} * P’dz-i.ﬁ*n-'l'l—mi) * {[Idg+mi]} * {[Id:—pz]} B {[qu}}

/?
R

2 {[Id1+m’1]} Kok {[Idrl‘mf]} * {[Itis-w]} Kook {[qu]}
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= {[1]} * ---*{[fc;]}*{[IG;H]}*---*{[IC;_J}
gy e e Iy # ey, @ @ LT},

where ¢ = di +mi,...,cf = di+mj and ¢} ; = diya,..., 051 = dg for some
lefl,...,q—1} withm! > 0,i =1,] and ELl m} = dipa+n+1. By examining the
rules for the extension monoid product described in Theorem 4 we can conclude that
Ley® - -®1e.] € {[{a, @ @1y |} +{[Pr]} if and only if r = qél and [l @Bl ] €
(e I3 #{[Teg ]} #{[ ey, @ -eaIc;_l]} for some ¢y, . .., ¢y defined as before (any
other choice for applying the rules would lead to a set of isoclasses of Kronecker
modules that are not preinjective). But since (cj,ch,...,¢}) > (di,da,...,di),
by using Lemma 9 we get that any [Io, @ - @ I,] € {[Ig]} » -+ * {[Iy]} with
1 2 -+ 2 ¢ can be written in the form ¢y = dy +my,...,q = d) + my; and since

¢p 2 dyya, the statement of the lemma follows.
u

Lemma 12, Let dy > - 2 dy = 0 and ey = - 2 gge1 2 0 be nonnegative

integers. Then [I, ® - © Iy ;] € {[Ig, @ -+ @ Ig,]} * {[Fal} o and only &
[Tay4mi1 ® @ Ly, gnt1] € {[fo]} # {[Leybnt1 @+ ® Lo 4]}

Proof. Follows easily from Corollary 8 and Lemma 11.

In what follows we are going to need two lemmas from [10]:

Lemma 13. ([10]). Let Ny, No, My, My € mod-xK be Kronecker modules (where
K is an arbitrary field) such that Ext'(Ny, N2} = 0 end Hom(Ng, M) = 0. Then
there exists an exact sequence of the form

O Ni@No MMy >V 20
if and only if there is o module X with evact sequences

00— Nog M+ X 0,
0N =M XY 20

Dually, we have:
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686 1. SzéLubsn

Lemma 14. Let Ny, No, My, My be finite dimensional right meodules over the
Kronecker algebra vX (where s is o field) such that Ext'(N1, N2} = 0 and
Hom(Ma, N1) = 0. Then there exists an exact sequence of the form

0=2Y s MM —>NI BNy =0

if and only if there is @ module X with exact sequences

0 X —+M; — Ny =0}
0=Y XM - Ny— 0.

We are now ready to prove our main theorem, which gives a characterization
(via Theorem 5) of the short exact sequences of the form 0 - P — I/ = 1 = 0.
We will use the following notation:
s for I =1, & - @I, € modxK preinjective and d € N,
IO [y @ @ Iy
o for P=F, & - @ F, ¢€mod-sK preprojective and d ¢ N,
P(+d) =Pm+d®"'$Pan+d-

Theorem 15. Letq>n>0,di> - 2 d; 20,012 2 egn >0 and0<0q <
--- < a,, be nonnegative integers, I = I, @ @I, , end ' =I5 & @ I,.
Then [Ty © - O Lo, ) € {[Lay @+ ® g, |} * {|Poy ® -+ @ Pu}} if and only if
[Id1+an+1 PR ®qu+an+1] € {[Ia.n—m @D Iﬂn—dn_l @IO]} ® {[Iﬂl+ﬂ-n"l-1 o]
Iepntant1]}, or equivalently there is a short exacl sequence

0=+ P,® P, —I=1'20
if and only if there is a short exact sequence
0 — fFantl) o pl+oantl) Iy 0@ @I,

16310—)0.

n— Gn—

Proof. We use induction on n. For n = 1 the theorem is true by Lemma 12. Tet
n > 1 and suppose the theorem holds for n — 1. Due to Lemma 13 we know that
there is a short exact seguence

0 Py ®F,, _>Ic1@"‘@Icq_n*-[dl@“‘@quﬁo
it and only if we have the short exact sequences

(3.1) 0= Py X —=1y® @13, -0
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The extension monoid product ... 687

and
(3.2) 03 Pou® @ Fo, I @I, , X0,

where X = [, ©&---® I, _, in our case, because a preinjective module project onfo
X and by Lemma 2,

On one hand by the induction hypothesis, the existence of the short exact
sequence (3.1) is equivalent with the existence of the short exact sequence

0= Toyta 1@ @ doy sartt = Ldygtar 41 @ @ Lgppay b1 = fo = 0,

but in turn by Corollary 7 this is equivalent with the existence of the short exact
sequence

0= Joytantt @ @ Loy ituntl = Jdytantt B D ey tant1 = Jan—a, = 0.

On the other hand, again by the induction hypothesis, the existence of the
short exact sequence (3.2) is equivalent with the existence of the short exact se-
quence

02 Toytann1® - @ Joy ptonts = Tertant1 @
s P Icq+a"+1 —+ Ia.,,,—a.g - B Iaﬂ—an_1 & ID — 0.

Using Lemma, 14, we are done,
|

Remark 16. If we are looking to the derived category of the initial Kronecker
module category, then one can see that the preprojectives are in fact the shifted
versions of the preinjectives. In this sense the short exact sequence 0 — F,, &
<+ @ Py, — I I' = 0 may be regarded as a “shifted version” of the short exact
sequence (t — J(tontl) y pltentl) 1 @@l 4., ®Iy—0.

Example 17. We have a short exact sequence

0w FRpePiolhoPhsLheohaeh—-Lobdhohehelhidly—=0
hecause there exists a short exact sequence

=Tl Ldlhohdhbdhdhoh-Lhohohel-0

as shown in Example 6.
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Remark 18. We have developed in [12] methods lor checking (in linear time) the
existence of a preinjective only short exact sequence 0 — I — I = " — 0 and
to efficiently generate all middle terms, factors or kernels if two of the preinjec-
tives 1, I’, 1" are given. So these results will immediately apply to preinjective-
preprojective mixed short exact sequences ag well.

As it can be seen from the introductory part, preinjective modules are cate-
gorical duals of preprojectives, so Theorem 15 can be stated dually, in the following
way:

Theorem 19, Letg>n >0, 0<d1 < <dp, 01 < - <y and ag >
o 2 an 2 0 be nonnegalive infegers, P = Fo, @@ F,,_, and P =P o By, .
Then [Poy @ & Py ] € {[{a, @ @ Lo, |} % {[Pay @ - ® Py,]} if and only of
[Pd1+an+169' D qu+an—l-1] € {{Pﬂ'n*ﬂl DD Pan"'a'nfl ® PO]} *{[Pcl+an+1 BB
Fo o tan+1]}s or equivalently there is o short ezact sequence

0P P L, @@l —0

if and only if there is a short exact sequence

03 Pyt Pogy @+ @ Pay o, — PO pliactl)
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