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Baer-Galois connections and applications

GABRIELA OLTEANU

ABSTRACT. We define Baer-Galois connections between bounded modular lattices. We
relate them to lifting lattices and we show that they unify the theories of (relatively) Baer
and dual Baer modules.

1. INTRODUCTION

Galois connections have been useful tools for transferring properties be-
tween partially ordered sets and have found applications in various fields
of mathematics: classical Galois theory, group theory, algebraic topology
etc. In particular, their theory has been successfully applied to some clas-
sical module-theoretic Galois connections in order to relate properties of a
module with properties of its endomorphism ring. In a long series of arti-
cles on these topics we mention the recent papers [4, 5], which developped
a theory of some special Galois connections that offer a more efficient and
transparent way to deal with the above problem from module theory. This
paper has a similar motivation for introducing Baer-Galois connections.
They are showed to be a suitable setting for establishing lattice-theoretic
analogues of some module-theoretic results connected to the theories of
Baer and dual Baer modules. These have been introduced by Rizvi and
Roman [12] and Keskin Tütüncü and Tribak [11] respectively, and are im-
portant concepts related to the intensively studied extending and lifting
modules [3, 8].

In this article we prove that Baer-Galois connections are related to lifting
lattices. The proofs of our results are different and much easier as those for
modules, using only properties of a lattice-theoretic nature. Our general
theory has a wide range of applications, and we illustrate its strength on
two particular Galois connections between submodule lattices, observed
by Albu and Năstăsescu [1, pp. 25-26]. Then Baer-Galois connections re-
duce to (relatively) Baer and dual Baer modules, and one easily obtains
some corresponding results from module theory.
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2. BAER-GALOIS CONNECTIONS

Throughout the paper all lattices will be modular and bounded. Then
they have a least element, denoted by 0, and a greatest element, denoted
by 1, and we assume that 0 6= 1. For elements a, a′ of the lattice (A,≤), we
denote [a, a′] = {x ∈ A|a ≤ x ≤ a′}.

We recall the definition of (monotone) Galois connection (e.g., see [9]),
which in fact holds more generally for partially ordered sets.

Definition 2.1. Let (A,≤) and (B,≤) be lattices. A Galois connection be-
tween them consists of a pair (α, β) of two order-preserving functions
α : A → B and β : B → A such that for all a ∈ A and b ∈ B, we have
α(a) ≤ b ⇐⇒ a ≤ β(b). Equivalently, (α, β) is a Galois connection if and
only if for all a ∈ A, a ≤ βα(a) and for all b ∈ B, αβ(b) ≤ b.

The following results on Galois connections are well-known (e.g., see
[1, Proposition 3.3], [9]), and will be freely used.

Lemma 2.1. Let (α, β) a Galois connection between lattices A and B. Then
αβα = α, βαβ = β, α preserves all suprema in A, β preserves all infima in B,
α(0) = 0 and β(1) = 1.

Now we introduce the main notion of the paper.

Definition 2.2. Let (α, β) be a Galois connection between latticesA andB.
We say that (α, β) is Baer (or Baer-Galois) if α(a) is a complement in B for
every a ∈ A, and β(b) is a complement in A for every b ∈ B.

In general, for a Galois connection (α, β), the two conditions from Def-
inition 2.2 are independent, as we may see in the following example. One
may see the algorithmic approach from [6, 7] to have a clearer insight.

Example 2.1. Consider the abelian group G = Zp2 × Zq for some primes p
and q with p 6= q, where Zn denotes the cyclic group of order n ∈ N. The
subgroup lattice L(G) of G is given by a diagram of the following form
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{{

0

where H1 ' Zq, H2 ' Zp, H3 ' Zpq and H4 ' Zp2 .
Consider the functions α : L(G) → L(G) defined by α(0) = 0, α(H1) =

H1, α(H2) = 0, α(H3) = H1, α(H4) = H4, α(G) = G, and β : L(G)→ L(G)
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defined by β(0) = H2, β(H1) = H3, β(H2) = H2, β(H3) = H3, β(H4) = H4,
β(G) = G. Then (α, β) is a Galois connection from the lattice (L(G),⊆) to
itself. Then α(a) is a complement in B = L(G) for every a ∈ A = L(G),
but β(0) = H2 is not a complement in A = L(G).

In certain cases we may simplify the definition of a Baer-Galois connec-
tion. Inspired by the behaviour of additive functors in additive categories,
we say that β : B → A is additive if β(b∨b′) = β(b)∨β(b′) for every b, b′ ∈ B
with b ∧ b′ = 0. Note that if β is additive, then β preserves complements.
Dually, one has the terminology that α : A→ B is coadditive.

Lemma 2.2. Let (α, β) be a Galois connection between lattices A and B such
that α : A → B is coadditive, β : B → A is additive, α(1) = 1 and β(0) = 0.
Then the following are equivalent

(i) (α, β) is Baer.
(ii) α(a) is a complement in B for every a ∈ A.
(iii) β(b) is a complement in A for every b ∈ B.

Proof. It is enough to prove the equivalence (ii)⇔(iii). Assume (ii). If b ∈ B,
then αβ(b) is a complement in B, and so, β(b) = βαβ(b) is a complement
in A by the additivity of β and (iii) holds. The converse is dual. �

The following concepts will be useful, which generalize some corre-
sponding module-theoretic notions (e.g., see [3, 8, 10]).

Definition 2.3. Let B be a lattice.
(1) Let b, b′ ∈ B be such that b′ ≤ b. Then b is called coessential (or

cosmall) in [b′, 1] if for any x ∈ B, 1 = b ∨ x implies 1 = b′ ∨ x. Also, b is
called superfluous in B if b is coessential in [0, 1].

(2) B is called lifting if for every b ∈ B, there exists a complement b′ ∈ B
such that b is coessential in [b′, 1].

Let (α, β) be a Galois connection between lattices A and B. Then B is
called

(3) α-nonsingular if for a ∈ A, α(a) coessential in [0, 1] implies a = 0.
(4) β-cononsingular if for b ∈ B, β(b) = 0 implies b coessential in [0, 1].

Considering the concepts of coessential element and lifting lattice for
the dual lattice Bop of a lattice B, one obtains the notions of essential ele-
ment and extending lattice respectively.

Now we may give our main result, which relates Baer-Galois connec-
tions with the lifting property for lattices.

Theorem 2.1. Let (α, β) be a Galois connection between latticesA andB, where
α : A → B is coadditive, β : B → A is additive, α(1) = 1 and β(0) = 0. The
following are equivalent

(i) (α, β) is Baer and B is β-cononsingular.
(ii) B is α-nonsingular lifting.
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Proof. (i)⇒ (ii) Assume that (α, β) is Baer and B is β-cononsingular.
Let a ∈ A be such that α(a) is coessential in [0, 1]. Since α(a) is a com-

plement in B, we must have α(a) = 0. Then a ≤ βα(a) = β(0) = 0, hence
a = 0. Thus B is α-nonsingular.

Let b ∈ B. We claim that b is coessential in [αβ(b), 1]. To this end, let
b0 ∈ B be such that b ∨ b0 = 1. Since αβ(b) is a complement in B, there is
b′ ∈ B such that αβ(b)∨b′ = 1 and αβ(b)∧b′ = 0. Then we have β(b∧b′) =
β(b) ∧ β(b′) = β(αβ(b) ∧ b′) = β(0) = 0. But B is β-cononsingular, whence
b ∧ b′ is coessential in [0, 1]. Since αβ(b) ≤ b, it follows by modularity that

1 = b ∨ b0 = (b ∧ (αβ(b) ∨ b′)) ∨ b0 = αβ(b) ∨ (b ∧ b′) ∨ b0.

Then we must have αβ(b) ∨ b0 = 1, which shows that b is coessential in
[αβ(b), 1]. Hence B is lifting.

(ii)⇒ (i) Assume that B is α-nonsingular lifting.
Let b ∈ B. Then there is a complement b′ ∈ B such that b is coessential

in [b′, 1]. Hence there is b′′ ∈ B such that b′ ∨ b′′ = 1 and b′ ∧ b′′ = 0. Then
it follows that b ∧ b′′ is coessential in [b′ ∧ b′′, 1] = [0, 1], that is, b ∧ b′′ is
superfluous in B. Since αβ(b ∧ b′′) ≤ b ∧ b′′, α(β(b) ∧ β(b′′)) is superfluous
in B. Since B is α-nonsingular, we have β(b) ∧ β(b′′) = 0. By modularity,
it follows that

β(b) = β(b) ∧ (β(b′) ∨ β(b′′)) = β(b′) ∨ (β(b) ∧ β(b′′)) = β(b′).

Hence β(b) is a complement in A. Then (α, β) is Baer by Lemma 2.2.
Let b ∈ B be such that β(b) = 0. Then there is a complement b′ ∈ B such

that b is coessential in [b′, 1]. Hence there is b′′ ∈ B such that b′ ∨ b′′ = 1
and b′ ∧ b′′ = 0. Since β is additive, β(b′) ∨ β(b′′) = β(1) = 1. But β(b′) ≤
β(b) = 0, hence β(b′′) = 1. Then 1 = α(1) = αβ(b′′) ≤ b′′, and so b′′ = 1.
Now b′ = 0, hence b is coessential in [0, 1]. Thus B is β-cononsingular. �

Remark 2.1. Note that the coadditivity ofα : A→ B in Theorem 2.1 is only
used to ensure the equivalence of the two conditions from the definition
of a Baer-Galois connection (α, β).

3. APPLICATIONS

Now we recall some relevant Galois connections between submodule
lattices, previously pointed out in the literature (e.g., see [1]).

Let R be an associative ring with (non-zero) identity. Let M and N be
two right R-modules, and denote U = HomR(M,N), S = EndR(M) and
T = EndR(N). Then TUS is a bimodule.

For every submodule X of MR and every submodule Z of TU denote

lU (X) = {f ∈ U | X ⊆ Ker(f)}, rM (Z) =
⋂
f∈Z

Ker(f).
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For every submodule Y of NR and every submodule Z of US denote

l′U (Y ) = {f ∈ U | Im(f) ⊆ Y }, r′N (Z) =
∑
f∈Z

Im(f).

Theorem 3.2. [1, Proposition 3.4] (rM , lU ) is a Galois connection between the
submodule lattices L(TU) and L(MR)

op, and (r′N , l
′
U ) is a Galois connection

between L(US) and L(NR).

The notions of Baer module [12, Definition 2.2] and dual Baer module
[11, p. 262] may be generalized as follows.

Definition 3.4. Let M and N be two right R-modules. Then
(1) M is called N -Baer if the Galois connection (rM , lU ) is Baer.
(2) N is called M -dual Baer if the Galois connection (r′N , l

′
U ) is Baer.

The notions of Baer module and dual Baer module are related to that of
Baer-Galois connection in the following way.

Theorem 3.3. Let M be a right R-module with S = EndR(M). Then
(i) M is Baer if and only if M is M -Baer if and only if the Galois connection

(rM , lS) is Baer.
(ii) M is dual Baer if and only if M is M -dual Baer if and only if the Galois

connection (r′M , l
′
S) is Baer.

Proof. (i) Note that M is Baer if and only if lS(X) is a direct summand of
SS for every submoduleX ofMR if and only if rM (Z) is a direct summand
of MR for every submodule Z of SS [12, Definition 2.2].

(ii) Note that M is dual Baer if and only if l′S(Y ) is a direct summand of
SS for every submodule Y ofMR if and only if r′M (Z) is a direct summand
of MR for every submodule Z of SS [11, p. 262]. �

For the above module-theoretic Galois connections we have the follow-
ing two corollaries, which are [12, Theorem 2.12] and [11, Theorem 2.14].

Corollary 3.1. Let M be a right R-module. The following are equivalent
(i) M is a Baer K-cononsingular module.
(ii) M is a K-nonsingular extending module.

Proof. Consider the Galois connection (rM , lS) between the submodule lat-
tices L(SS) and L(MR)

op. Then lS is additive by [2, Lemma 4.9]. The
module MR is rM -nonsingular if for every submodule Z of SS, r′M (Z) es-
sential in M implies Z = 0. Hence MR is rM -nonsingular if and only if
MR is K-nonsingular in the sense of [12, Definition 2.5]. The module MR

is lS-cononsingular if for every submodule X of MR, lS(X) = 0 implies
X essential in M . Hence MR is lS-cononsingular if and only if MR is K-
cononsingular in the sense of [12, Definition 2.7]. The lattice L(MR)

op is
lifting if and only if MR is extending. Now use Theorem 2.1 for the Galois
connection (rM , lS), together with Remark 2.1 and Theorem 3.3. �
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Corollary 3.2. Let M be a right R-module. The following are equivalent
(i) M is a dual Baer K-module.
(ii) M is a T -non-cosingular lifting module.

Proof. Consider the Galois connection (r′M , l
′
S) between the submodule lat-

tices L(SS) and L(MR). Then l′S is clearly additive. The module MR is
r′M -nonsingular if for every submodule Z of SS , r′M (Z) coessential in M
implies Z = 0. Hence MR is r′M -nonsingular if and only if MR is T -non-
cosingular in the sense of [11, p. 261]. The module MR is l′S-cononsingular
if for every submodule Y of MR, l′S(Y ) = 0 implies Y coessential in M .
HenceMR is l′S-cononsingular if and only ifMR is aK-module in the sense
of [11, p. 264]. The lattice L(MR) is lifting if and only if MR is lifting. Now
use Theorem 2.1 for the Galois connection (r′M , l

′
S), together with Remark

2.1 and Theorem 3.3. �

REFERENCES
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[7] S. Crivei and Ş. Şuteu Szöllősi, Subgroup lattice algorithms related to extending and lifting

abelian groups, Int. Electron. J. Algebra 2 (2007), 54–70.
[8] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Re-

search Notes, 313, Longman Scientific and Technical, 1994.
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