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Preface

Group rings are algebraic structures that have attracted the attention of many mathe-

maticians since they combine properties of both groups and rings and have applications

in many areas of Mathematics. Their study often requires techniques from Representa-

tion Theory, Group Theory, Ring Theory and Number Theory and, in some cases, the

use of properties of central simple algebras or local methods. By the Maschke Theo-

rem, if G is a finite group and F is a field of characteristic not dividing the order of the

group G, then the group algebra FG is semisimple artinian. In this case, the structure

of FG is quite easy, but the explicit computation of the Wedderburn decomposition of

the group algebra knowing the group G and the field F is not always an easy prob-

lem. On the other hand, the explicit knowledge of the Wedderburn decomposition has

applications to different problems.

The Wedderburn decomposition of a semisimple group algebra FG is the decom-

position of FG as a direct sum of simple algebras, that is, minimal two-sided ideals.

Our main motivation for the study of the Wedderburn decomposition of group algebras

is given by its applications. The main applications that we are interested in are the

study of the groups of units of group rings with coefficients of arithmetic type and

of the Schur groups of abelian number fields. Other applications of the Wedderburn

decomposition that, even if not extensively studied in this book we have had in mind

during its preparation, are the study of the automorphism group of group algebras,

of the Isomorphism Problem for group algebras and of the error correcting codes with

ideal structure in a finite group algebra, known as group codes.

We start by presenting with more details the first application, which is the com-

putation of units of group rings relying on the Wedderburn decomposition of group

algebras. It is well known that the integral group ring ZG is a Z-order in the rational

group algebra QG and it has been shown that a good knowledge and understanding

of QG is an essential tool for the study of U(ZG). For example, some results of E.

Jespers and G. Leal and of J. Ritter and S.K. Sehgal [JL, RitS2] show that, under some

1
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hypotheses, the Bass cyclic units and the bicyclic units (see Section 1.3. for definitions)

generate a subgroup of finite index in U(ZG). These hypotheses are usually expressed

in terms of the Wedderburn decomposition of the rational group algebra QG. Their

theorems were later used by E. Jespers, G. Leal and C. Polcino Milies [JLPo] to char-

acterize the groups G that are a semidirect product of a cyclic normal subgroup and

a subgroup of order 2 such that the Bass cyclic units and the bicyclic units generate

a subgroup of finite index in U(ZG). This latter characterization also had as starting

point the computation of the Wedderburn decomposition of QG for these groups.

As a consequence of a result of B. Hartley and P.F. Pickel [HP], if the finite group

G is neither abelian nor isomorphic to Q8 × A, for Q8 the quaternion group with 8

elements and A an elementary abelian 2-group, then U(ZG) contains a non-abelian

free group. The finite groups for which U(ZG) has a non-abelian free subgroup of finite

index were characterized by E. Jespers [Jes]. Furthermore, the finite groups such that

U(ZG) has a subgroup of finite index which is a direct product of free groups were

classified by E. Jespers, G. Leal and Á. del Ŕıo in a series of articles [JLdR, JL, LdR].

In order to obtain the classification, they used the characterization of these groups

in terms of the Wedderburn components of the corresponding rational group algebra.

Furthermore, for every such group G, M. Ruiz and Á. del Ŕıo explicitly constructed

a subgroup of U(ZG) that had the desired structure and minimal index among the

ones that are products of free groups [dRR]. Again, a fundamental step in the used

arguments is based on the knowledge of the Wedderburn decomposition of the rational

group algebra.

The use of the methods of Kleinian groups in the study of the groups of units was

started by M. Ruiz [Rui], A. Pita, Á. del Ŕıo and M. Ruiz [PdRR] and led to the notion

of algebra of Kleinian type and of finite group of Kleinian type. The classification of

the finite groups of Kleinian type has been done by E. Jespers, A. Pita, Á. del Ŕıo

and P. Zalesski, by using again useful information on the Wedderburn components of

the corresponding rational group algebras [JPdRRZ]. One of the first applications of

the present book is a generalization of these results, obtaining a classification of the

group algebras of Kleinian type of finite groups over number fields [OdR3]. This is

explained in detail in Chapter 4 of the present book, dedicated to the applications of

the Wedderburn decomposition to the study of the group algebras of Kleinian type.

Another important application is to the study of the automorphism group of a

semisimple group algebra. The automorphism group of a semisimple algebra can be

computed by using the automorphism groups of the simple components of its Wedder-

burn decomposition. By the Skolem–Noether Theorem, the automorphism group of
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every simple component S can be determined by using the automorphism group of the

center of S and the group of inner automorphisms of S. These ideas were developed

by S. Coelho, E. Jespers, C. Polcino Milies, A. Herman, A. Olivieri, Á. del Ŕıo and

J.J. Simón in a series of articles [CJP, Her3, OdRS2], where the automorphism group

of group algebras of finite groups with rational coefficients is studied. The same type

of considerations shows that the Isomorphism Problem for semisimple group algebras

can be reduced to the computation of the Wedderburn decomposition of such algebras

and to the study of the existence of isomorphisms between the simple components.

On the other hand, the knowledge of the Wedderburn decomposition of a group

algebra FG allows one to compute explicitly all two-sided ideals of FG. This has

direct applications to the study of error correcting codes, in the case when F is a finite

field, since the majority of the most used codes in practice are ideals of group rings.

For example, this is the case of cyclic codes, which are exactly the ideals of the group

algebras of cyclic groups [PH]. In the last years, some authors have investigated families

of group codes having in mind the applications to Coding Theory (see for the example

the survey [KS]).

The problem of computing the Wedderburn decomposition of a group algebra FG

naturally leads to the problem of computing the primitive central idempotents of FG.

The classical method used to do this starts by calculating the primitive central idempo-

tents e(χ) of CG associated to the irreducible characters of G, for which there is a well

known formula, and continues by summing up all the primitive central idempotents of

the form e(σ ◦ χ) with σ ∈ Gal(F (χ)/F ) (see for example Proposition 1.24, Section

1.2). An alternative method to compute the primitive central idempotents of QG, for

G a finite nilpotent group, that does not use the character table of G has been intro-

duced by E. Jespers, G. Leal and A. Paques [JLPa]. A. Olivieri, Á. del Ŕıo and J.J.

Simón [OdRS1] pointed out that this method relies on the fact that nilpotent groups are

monomial and, using a theorem of Shoda [Sho], they gave an alternative presentation.

In this way, the method that shows how to produce the primitive central idempotents

of QG, for G a finite monomial group, depends on certain pairs of subgroups (H,K)

of G and it was simplified in [OdRS1]. These pairs (H,K) were named Shoda pairs

of G. Furthermore, A. Olivieri, Á. del Ŕıo and J.J. Simón noticed that if a Shoda

pair satisfies some additional conditions, then one can describe the simple component

associated to such a Shoda pair as a matrix algebra of a specific cyclotomic algebra,

that can be easily computed using the arithmetics of H and K as subgroups of G. This

new method was the starting point to produce a GAP package, called wedderga, able
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to compute the Wedderburn decomposition of QG for a family of finite groups G that

includes all abelian-by-supersolvable groups (see [OdR1], where the main algorithm of

the first version of wedderga is explained). A similar approach to that presented in

[OdRS1] is still valid for F a finite field, provided FG is semisimple (i.e. the character-

istic of F is coprime with the order of G), and this was presented by O. Broche Cristo

and Á. del Ŕıo in the strongly monomial case [BdR]. A survey on central idempotents

in group algebras is given by O. Broche Cristo and C. Polcino Milies [BP].

The purpose of present book is to offer an explicit and effective computation of the

Wedderburn decomposition of group algebras of finite groups over fields of characteristic

zero. The core of the book is the author’s Ph.D. thesis [Olt3] on this topic. The method

presented here relies mainly on an algorithmic proof of the Brauer–Witt Theorem.

The Brauer–Witt Theorem is closely related to the study of the Schur subgroup of

the Brauer group, study that was started by I. Schur (1875–1941) in the beginning

of the last century. Afterwards, in 1945 R. Brauer (1901–1977) proved that every

irreducible representation of a finite group G of exponent n can be realized in every field

which contains an n-th primitive root of unity, result that allowed further developments

[Bra1]. In the early 1950’s, R. Brauer [Bra2] and E. Witt (1911–1991) [Wit] shown

independently that questions on the Schur subgroup are reduced to a treatment of

cyclotomic algebras. The result has been called the Brauer–Witt Theorem and it can

be said that almost all detailed results about Schur subgroups depend on it. During the

1960’s, the Schur subgroup had been extensively studied by many mathematicians, who

obtained results such as: a complete description of the Schur subgroup for arbitrary

local fields and for several cyclotomic extensions of the rational field Q [Jan2], a simple

formula for the index of a p-adic cyclotomic algebra and other remarkable properties

of Schur algebras (see [Yam] for an exhaustive and technical account of various results

related to this topic).

The book starts with a preliminary chapter, where we gather notation, methods

and results used throughout the book. The remaining chapters may by divided into

two parts that contain the original results: the first part is dedicated to the explicit

computation of the Wedderburn decomposition of groups algebras, and the second one

deals with the applications of the presented decomposition to the study of the groups

of units of group rings and of the Schur subgroup of an abelian number field, with a

special emphasis on the role of the cyclic cyclotomic algebras. Now we present a more

detailed contents of each chapter.
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Chapter 1 is dedicated to the preliminaries. There we establish the basic notation

and we recall concepts and well known results, which will be frequently used throughout

the subsequent chapters. The reader who is familiar with the concepts of this chapter

can only concentrate on the introduced notation. Our notation and terminology follow

closely that of [Mar], [Rei] and [Pie]. The intention was to make it self-contained from

the point of view of the theory of central simple algebras, so we tried to gather the

necessary ingredients in order to be able to do this. The chapter starts by collecting

some basic properties of number fields and orders, since these fields are the base fields

in most of our results. Next we recall the basic properties of group algebras FG and

representations of finite groups, as well as some results on units of group rings, with

special emphasis on their relationship with the Wedderburn decomposition of group

algebras. The crossed product algebras are presented as an essential construction for

the description of central simple algebras. This description is associated to the so-called

Brauer group of a field. In order to understand the structure of the Brauer group of

a number field, sometimes it is convenient to start by understanding the Brauer group

of local fields. This also presumes a better understanding of the local Schur indices

and the Hasse invariants of a central simple algebra seen as an element of the Brauer

group of its center. Gathering this local information, we can now have a description of

the Brauer group over a number field. The central simple algebras that arise as simple

components of group algebras form a subgroup called the Schur subgroup. This is the

part of the Brauer group that is directly related to this work. We finish the preliminary

chapter by collecting some results on the Schur subgroup.

The first part of the book, dedicated to the Wedderburn decomposition of group

algebras contains two chapters that present two aspects of the proposed method for the

computation of the Wedderburn components: one more theoretical and the other one

more technical from the implementation point of view.

Chapter 2 is dedicated to the presentation of our approach on the Wedderburn

decomposition of group algebras. In the first section we recall the useful results obtained

by A. Olivieri, Á. del Ŕıo and J.J. Simón [OdRS1] on the computation of the primitive

central idempotents and the simple components of semisimple group algebras of some

special finite groups, namely the monomial and the strongly monomial groups. We

will intensively use these results and we will base the constructive approach of the

Brauer–Witt Theorem on these types of groups. The second section is mainly focused

on the presentation of the classical result due to R. Brauer and E. Witt, together

with a proof of the theorem with a computational emphasis. The main goal is to look
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for a constructive approach of the theorem, using the strongly monomial characters

introduced in [OdRS1], in order to obtain a precise and constructive description of the

cyclotomic algebras that appear in the theorem. An algorithmic proof of the Brauer–

Witt Theorem obtained by using these strong Shoda pairs is given. These results are

published in [Olt2].

Let G be a finite group, χ a complex irreducible character of G and F a field of

characteristic zero. The group algebra FG has a unique simple component A such that

χ(A) 6= 0. Following T. Yamada’s book [Yam], we denote this simple component by

A(χ, F ). Moreover, every simple component of FG is of this form for an irreducible

character χ of G. The center of A(χ, F ) is E = F (χ), the field of character values of χ

over F and A(χ, F ) represents an element of the Schur subgroup of the Brauer group of

E. The Brauer–Witt Theorem states that A(χ, F ) is Brauer equivalent to a cyclotomic

algebra over E, that is, a crossed product (E(ζ)/E, τ), where ζ is a root of 1, and all the

values of the 2-cocycle τ are roots of 1 in E(ζ). We present a constructive proof of the

Brauer–Witt Theorem in four steps. The first step deals with the strongly monomial

case, that is, the constructible description of the simple component associated to a

strongly monomial character. Then we present the part that gives the reduction of

the problem to strongly monomial characters and, furthermore, we show the existence

of such strongly monomial characters. The last step gives the desired description of

the simple component A(χ, F ) as an algebra Brauer equivalent to a specific cyclotomic

algebra by using the corestriction map.

The existent proofs of the Brauer–Witt Theorem (see e.g. [Yam]) rely on the ex-

istence, for each prime integer p, of a p-elementary subgroup of G that determines

the p-part of a given simple component up to Brauer equivalence, but do not offer

an algorithmic method to determine it. This subgroup arises from the use of the

Witt–Berman Theorem. Schmid extended the theorem by identifying precise types of

p-quasi-elementary groups, which are the minimal groups one can reduce to by using

this theorem [Sch]. The fact that the Brauer–Witt Theorem does not provide an al-

gorithmic method to determine sections of G suitable for computing the Schur index

for arbitrary finite groups suggested the idea of considering some particular cases of

groups for which a constructible method can be done. Some of these approaches are

the following. A. Herman considered the case of finite solvable groups that are Clifford

reduced over an algebraic number field with respect to a faithful irreducible character

[Her2]. For groups with these properties, a character theoretic condition is given that

makes the p-part of the division algebra of this simple component to be generated by a

predetermined p-quasi-elementary subgroup of the group, for any prime p. This gives a
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constructive Brauer–Witt Theorem for groups satisfying this condition. Furthermore,

A. Herman [Her5] used the theory of G-algebras with Schur indices, as developed by

A. Turull in a series of articles starting with [Tur], to obtain constructive methods for

the proof of the Brauer–Witt Theorem.

We are interested in establishing the results for fields F as small as possible, for

instance Q(χ), for (every) irreducible character χ of the finite group G. The reason

is that if L is a field containing F , then A(χ,L) = L(χ) ⊗F (χ) A(χ, F ) and, therefore,

the cyclotomic structure of A(χ, F ) up to Brauer equivalence determines the cyclo-

tomic structure of A(χ,L) as an algebra Brauer equivalent to the crossed product

(L(χ)(ζ)/L(χ), τ). The last section of the chapter gives a theoretical algorithm for

the computation of the Wedderburn decomposition of group algebras that uses the

previously presented algorithmic approach of the Brauer–Witt Theorem.

The theoretical algorithm for the computation of the Wedderburn decomposition

of a cyclic algebra, introduced in Chapter 2, is not exactly the implemented one. The

main reason is that there are more efficient alternatives for the search of the sections

that give rise to the simple components. In Chapter 3 we explain some aspects of

the implementation of our algorithm in the wedderga package for the computer sys-

tem GAP [BKOOdR]. The presented working algorithm is more appropriate for our

computational purposes than the previously presented theoretical algorithm. In our

presentation we try to avoid some technical aspects of the development of the software

and we focus more on the mathematical aspects of the implementation of the chosen

strategy. Hence, the algorithm is still not the real one, but it is closer to it and gives

an idea about the steps to be followed in order to be able to implement it. This version

of wedderga upgrades a previous form of the package. In order to give an idea of its

usefulness, we include various examples, the computations of which have been made

by using the wedderga package. In some examples it is given a complete description

of the Wedderburn decomposition of the considered group algebra FG. In some other

examples it is given a description of the simple component corresponding only to an

irreducible character χ of the group G. The new implementation is able to compute the

Wedderburn decomposition of a semisimple algebra FG for those fields F which allow

GAP to realize effective computations, that is, essentially abelian number fields and fi-

nite fields. For a better understanding of other aspects of the package we have included

the complete manual of wedderga in the Appendix at the end of the book. We would

like to thank all the authors of wedderga for their contribution to the construction of

the package, and especially to A. Konovalov who helped us to solve many technical

problems during the programming and optimization process. The implementation of
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this new part of the wedderga package is joint work with Á. del Ŕıo, and the theoretical

background is presented in [OdR2].

The second part of the book is dedicated to the applications of the explicit com-

putation of the Wedderburn decomposition of group algebras that we have proposed,

mainly to group algebras of Kleinian type, groups of units and Schur groups.

In Chapter 4 we establish some applications of the explicit computation of the

Wedderburn decomposition of group algebras to the study of group algebras of Kleinian

type KG and to the units of RG for R an order in K. These algebras are finite

dimensional semisimple rational algebras A such that the group of units of an order

in A is commensurable with a direct product of Kleinian groups. The finite groups

of Kleinian type were introduced by M. Ruiz, A. Pita and Á. del Ŕıo in [Rui] and

[PdRR] as a class of finite groups that make possible the use of geometrical methods in

hyperbolic spaces in order to provide presentations of groups commensurable with the

group of units of ZG. The finite groups of Kleinian type were classified by E. Jespers,

A. Pita, Á. del Ŕıo, M. Ruiz and P. Zalesski in [JPdRRZ] and characterized in terms of

the Wedderburn decomposition of the group algebra with rational coefficients. It can

be said that all known results that provide a very explicit description on the structure

of U(ZG) are included in the result that characterizes the finite groups G of Kleinian

type as the ones with U(ZG) virtually a direct product of free-by-free groups. The

concept of finite group of Kleinian type comes from a property of the group algebra

with rational coefficients that makes sense when changing the field of rationals with an

arbitrary number field. The algebras with this property are called group algebras of

Kleinian type. The origin of the study included in this chapter comes from a question

of A. Reid, asking about groups of units of group rings RG, with R the ring of integers

of a number field K, in case KG is of Kleinian type. In this chapter we classify the

Schur algebras of Kleinian type, as a first step needed later on in order to characterize

the group algebras of Kleinian type. As an application of this classification, we were

able to extend various results about the units of ZG to the case of the group rings RG,

with R an order in a number field. In this way, we characterize when the group of units

of RG is finite, virtually abelian, virtually a direct product of free groups and virtually

a direct product of free-by-free groups. This part is published in [OdR3].

In Chapter 5 we study the Schur group of an abelian number field K, that is, a

subfield of a finite cyclotomic extension of the rationals. The results of this chapter

were produced as instruments to be applied in Chapter 6, where we need to know the

maximum of the local indices of a Schur algebra over such fields K. The approach is
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to consider separately the Schur algebras of index a power of p, for every prime p. The

cases of p odd or ζ4 ∈ K were studied by G.J. Janusz in [Jan3], and the remaining case

by J.W. Pendergrass [Pen1]. In our analysis of these results and their applications to the

problem studied in Section 6.2, we discovered that Pendergrass results are not correct,

as a consequence of errors in the calculations of 2-cocycles. This led us to checking

the proofs of Janusz and Pendergrass, obtaining a new approach. In our approach

we correct the errors in [Pen1] and we provide a more conceptual presentation of the

results that the one in [Jan3] and [Pen1]. In order to be able to do this, we embed

the field K in a special cyclotomic field, bigger than the one considered by Janusz

and Pendergrass, avoiding in this way the artificial-looking results presented by them.

In fact, the results of this chapter were developed in view of the applications in the

next chapter. As a consequence of the Benard–Schacher Theorem, S(K) =
⊕

p S(K)p,

where p runs over the primes p such that K contains a primitive p-th root of unity ζp,

and S(K)p is the p-primary component of S(K). Moreover, if A is a Schur algebra and

R1 and R2 are two primes of K such that R1∩Q = R2∩Q = rZ, for r a rational prime

number, then the local indices of A in R1 and R2 are equal, and it makes sense to

denote this common local index by mr(A). Hence, in order to compute the maximum

local index of Schur algebras with center K, it is enough to calculate βp(r), where

pβp(r) = max{mr(A) : [A] ∈ S(K)p}, for every prime p with ζp ∈ K and r a rational

prime number. The case of r = ∞ is easy and it depends on K being included in R or

not. Theorem 5.13 provides an explicit value for βp(r), in the case of r odd. The case

r = 2 can be obtained by using results of Janusz [Jan1].

In Chapter 6 we introduce the notion of cyclic cyclotomic algebra and we study some

of its properties. A cyclic cyclotomic algebra is a cyclic algebra (K(ζ)/K, σ, ξ), with ζ

and ξ roots of unity. Notice that a cyclic cyclotomic algebra is an algebra that has at the

same time a representation as cyclic algebra and as cyclotomic algebra. Moreover, every

element of the Schur subgroup is represented, on one hand by a cyclotomic algebra (by

the Brauer–Witt Theorem) and, on the other hand by a cyclic algebra (by a classical

result from Class Field Theory). However, it is not true in general that every element

of the Schur group is represented by a cyclic cyclotomic algebra.

In the first section we study when two cyclic cyclotomic algebras over abelian num-

ber fields are isomorphic. The main motivation for this study is based on its applications

to the study of the automorphisms of a group algebra and the Isomorphism Problem

for group algebras. The reason is that the problem of describing the automorphism

group of a semisimple group algebra FG reduces to two problems: first compute the

Wedderburn decomposition of FG and second, decide which pairs of this decomposition
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are isomorphic. Also the Isomorphism Problem between two group algebras can be ob-

viously reduced to that of deciding if the simple components of the given algebras can

be put in isomorphic pairs. Note that the isomorphism concept here is the ring isomor-

phism and not the algebra isomorphism. An algorithmic method for the computation

of the Wedderburn decomposition of QG for G a metacyclic group has been obtained

in [OdRS2]. That method provides a precise description of each simple component

in terms of the numerical parameters that determine the group, that is, m,n, r and s

which appear in a presentation of the form G = 〈a, b|am = 1, bn = as, bab−1 = ar〉.
However, to decide if two simple components are isomorphic is more difficult, and in

[OdRS2] this problem has been solved only in the case when n is a product of two

primes. The case of n being prime has been studied before by A. Herman [Her3]. Two

simple algebras are isomorphic as algebras if and only if they have the same center, the

same degree and the same local invariants. In this case, the algebras are isomorphic

as rings, but the converse is not true. In the first section of Chapter 6 we show that

two cyclic cyclotomic algebras over an abelian number field are isomorphic if and only

if they have the same center, the same degree and the same list of local Schur indices

at all rational primes. We provide an example that shows that this result cannot be

extended to arbitrary cyclotomic algebras.

The classes of the Brauer group of a field K that contain cyclic cyclotomic algebras

generate a subgroup CC(K) of the Schur group S(K). In many cases this subgroup is

exactly the Schur group. For example, this is the case if K is a cyclotomic extension

of the rationals. Nevertheless, as we show in the second section of Chapter 6, in

general CC(K) 6= S(K). In this section we study the gap between CC(K) and S(K).

More precisely, we characterize when CC(K) has finite index in the Schur group S(K)

in terms of the relative position of K in the lattice of cyclotomic extensions of the

rationals. We consider a tower of fields Q ⊆ K ⊆ Q(ζ), where ζ is a root of unity that

we precisely define depending on K. That [S(K) : CC(K)] is finite or not, depends on

the fact that every element of Gal(Q(ζ)/Q) satisfies a property which is easy to check by

computations on the Galois groups Gal(Q(ζ)/Q) and Gal(Q(ζ)/K) (see Theorem 6.8).

We also provide relevant examples covering the reasonable cases. The results of the

last two chapters are joint work with Á. del Ŕıo and A. Herman and are contained in

the papers [HOdR1], [HOdR2] and [HOdR3].

We end the book with a few brief conclusions on the advances of this work and we

also give some perspectives for further investigations. We want to point out that the

study of different aspects of classical problems like the Wedderburn decomposition of

semisimple algebras can still provide useful new information with applications in active
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Notation

Throughout G is a group, R an associative ring with identity, K a field, K ≤ L a field
extension, A a central simple K-algebra, p a prime number and χ a character of G. We
set the following notation.

Aut(G) = automorphism group of G
CenG(H) = centralizer of a subgroup H of G
NG(H) = normalizer of a subgroup H of G
xg = g(x), where g ∈ Aut(G) and x ∈ G
xg = conjugate g−1xg of x ∈ G by g ∈ G
Hg = {g−1xg | x ∈ H}, where H ≤ G and g ∈ G
|g| = order of the element g ∈ G
[x, y] = commutator x−1y−1xy of the elements x, y ∈ G
ζn = complex n-th root of unity
N oH = semidirect product of the group N by H
Char(G) = set of complex characters of G
Irr(G) = set of irreducible complex characters of G
χH = restriction of the character χ of G to some subgroup H of G
χG = character induced to G by the character χ of some subgroup of G
U(R) or R∗ = group of units of R
OK = ring of algebraic integers of a number field K
[L : K] = degree of the extension L ≤ K

Gal(L/K) = Galois group of the field extension L ≤ K

RG = group ring of G with coefficients in R
R ∗ατ G = crossed product of G with coefficients in R, action α and twisting τ
KG = group algebra of G with coefficients in K

13
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(L/K, τ) = crossed product algebra L ∗ατ Gal(L/K), where L/K is finite Galois,
α is the natural action and τ is a 2-cocycle

(K(ζn)/K, τ) = cyclotomic algebra over K
(L/K, σ, a) = cyclic algebra over K, with Gal(L/K) = 〈σ〉, a ∈ K∗(
a,b
K

)
= quaternion algebras K[i, j|i2 = a, j2 = b, ji = −ij], with a, b ∈ K∗

H(K) = quaternion algebra
(
−1,−1
K

)
K(χ) = field of character values over K of χ (i.e. K(χ(g) : g ∈ G))
e(χ) = primitive central idempotent of CG determined by χ
eQ(χ) = primitive central idempotent of QG determined by χ
Br(K) = Brauer group of K
Br(L/K) = relative Brauer group of K with respect to L
[A] = equivalence class in the Brauer group containing the algebra A
A(χ,K) = simple component of KG corresponding to χ
S(K) = Schur subgroup of the Brauer group Br(K)
CC(K) = subgroup of S(K) generated by cyclic cyclotomic algebras over K
Hn(G,M) = n-th cohomology group of G with coefficients in M
Res = restriction map
Cor = corestriction or transfer map
Inf = inflation map
deg(A) = degree of A
exp(A) = exponent of A
ind(A) = Schur index of A
mK(χ) = Schur index of χ over K
mp(χ) = p-local index corresponding to χ
inv(A) = Hasse invariant of A
Zp = p-adic integers
e(L/K,P ) = ramification index of L/K at the prime P
f(L/K,P ) = residue degree of L/K at the prime P
NL/K = norm of the extension L/K

N,Z,Q,R,C = sets of natural numbers, integers, rational numbers, real numbers
and complex numbers respectively



Chapter 1

Preliminaries

In this chapter we gather the needed background. We establish the notation and we
introduce the basic concepts to be used throughout this work. We also recall some well
known results that will be needed in the subsequent chapters. In most cases we will
not provide a proof, but we will give classical references where it can be found. The
reader who is familiar with the concepts of this chapter can only concentrate on the
introduced notation.

1.1 Number fields and orders

In this section we present classical information on number field and orders. These fields
are the base fields in most of our results. The results in this section are mainly from
[Mar].

Definition 1.1. A (algebraic) number field K is a finite extension of the field Q of
rational numbers.

Every such field has the form Q(α) for some algebraic number α ∈ C. A complex
number is called an algebraic integer if it is a root of some monic polynomial with
coefficients in Z. The set of algebraic integers in C is a ring, which we will denote by
the symbol A. In particular A ∩K is a subring of K for any number field K, that we
refer as the number ring corresponding to K or the ring of integers of K.

Let K be a number field of degree n over Q. There are exactly n embeddings (i.e.
field homomorphisms) of K in C. These are easily described by writing K = Q(α) for
some α and observing that α can be sent to any one of its n conjugates over Q, i.e.
the roots of the minimal polynomial over Q. Each conjugate β determines a unique
embedding of K in C by f(α) 7→ f(β) for every f ∈ Q[X], and every embedding must
arise in this way since α must be sent to one of its conjugates.

15
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We refer to the field homomorphisms K → R as real embeddings of K. A pair of
complex embeddings of K is, by definition, a pair of conjugate field homomorphisms
K → C whose images are not embedded in R.

Let n be a positive integer. Throughout the book, ζn will denote a complex primitive
root of unity of order n. The field Q(ζn) is called the n-th cyclotomic field. L. Kronecker
(1821–1891) observed that certain abelian extensions (i.e. normal with abelian Galois
group) of imaginary quadratic number fields are generated by the adjunction of spe-
cial values of automorphic functions arising from elliptic curves. Kronecker wondered
whether all abelian extensions of K could be obtained in this manner (Kronecker’s
Jugendtraum). This leads to the question of “finding” all abelian extensions of number
fields that is nowadays the study object of Class Field Theory. Kronecker conjectured
and Weber proved:

Theorem 1.2 (Kronecker–Weber). Every abelian extension of Q is contained in a
cyclotomic extension of Q.

Number rings are not always unique factorization domains, that is, elements may
not factor uniquely into irreducibles. However, we will see that the nonzero ideals
in a number ring always factor uniquely into prime ideals. This can be regarded as a
generalization of unique factorization in Z, where the ideals are just the principal ideals
(n) and the prime ideals are the ideals (p), where p is a prime integer. Number rings
have three special properties and that any integral domain with these properties also
has the unique factorization property for ideals. Accordingly, we have the following
definition.

Definition 1.3. A Dedekind domain is an integral domain R such that the following
conditions hold:

(1) Every ideal is finitely generated;

(2) Every nonzero prime ideal is a maximal ideal;

(3) R is integrally closed in its field of fractions K, that is, if α/β ∈ K is a root of a
monic polynomial over R, then α/β ∈ R, i.e. β divides α in R.

Every ideal in a Dedekind domain is uniquely representable as a product of prime
ideals and every number ring is a Dedekind domain, hence the ideals in a number ring
factor uniquely into prime ideals.

There are example of primes in Z which are not irreducible in a larger number ring.
For example 5 = (2+ i)(2− i) in Z[i]. And although 2 and 3 are irreducible in Z[

√
−5],

the corresponding principal ideals (2) and (3) are not prime ideals: (2) = (2, 1+
√
−5)2
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and (3) = (3, 1 +
√
−5)(3, 1 −

√
−5). This phenomenon is called splitting. Slightly

abusing notation, we say that 3 splits into the product of two primes in Z[
√
−5] (or in

Q[
√
−5], the ring being understood to be A ∩Q[

√
−5] = Z[

√
−5]).

We consider the problem of determining how a given prime splits in a given number
field. More generally, if P is any prime ideal in any ring of integers R = A ∩ K, for
K a number field, and if L is a number field containing K, we consider the prime
decomposition of the ideal generated by P in the ring of integers S = A ∩ L, which is
PS. The term “prime” will be used to mean “non-zero prime ideal”.

Theorem 1.4. Let P be a prime of R and Q a prime of S. Then Q|PS if and only if
Q ⊃ PS if and only if Q ∩R = P if and only if Q ∩K = P .

When one of the previous equivalent conditions holds, we say that Q lies above (or
over) P or that P lies under (or divides) Q. It can be proved that every prime Q of S
lies above a unique prime P of R and every prime P of R lies under at least one prime
Q of S.

The primes lying above a given prime P are the ones which occur in the prime
decomposition of PS. The exponents with which they occur are called the ramification
indices. Thus, if Qe is the exact power of Q dividing PS, then e is the ramification
index of Q over P , denoted by e(Q|P ) or by e(L/K,P ).

Example 1.5. Let R = Z and S = Z[i]. The principal ideal (1 − i) in S lies over 2
(we really mean 2Z when we are writing 2) and is a prime ideal. Then 2S = (1 − i)2,
hence e((1− i)|2) = 2. On the other hand e(Q|p) = 1 whenever p is an odd prime and
the prime Q lies over p.

More generally, if R = Z and S = Z[ζm], where m = pr for some prime p ∈ Z,
then the principal ideal (1− ζm) in S is a prime ideal lying over p and e((1− ζm)|p) =
ϕ(m) = pr−1(p−1), where ϕ denotes the Euler function. On the other hand, e(Q|q) = 1
whenever q is a prime different from p and Q lies over q.

There is another important number associated with a pair of primes P and Q, Q
lying above P in an extension K ≤ L of number fields. The factor rings R/P and S/Q
are fields since P and Q are maximal ideals. There is an obvious way in which R/P can
be viewed as a subfield of S/Q: the inclusion of R in S induces a ring homomorphism
R→ S/Q with kernel R∩Q = P , so we obtain an embedding R/P → S/Q. These are
called the residue class fields associated with P and Q and are denoted by R̂ = R/P

and Ŝ = S/Q. We know that they are finite fields, hence Ŝ is an extension of finite
degree f over R̂. Then f is called the inertia degree of Q over P and is denoted by
f(Q|P ) or f(L/K,P ).
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Example 1.6. Let again R = Z and S = Z[i] and consider the prime 2 in Z lying
under the prime (1 − i) in Z[i]. S/2S has order 4, and (1 − i) properly contains 2S,
therefore |S/(1 − i)| must be a proper divisor of 4, and the only possibility is 2. So
R/P and S/Q are both fields of order 2 in this case, hence f = 1. On the other hand,
3S is a prime in S and |S/3S| = 9, so f(3S|3) = 2.

Theorem 1.7. Let n be the degree [L : K], for K,L,R, S as before and let Q1, . . . , Qr

be the primes of S lying over a prime P of R. Denote by e1, . . . , er and f1, . . . , fr the
corresponding ramification indices and inertial degrees. Then

∑r
i=1 eifi = n.

Corollary 1.8. With the above notation, if [L : K] = 2, that is, L is a quadratic
extension of K, there are only three possibilities for the numbers ei and fi:

(1) e1 = e2 = 1, f1 = f2 = 1, P = Q1Q2, with Q1 6= Q2 and we say that P splits;

(2) e = 1, f = 2, P = Q and we say that P is inert;

(3) e = 2, f = 1, P = Q2 and we say that P ramifies.

The discriminant D of a quadratic extension Q(
√
d), with d a square-free positive

integer is D = d, if d ≡ 1( mod 4), and D = 4d otherwise. The three options of
Corollary 1.8 that give the type of decomposition of a prime number p are determined
by the discriminant.

Theorem 1.9. Let p be a prime number and let L be a quadratic extension of the
rationales with discriminant D. Then

(1) p ramifies in L if and only if p divides D;

(2) If p is odd and coprime with D, then p splits in L if and only if D is a square
modulo p;

(3) If p = 2 and D is odd, then 2 splits in L if and only if D is a square modulo 8.

If L is a normal extension of K and P is a prime of R = A ∩K, the Galois group
Gal(L/K) permutes transitively the primes lying over P , that is, if Q is such a prime
and σ ∈ Gal(L/K), then σ(Q) is a prime ideal in σ(S) = S, lying over σ(P ) = P , and
if Q and Q′ are two primes of S lying over the same prime P of R, then σ(Q) = Q′ for
some σ ∈ Gal(L/K). Moreover, e(Q|P ) = e(Q′|P ) and f(Q|P ) = f(Q′|P ). Hence, in
the normal case, a prime P of R splits into (Q1Q2 · · ·Qr)e in S, where the Qi are the
distinct primes, all having the same inertial degree f over P . Moreover, ref = [L : K]
by Theorem 1.7.
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Definition 1.10. Let K, L, R and S be as before. We say that the prime P is
unramified in L/K if e(L/K,P ) = 1 and S/Q is a separable extension of R/P for all
the distinct primes Q of S lying above P . A prime P of R is ramified in S (or in L) if
and only if e(Q|P ) > 1 for some prime Q of S lying above P . (In other words, PS is
not square-free.) The prime P is totally ramified in S or in L if and only if PS = Qn,
where n = [L : K].

Lemma 1.11. If R is a Dedekind domain with quotient field K, P is a prime of R
and P does not divide Rm, then P is unramified in the extension K(ζm) of K.

Definition 1.12. Let K, L, R and S be as before and fix a prime P of R. A finite ex-
tension L/K of number fields is called: unramified at P if Ŝ/R̂ is a separable extension
and e(L/K,P ) = 1; completely (or totally) ramified at P if f(L/K,P ) = 1 or equiva-
lently Ŝ = R̂; tamely ramified at P if Ŝ/R̂ is a separable extension and p - e(L/K,P )
where p > 0 is the characteristic of the finite field R̂; wildly ramified at P if Ŝ = R̂ and
the degree of the extension L/K is a power of p, which is the characteristic of R̂.

We now introduce the notion of R-order in a finite dimensional K-algebra, for R a
Dedekind domain with quotient field K.

Definition 1.13. An R-order in the finite dimensional K-algebra A is a subring ∆ of
A which is a finitely generated R-module and contains a K-basis of A, i.e. K∆ = A.
A maximal R-order in A is an R-order which is not properly contained in any other
R-order in A.

Example 1.14. Let us give some examples of orders. Let K be a number field and R
its ring of integers.

(1) R is the unique maximal R-order of K.

(2) Mn(R) is a maximal R-order in the algebra Mn(K).

(3) If G is a finite group, let RG be its group ring over R and KG its group algebra
over K (for the definitions see the next section). Then RG is an R-order in KG.

We say that two subgroups of a given group are commensurable if their intersection
has finite index in both of them. The following lemma from [Seh] offers a useful property
in the study of units in group rings, as we will see in a forthcoming section dedicated
to them.

Lemma 1.15. If ∆ and ∆′ are two orders in a finite dimensional K-algebra, then the
groups of units of ∆ and ∆′ are commensurable. Therefore, if S is any order in a group
algebra KG, then the unit groups of S and RG are commensurable.
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1.2 Group algebras and representations

Now we introduce group algebras, or more general group rings, as main algebraic struc-
tures in this work.

Definition 1.16. Let R be a ring and G a group. The group ring RG of G with
coefficients in R is defined as the free R-module having G as basis, with the product
defined by

r1g1 · r2g2 = (r1r2)(g1g2),

for r1, r2 ∈ R and g1, g2 ∈ G and extended by linearity. Therefore, RG is the ring
whose elements are all formal sums

∑
g∈G rgg, with each coefficient rg ∈ R and all but

finitely many of the coefficients equal zero. Addition is defined component-wise and
the multiplication is given by∑

g∈G
rgg

∑
g∈G

qgg

 =
∑
g∈G

(∑
uv=g

ruqv

)
g.

If R = F is a field, then FG is called a group algebra.

One can think of R and G as being contained in RG through the applications
r 7→ r1G and g 7→ 1g, for r ∈ R, g ∈ G and 1G the identity of G. The element 11G is
the identity of RG and it is denoted by 1.

The function ω : RG→ R given by
∑

g∈G rgg 7→
∑

g∈G rg is a ring homomorphism
called the augmentation of RG. Its kernel

∆R(G) = {
∑
g∈G

rgg ∈ RG :
∑
g∈G

rg = 0}

is called the augmentation ideal of RG. More generally, for N a normal subgroup of
G, there exists a natural homomorphism ωN : RG → R(G/N) given by

∑
g∈G rgg 7→∑

g∈G rggN. The kernel of ωN is given by

∆R(G,N) = {
∑
g∈G

rgg ∈ RG :
∑
x∈N

rgx = 0 for all g ∈ G} =
∑
n∈N

RG(n− 1) =
∑
n∈N

(n− 1)RG.

In particular, ∆R(G) = ∆R(G,G).
If H is a finite subgroup of G, we denote Ĥ =

∑
h∈H h

|H| ∈ QG. Notice that Ĥ is an

idempotent of QG. Moreover, Ĥ is contained in the center of QG precisely when H is
normal in G. In this case, it can be showed that ∆Q(G,H) = {a ∈ QG|aĤ = 0}, hence
Q(G/H) ∼= (QG)Ĥ.

We are mainly interested in a special type of group algebras, namely semisimple
group algebras FG. The semisimple group algebras are characterized by the following
classical theorem, which can be given even more generally, for group rings.
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Theorem 1.17 (Maschke). The group ring RG is semisimple if and only if R is
semisimple, G is finite and the order of G is a unit in R.

The theoretical description of the structure of semisimple group algebras is given
by the following classical theorem.

Theorem 1.18 (Wedderburn–Artin). Every semisimple artinian ring is a direct
sum of matrix rings over division rings.

The decomposition of the algebra in this way is usually called Wedderburn de-
composition and the simple components are called Wedderburn components. A more
structural description of the Wedderburn components of a semisimple group algebra
in terms of cyclotomic algebras up to Brauer equivalence in the corresponding Brauer
group is the object of the second chapter of the book.

The simple components in the Wedderburn decomposition of a group algebra FG
are parameterized by the irreducible characters of the group G. We present some
basic information about representations and characters of a finite group G and of a
corresponding group algebra FG.

Definition 1.19. If G is a finite group and F is a field, then an F -representation of G is
a group homomorphism ρ : G→ GL(V ), where V is a finite dimensional F -vector space
called the representation space of ρ. The degree deg(ρ) of the representation ρ is the
dimension dimF (V ) of V . A matrix F -representation of G is a group homomorphism
ρ : G → GLn(F ) for some positive integer n. The integer n is the degree of the
representation and is denoted by deg(ρ). Using linear algebra, one can establish an
obvious parallelism between F -representations and matrix F -representations. We use
vectorial or matricial representations as suitable for each situation.

If G is a finite group and F is a field, denote by repF (G) the category of F -
representations of G. Similarly, one can define the category of matrix F -representations
of G, which is equivalent to the category repF (G). Note that every F -representation
ρ : G → GL(V ) of a finite group extends uniquely by F -linearity to an algebra repre-
sentation ρ̂ : FG → EndF (V ), and so the category repF (G) of group representations
of G is equivalent to the category rep(FG) of representations of the group algebra FG
(i.e. of left FG-modules which are finite dimensional over F ).

Definition 1.20. The F -character of the group G afforded by the matrix F -
representation ρ : G → GLn(F ) is the map χ : G → F given by χ(g) = tr(ρ(g)),
where tr denotes the trace map from GLn(F ) to F .

An F -representation of G is irreducible if the associated module is simple, that is,
it is non-zero and the only submodules of it are the trivial ones. An F -irreducible
character is a character afforded by an irreducible representation.
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If F = C, the field of complex numbers, we name the C-characters simply charac-
ters. Hence, in what follows, the word “character” means C-character unless otherwise
stated. Denote by Irr(G) the set of all irreducible characters of G. If χ is any character
of G afforded by a representation corresponding to a CG-module M , we can decom-
pose M into a direct sum of irreducible modules. It follows that every character χ of G
can be uniquely expressed in the form χ =

∑
χi∈Irr(G) niχi, where ni are non-negative

integers. Those χi’s with ni > 0 are called the irreducible constituents of χ and the
ni’s are the multiplicities of χi as constituents of χ.

If χ is a character of G, then χ(1) = deg(ρ), where ρ is a representation of G which
affords χ. We call χ(1) the degree of χ. A character of degree 1 is called linear character.
Let F be a subfield of the complex field C and χ be a character. We write F (χ) to
denote the minimal extension of F that contains the character values χ(g) for g ∈ G

and we call it the field of character values of χ over F . A field Q ⊂ F ⊂ C is a splitting
field for G if every irreducible character of G is afforded by some F -representation of
G.

Theorem 1.21 (Brauer). Let G have exponent n and let F = Q(ζn). Then F is a
splitting field for G.

IfH is a subgroup ofG, F is a field and ρ is an F -representation ofH with associated
module FHM , then the induced representation of ρ to G, denoted by ρG, is defined as
the associated F -representation to the FG-module FG ⊗FH M , denoted MG. If ψ is
the character afforded by ρ, we define the induced character of ψ to G, denoted by ψG,
as the afforded character by ρG. A straightforward calculation shows that

ψG(g) =
∑
x∈T

ψ(gx), (1.1)

where T is a left transversal of H in G and ψ(h) =

ψ(h) , if h ∈ H

0 , if h 6∈ H.

Let χ be a complex irreducible character of the group G and F a field of character-
istic zero. The Wedderburn component of the group algebra FG corresponding to χ is
the unique simple ideal I of FG such that χ(I) 6= 0. Following [Yam], we denote this
simple algebra by A(χ, F ). The center of the simple algebra A(χ, F ) is F = F (χ), the
field of character values of χ over F and A(χ, F ) represents an element of the Schur
subgroup of the Brauer group of F as we will see in a subsequent section of this chapter.
If L is a field extension of F then A(χ,L) = L(χ)⊗F A(χ, F ) and, therefore, the struc-
ture of A(χ, F ) up to Brauer equivalence determines the structure of A(χ,L). Thus,
we try to consider F as small as possible, for instance the field of rational numbers Q.
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The number of factors in the Wedderburn decomposition coincides with the num-
ber of irreducible F-characters of G and, equivalently, with the number of isomorphism
classes of simple FG-modules. In particular, the number of factors in the Wedder-
burn decomposition of CG is equal to the cardinality of Irr(G) and to the number of
conjugacy classes of G. The number of irreducible rational characters is given by the
following theorem (e.g. see [CR]).

Theorem 1.22 (Artin). The number of irreducible rational characters of a finite group
G (or equivalently the number of simple components in the Wedderburn decomposition
of QG) coincides with the number of conjugacy classes of cyclic subgroups of the group
G.

Recall that an element e of a ring is a primitive central idempotent if e2 = e 6= 0,
e is central and it cannot be expressed as a sum of central orthogonal idempotents.
If χ is an irreducible complex character of the group G, then by the primitive central
idempotent of CG associated to χ we mean the unique primitive central idempotent
e of CG such that χ(e) 6= 0, and we denote it by e(χ). Similarly, for F a field of
characteristic zero, the primitive central idempotent of FG associated to χ, denoted
eF (χ), is the unique primitive central idempotent of FG such that χ(eF (χ)) 6= 0.

The following proposition is a classical result of character theory for the computation
of the primitive central idempotent e(χ).

Proposition 1.23. Let G be a finite group and χ ∈ Irr(G). Then e(χ), the primitive
central idempotent of CG associated to χ, is given by the formula

e(χ) =
χ(1)
| G |

∑
g∈G

χ(g−1)g. (1.2)

By the orthogonality relations for characters one has that χ(e(χ)) = χ(1) and
ψ(e(χ)) = 0 for any irreducible complex character ψ of G different from χ.

For the computation of the primitive central idempotents of FG, with F a field of
characteristic zero, the classical method is to calculate the primitive central idempotents
e(χ) of CG associated to the irreducible characters of G and then sum up all the
primitive central idempotents of the form e(σ◦χ) with σ ∈ Gal(F (χ)/F ) and χ ∈ Irr(G)
(see e.g. [Yam]).

Proposition 1.24. For G a finite group and χ an irreducible complex character of G,
eF (χ) is given by the formula

eF (χ) =
∑

σ∈Gal(F (χ)/F )

e(χσ) (1.3)

where χσ is the character of G given by χσ(g) = σ(χ(g)), for g ∈ G.
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The description of the simple components in the Wedderburn decomposition of a
group algebra FG takes a nice form in the case of strongly monomial groups. These
types of groups are also main ingredients in the proof of the Brauer–Witt Theorem that
we present in the second chapter. The strongly monomial groups are particular cases of
monomial groups and are more general than the abelian-by-supersolvable groups. Some
of the following definitions can be given for arbitrary groups but we are only interested
in the finite case so, unless otherwise stated, throughout G is a (finite) group. We start
by presenting some classical information about monomial characters.

Definition 1.25. A character χ of G is called monomial if there exist a subgroup
H ≤ G and a linear character ψ of H such that χ = ψG. The group G is called
monomial or M -group if all its irreducible characters are monomial.

In some sense the monomial characters are the obvious characters of a group. Notice
that if χ : G → C∗ is a linear character and K = Kerχ, then G/K is isomorphic to a
finite subgroup of C∗ and hence G/K is cyclic. Moreover, if [G : K] = n and g ∈ G is
such that the image of g in G/K is a generator of G/K, then every element of G has
a unique form as gik for i = 0, . . . , n− 1 and k ∈ K, and χ(gik) = ζi, where χ(g) = ζ

is an n-th primitive root of 1. Conversely, if K is a normal subgroup of G such that
G/K is cyclic, say of order n, and if G = 〈g,K〉, then for every n-th primitive root of
1, say ζ, there is a unique linear character χ of G such that χ(g) = ζ and K = Kerχ.

A criterion for the irreducibility of monomial characters is given in the following
theorem of Shoda [Sho].

Theorem 1.26 (Shoda). Let ψ be a linear character of a subgroup H of G. Then
the induced character ψG is irreducible if and only if for every g ∈ G \H there exists
h ∈ H ∩Hg such that ψ(ghg−1) 6= ψ(h).

A natural method to construct irreducible characters of a given finite group G is
to take the cyclic sections of G, that is, the pairs of subgroups (H,K) of G such that
K is normal in H and H/K is cyclic, then for each cyclic section (H,K) construct all
the linear characters χ of H with kernel K, and finally take the induced (monomial)
character. Some of these monomial characters are irreducible (later on we call these
sections Shoda pairs by connection with Theorem 1.26 due to Shoda). Taking all
these irreducible monomial characters we have a bunch of irreducible characters of G.
For many groups these irreducible monomial characters amount to all the irreducible
characters, for example this is the case for any abelian-by-supersolvable group. In other
words, any abelian-by-supersolvable group is monomial. Unfortunately, not every group
is monomial. The smallest example of a non monomial group is a group of order 24
given in the next example from [Hup].
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Example 1.27. The special linear group over the finite field F3

SL2(F3) = {A ∈ GL2(F3) : det(A) = 1} ∼= Q8 o C3,

where Q8 = 〈x, y〉 is the quaternion group, C3 = 〈a〉 and xa = y and ya = xy,
is the only non monomial group of order 24. More generally, if G is a finite group
containing a normal subgroup or an isomorphic image isomorphic to SL2(F3), then G

is not monomial.

The following two results of Taketa and Dade (e.g. see [CR]) show that the class of
monomial groups is closely related to the class of solvable groups.

Theorem 1.28 (Taketa). Every monomial group is solvable.

Theorem 1.29 (Dade). Every solvable group is isomorphic to a subgroup of a mono-
mial group.

As a consequence of Dade’s Theorem and Example 1.27, the class of monomial
groups is not closed under subgroups. On the other hand, it is easy to see that the
class of monomial groups is closed under epimorphic images and finite direct prod-
ucts. Dade’s Theorem is seen by Huppert as an evidence that there is no “hope to
obtain structural restrictions for monomial groups, beyond the solvability”. It is also
mentioned in [Hup] that a group–theoretical characterization is unknown. However, A.
Parks has recently given such a group–theoretical characterization, maybe not very sat-
isfactory, in terms of some pairs of subgroups which are exactly the Shoda pairs [Park].
An important class of examples of monomial groups is that of abelian-by-supersolvable
groups.

Definition 1.30. A group G is said to be supersolvable if it has a series of normal
subgroups with cyclic factors. An abelian-by-supersolvable group is a group G having
an abelian normal subgroup N such that G/N is supersolvable.

A group G is called metabelian if it has an abelian normal subgroup N such that
G/N is abelian, or equivalently, if G′ is abelian. G is said to be a metacyclic group if
it contains a cyclic normal subgroup N = 〈a〉 such that G/N = 〈bN〉 is cyclic. In this
case, G has a presentation with generators and relations as follows:

G = 〈a, b|am = 1, b−1ab = ar, bn = as〉,

where m,n, r, s are integers that satisfy the conditions

gcd(r,m) = 1,m|rn − 1,m|s(r − 1).



26 CHAPTER 1. PRELIMINARIES

Definition 1.31. Let F be a field of characteristic 0. The group G is F -elementary
with respect to a prime p if G = C o P , where C is a cyclic, normal subgroup of G
whose order is relatively prime to p and P is a p-group; and if C = 〈c〉, ζ is a primitive
|C|-th root of unity and ci is conjugated to cj in G, then there exists σ ∈ Gal(F (ζ)/F )
such that σ(ζi) = ζj . The group G is F -elementary if it is F -elementary with respect
to some prime p.

The Witt-Berman theorem is a generalization of Brauer’s theorem on induced char-
acters to the case where the underlying field F is an arbitrary subfield of the complex
field C.

Theorem 1.32 (Witt, Bermann). For F a subfield of C, every F -character of G
is a Z-linear combination

∑
i aiθ

G
i , with ai ∈ Z and the θi’s are F -characters of F -

elementary subgroups of G.

1.3 Units

For a ring R with unity 1, we denote by U(R) or R∗ the unit group of R, i.e. the group
of invertible elements in R. The knowledge of the unit group of an integral group ring
ZG of a group G is a useful tool in the investigation of the group ring ZG and has been
intensively studied. However, it seams that a complete description of the unit group
in terms of generators and relations still seems to be a difficult task, even for special
classes of groups.

The study of units of group rings relies in many situations on the Wedderburn
decomposition of the corresponding group algebra. We follow this approach in our
research of the applications of the explicit Wedderburn decomposition that we provide.

A natural approach to study U(ZG) is to consider ZG as an order in the rational
group algebra QG. This idea comes from the commutative case where the ring of
algebraic integers OK in a number field K is an order for which the unit group is
completely described in the following famous theorem.

Theorem 1.33 (Dirichlet Unit Theorem). Let K be a number field of degree [K :
Q] = r1 + 2r2, where K has r1 real and r2 pairs of complex embeddings. Then

U(OK) ∼= F × C,

where F is a free abelian group of rank r1+r2−1, and C is a finite cyclic group (namely
the group of roots of unity in K).
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A basis of a free abelian group F satisfying the conditions of Theorem 1.33 is called
a set of fundamental units of K. In general, there is an algorithm for the construction
of a fundamental set of units presented in [BoS]. Moreover, in the special case of the
n-th cyclotomic field K = Q(ζn), where ζn denotes a primitive nth root of unity, the
cyclotomic units (1 − ζin)/(1 − ζn), where i is a natural number greater than one and
relatively prime to n, generate a subgroup of finite index in U(OK). Note that in this
case we have that OK = Z[ζn]. The Dirichlet Unit Theorem was generalized to integral
group rings of finite abelian groups by Higman (see for example [Seh, Theorem 2.9]).

Theorem 1.34 (Higman). Let G be a finite abelian group. Then

U(ZG) = ±G× F,

where F is a finitely generated free abelian group of rank 1
2(|G|+n2− 2c+1), where n2

denotes the number of elements of order 2 and c the number of cyclic subgroups of G.

In particular, it follows that this unit group U(ZG) is finitely generated [BH]. In
fact, the unit group of any Z-order Γ in a finite dimensional Q-algebra is finitely pre-
sented. This follows from the fact that U(Γ) is a so-called arithmetic group. For a
rigorous definition of this notion we refer the reader to [Hum]. However, specific gen-
erators of a subgroup of finite index are not known and only for few examples one has
managed to describe them, see for example [JL]. Unfortunately, there does not exist a
general structure theorem covering the group ring case of arbitrary finite groups.

Theorem 1.35 (Hartley-Pickel). If the group G is neither abelian nor isomorphic
to Q8 × Cn2 for some non-negative integer n, then U(ZG) contains a free subgroup of
rank 2.

We present now some examples of units of ZG. The elements of ZG of the form ±g
with g ∈ G are clearly units, having the inverses ±g−1. These units are called trivial.
There are not too many general methods to construct non-trivial units. We mention
two important types of units. First, we introduce some notation. Given an element
g ∈ G, denote by g the sum in ZG of the elements of the cyclic group 〈g〉, that is, if n
is the order of g, then

g =
n−1∑
i=0

gi.

The bicyclic units were introduced by Ritter and Sehgal. They can be constructed
as follows.
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Definition 1.36. Let g, h ∈ G and let n be the order of g. Notice that (1 − g)g =
g(1− g) = 0. Then

ug,h = 1 + (1− g)h(1 + g + g2 + · · ·+ gn−1) = 1 + (1− g)hg,

vg,h = 1 + (1 + g + g2 + · · ·+ gn−1)h(1− g) = 1 + gh(1− g),

have inverses, which are respectively

u−1
g,h = 1− (1− g)hg,

v−1
g,h = 1− gh(1− g).

The units ug,h and vg,h are called bicyclic units.

Notice that ug,h = 1 if and only if vg,h = 1 if and only if h normalizes 〈g〉. Hence,
all the bicyclic units are 1 if and only if all the subgroups of G are normal, that is, G
is Hamiltonian. In particular, the bicyclic units of U(ZG) are trivial for G an abelian
group.

Definition 1.37. The Bass cyclic units are defined as

b = b(g, i,m, n) = (1 + g + · · ·+ gi−1)m +
1− im

n
g,

where g ∈ G has order m, 1 < i < m is coprime with m and im ≡ 1 mod n.

In order to see that b is a unit, it is enough to check for G a cyclic group, since
b ∈ Z〈g〉. Projecting b on the simple components of the Wedderburn decomposition
of QG, one can notice that each such projection is a cyclotomic unit, hence b is a
unit. Bass proved that if G is an abelian group, then the Bass cyclic units generate a
subgroup of finite index in U(ZG) [Bas]. In many cases, it was proved that the group
BG generated by the Bass cyclic units and the bicyclic units (of one type) has finite
index in U(ZG) (see for example [RitS2, RitS3]). In [RitS1] it was proved that if G is a
nilpotent group such that QG does not have in his Wedderburn decomposition certain
types of algebras, then BG has finite index in U(ZG). Furthermore, Jespers and Leal
in [JL] have extended these results to bigger classes of groups. However, it is not true
in general that BG has finite index in U(ZG).

The following results are examples of a family of similar theorems which prove that
the Wedderburn decomposition of the group algebra QG encodes useful information on
the group of units of ZG. This was the main motivation in the first place for our interest
in explicit computation of the Wedderburn components of rational group algebras.

Theorem 1.38. [Jes] U(ZG) is virtually free non-abelian if and only if the Wedderburn
components of QG are either Q, Q(

√
−d) or M2(Q), for d a square-free non-negative

integer. Moreover, there are only four groups G with this property.
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Theorem 1.39. [JLdR, JdR, LdR] U(ZG) is virtually a direct product of free groups
if and only if every Wedderburn component of QG is either a field or isomorphic to
M2(Q), (−1,−3

Q ) or H(K) with K either Q, Q(
√

2) or Q(
√

3).

Theorem 1.40. [JPdRRZ] U(ZG) is virtually a direct product of free-by-free groups
if and only if every Wedderburn component of QG is either a field, a totally definite
quaternion algebra or M2(K), where K is either Q, Q(i), Q(

√
−2) or Q(

√
−3).

1.4 Crossed products

In this section we present crossed products as an essential construction for the descrip-
tion of central simple algebras.

Definition 1.41. Let R be a unitary ring and G a group. A crossed product of G with
coefficients in R is an associative ring R ∗G with a decomposition

R ∗G =
⊕
g∈G

Rg

such that every Rg is a subgroup of the additive group of R ∗G with R = R1, RgRh =
Rgh for all g, h ∈ G and every Rg contains an invertible element g.

Note that, for every g ∈ G, we have Rg = Rg = gR, so every element in R∗G has a
unique expression as

∑
g∈G

grg with rg ∈ R, for every g ∈ G. The crossed product R ∗G

is a right (and a left) free R-module, G = {g : g ∈ G} (a set theoretical copy of G) is
an R-basis of R ∗GR and we say that G is a homogeneous basis of R ∗G. Associated
to a homogeneous basis G one has two maps

α : G→ Aut(R) and τ : G×G→ U(R)

called action and twisting (or factor set, factor system or 2-cocycle) of R ∗G, given by

rα(g) = g−1rg and τ(g, h) = gh
−1
gh, g, h ∈ G, r ∈ R.

The action and the twisting are interrelated by conditions precisely equivalent to
R ∗G being associative, that is, for every x, y, z ∈ G:

τ(xy, z)τ(x, y)α(z) = τ(x, yz)τ(y, z) (1.4)

α(y)α(z) = α(yz)η(y, z), (1.5)

where η(y, z) is the inner automorphism of R induced by the unit τ(y, z). Equation
(1.4) above asserts that τ is a 2-cocycle for the action of G on U(R) (as we shall see
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in the next section) and we call it the cocycle condition. Note that, by definition,
a crossed product is merely an associative ring which happens to have a particular
structure relative to R and G and which we denote by R ∗ατ G.

Conversely, if α : G → Aut(R) and τ : G × G → U(R) are two maps satisfying
the previous relations (1.4) and (1.5), then one can construct a crossed product having
α and τ as the action and the twisting of a homogeneous basis. More precisely, one
chooses a set of symbols G = {g : g ∈ G} and defines R∗G as a right free R-module with
basis G and the multiplication given by rg = grα(g) and gh = ghτ(g, h), g, h ∈ G, r ∈ R
and extended by linearity.

The R-basis {g : g ∈ G} of a crossed product R ∗G is not unique. For example, if
ag is a unit of R for each g ∈ G then {ĝ = agg : g ∈ G} is another R-basis. Changing
{g : g ∈ G} by {ĝ = agg : g ∈ G} is called a diagonal change of basis [Pas2]. A diagonal
change of basis induces a change on the action and on the twisting, but not of the
algebra. The new action differs from the old action by an inner automorphism.

Certain special cases of crossed products have their own names. For example, a
group ring is a crossed product with trivial action (α(x) = 1R for all x ∈ G) and trivial
twisting (τ(x, y) = 1 for all x, y ∈ G). If the action is trivial, then R ∗ G = RtG is a
twisted group ring. Finally, if the twisting is trivial, then R ∗G is a skew group ring.

Let Inn(R) be the group of inner automorphisms of R. The property (1.5) shows
that α : G→ Aut(R) is not a group homomorphism unless the twisting takes values in
the center of R, but the composition α̂ of α with the projection π : Aut(R) → Out(R)
is a group homomorphism, where Out(R) = Aut(R)/Inn(R) denotes the group of outer
automorphisms of R. We say that the action α is outer if α̂ is injective, i.e. if the
identity of G is the unique element g ∈ G such that α(g) is inner in R. Notice that if
R is commutative, then the action is outer if and only if it is faithful. The following
theorem can be found in [Mon] for skew group rings and in [Rei] for crossed products
over fields. In both cases, the proof applies for arbitrary crossed products.

Theorem 1.42. Let G be a finite group, S a simple ring and α an outer action. Then
S ∗G is a simple ring.

For some special cases of crossed products we use the following classical notation
[Rei]. If L/F is a finite Galois extension with Galois group G = Gal(L/F ), α is the
natural action of G on L and τ is a 2-cocycle on G×G, then the crossed product L∗ατ G
is denoted by (L/F, τ) and we call it classical crossed product or crossed product algebra.
If in the previous notation the extension is F (ζ)/F , where ζ is a root of 1 and all the
values of the 2-cocycle τ are roots of 1 in F (ζ), then we use the notation (F (ζ)/F, τ)
and we call it cyclotomic algebra (see Section 1.9 for more information). A diagonal
change of basis in (L/F, τ) does not affect the action because L is commutative, hence it



1.4. CROSSED PRODUCTS 31

induces a new representation of (L/F, τ) as (L/F, τ ′), where τ ′ is a new factor set which
differs from τ in a 2-coboundary (see Section 1.5 for the definition of a 2-coboundary).

Historically, crossed products arose in the study of division rings. Let F be a field
and let D be a division algebra finite dimensional over its center F . If L is a maximal
subfield of D, then dimF (D) = (dimF L)2. Suppose that L/F is normal, although this
is not always true. If g ∈ Gal(L/F ) = G, then the Skolem–Noether Theorem implies
that there exists g ∈ D∗ with g−1lg = gl for all l ∈ L. Furthermore, gh and gh agree
in their action on L, so τ(g, h)−1 = h

−1
g−1gh ∈ CD(L) = L. Once we show that the

elements g for g ∈ G are linearly independent over L, then we conclude by computing
dimensions that D = (L/K, τ).

More generally, let A be a finite dimensional central simple F -algebra. Thus A =
Mn(D) for some n and division ring D with Z(D) = F . Roughly speaking, two such
algebras are equivalent if they have the same D and the division algebra can be given
as (L/K, τ). This is the base of the cohomological description of the Brauer group and
will be explained more precisely in the next section.

Remark 1.43. The theory of factor systems (the original name for crossed products)
was developed by E. Noether in her Göttingen lecture 1929/30. Noether herself never
published her theory. Deuring took notes of that lecture, and these were distributed
among interested people. Brauer as well as Hasse had obtained a copy of those notes.
The Deuring notes are now included in Noether’s Collected Papers. The first publica-
tion of Noether’s theory of crossed products was given, with Noether’s permission, in
a Hasse’s paper where a whole chapter is devoted to it. The theory was also included
in the book “Algebren” by Deuring.

The German terminology for crossed product is “verschränktes Produkt”. The
English term “crossed product” had been used by Hasse in his American paper [Has1].
When Noether read this she wrote to Hasse: “Are the ‘crossed products’ your English
invention? This word is good.” We do not know whether Hasse himself invented
this terminology, or perhaps it was H.T. Engstrom, the American mathematician who
helped Hasse to translate his manuscript from German into English. In any case, in
English the terminology “crossed product” has been in use since then [Roq].

The first examples of division algebras that were found after the quaternions belong
to the class of cyclic division algebras. This class still plays a major role in the theory
of central simple algebras. The construction of cyclic algebras has been given by L.E.
Dickson in 1906, therefore they were also called “algebras of Dickson type”.

Definition 1.44. A cyclic algebra over K is a classical crossed product algebra
(L/K, τ), where L/K is a cyclic extension (i.e. a finite Galois extension with Gal(L/K)
cyclic).
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If A = (L/K, τ) is a cyclic algebra, σ is a generator of G = Gal(L/K), n =
[L : K] = |G| and {σi : 0 ≤ i ≤ n− 1} is an L-basis of A then σi = aiσ

i with ai ∈ L∗.
Thus {σ i : 0 ≤ i ≤ n − 1} is another L-basis obtained via a diagonal change of basis
from the original one. Furthermore a = σ n =

∏n−1
j=0 τ(σ

j , σ) is a unit of L and the
2-cocycle τa associated to the basis {σ i : 0 ≤ i ≤ n− 1} only depends on a. Namely

τa(σi, σj) =

1, i+ j < n

a, i+ j ≥ n, 0 ≤ i, j ≤ n− 1.

Conversely, for a given generator σ of G and an element a ∈ L∗, the map τa : G2 →
L∗ given as above is a 2-cocycle and the cyclic algebra (L/K, τa) is usually denoted by
(L/K, σ, a).

Example 1.45. Quaternion algebras are cyclic algebras of degree 2 and take the form(
a,b
K

)
= K[i, j|i2 = a, j2 = b, ji = −ij], for a, b ∈ K∗. We abbreviate H =

(
−1,−1

R

)
and

H(K) =
(
−1,−1
K

)
.

If A =
(
a,b
K

)
and σ is a real embedding of K then A is said to ramify at σ if

R ⊗σ(K) A ' H(R), or equivalently, if σ(a), σ(b) < 0. A totally definite quaternion
algebra is a quaternion algebra A over a totally real field which is ramified at every real
embedding of its center.

1.5 Brauer groups

In this section we recall the definition of the Brauer group as principal tool for the
study of central simple algebras and the relation with the cohomology groups.

The explicit calculation of the Brauer group of a field is usually a formidable task.
The theorems in this section are fundamental tools for research in the theory of central
simple algebras. The only available way to construct the Brauer groups of arbitrary
fields is by using these techniques of cohomology of groups and Galois cohomology.
Moreover, Galois cohomology provides the bridge between central simple algebras and
class field theory that leads to the fundamental theorems on the Brauer groups of local
fields and number fields. The results of this section are classical and can be found in
many books, such as [Pie], [Rei] or [FD].

Throughout we assume that K is a field and, unless otherwise specified, all algebras
are finite dimensional K-algebras. The center of a K-algebra A is the subalgebra
Z(A) = {a ∈ A| xa = ax,∀x ∈ A} of A. Note that K ⊆ Z(A). If K = Z(A), we say
that A is a central algebra. We call A central simple if A is central, simple and finite
dimensional.
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If A is a central simple K-algebra, then dimK(A) is a square and we define the
degree of A, denoted deg(A), to be the square root of the dimension of A as a vector
space over K, that is, deg(A) = (dimK A)1/2.

Definition 1.46. Let A and B be central simple K-algebras. We introduce an equiv-
alence relation on the class of central simple K-algebras. We say that A and B are
Brauer equivalent, or simply equivalent and write A ∼ B, if there is a division algebra D
and positive integers n and m such that A 'Mn(D) and B 'Mm(D) as K-algebras.

This is also equivalent to any of the following conditions:

(1) There exist m, n such that Mm(A) 'Mn(B).

(2) If M is the unique simple A-module and N is the unique simple B-module, then
EndA(M) ' EndB(N).

All the isomorphisms here are K-algebra homomorphisms. The equivalence class of a
central simple K-algebra A is denoted by [A].

An important reason for introducing this equivalence relation is the following. We
wish to define an algebraic structure on the set of division algebras, which are central
over K. The tensor product over K of two finite dimensional division algebras with
center K is K-central simple, but NOT necessarily a division algebra. In other words,
the set of division algebras is not closed under ⊗K . For example, H ⊗R H ' M4(R).
Now, the tensor product of two central simple algebras is again a central simple algebra,
that is, the set of central simple algebras is closed under tensor product. This allows one
to put a group structure on the Brauer equivalence classes of central simple algebras.
The group structure imposes constraints which can be exploited to give information
about the central simple K-algebras.

Definition 1.47. The Brauer group of a field K, denoted Br(K), is the set of equiv-
alence classes of central simple K-algebras under the Brauer equivalence, with the
tensor product acting as the group operation and the equivalence class of K acting as
the identity element. The inverse of [A] is [Aop], where Aop is the opposite algebra of
A.

Remark 1.48. The term “Brauer group” honors Richard Brauer (1901–1977), who
made the first systematic study of this fundamental invariant and first defined this
group in 1929. The importance of the Brauer groups in the theory of rings and fields
is now firmly established.

Brauer had developed the theory of division algebras and matrix algebras in a se-
ries of several papers in the foregoing years, starting from his 1927 Habilitationsschrift
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at the University of Königsberg. His main interest was in the theory of group rep-
resentations, following the ideas of his academic teacher I. Schur. It was E. Noether
who gradually had convinced him that the representation theory of groups could and
should be profitably discussed within the framework of the abstract theory of algebras
(or hypercomplex systems in her terminology) instead of matrix groups and semigroups
as Schur had started it [Roq].

Now we present some basic examples of Brauer groups of different fields.

Example 1.49. If K = K is algebraically closed, then Br(K) = 0. This follows from
the fact that there are no non-trivial K-central simple division algebras over K. The
proof of this affirmation is the following. Assume D is a K central division algebra
and let d ∈ D \K. Since dimK(D) < ∞, d is algebraic over K. Let P ∈ K[X] be a
non-zero polynomial of minimal degree with P (d) = 0. If the independent coefficient of
P is 0 then d is a zero divisor, contradicting that D is a division algebra. Thus d ∈ K,
because K is algebraically closed.

Example 1.50. If K is a finite field, then Br(K) = 0. This is because if D is K-central
simple over K, then D is finite dimensional over a finite field and hence a finite algebra.
Now, a theorem of Wedderburn states that there are no noncommutative finite division
algebras, so Br(K) = 0.

Example 1.51. It is known that the only R-central division algebras are R and H. So,
Br(R) = Z2. The generator of Br(R) is [H] and H ⊗R H ' M4(R), i.e. [H][H] = 1 =
[R].

The Brauer group is the object map of a functor.

Proposition 1.52. If φ : K → L is a field homomorphism, then φ induces a group ho-
momorphism φ∗ : Br(K) → Br(L) defined by φ∗([A]) = [A⊗ φL]. The correspondences
K 7→ Br(K) and φ 7→ φ∗ define a functor from the category of fields to the category of
abelian groups.

The notation φL in the previous proposition has the meaning that φL is the K-
algebra with scalar multiplication defined by sa = φ(s)a for s ∈ K and a ∈ L.

Let A be a central simple K-algebra and L be a field extension of K. Then we
denote by AL the L-algebra A⊗ L obtained from A by extension of scalars from K to
L. One says that L is a splitting field of A (or that L splits A) if AL ∼ L (that is, if
AL ' Mn(L) as L-algebras for some n) or equivalently if [A] belongs to the kernel of
φ∗, where φ : K → L is the inclusion homomorphism. If K is already a splitting field
of A (i.e. A ∼ K) then one says that A is a split algebra.
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The relative Brauer group of K with respect to L, denoted by Br(L/K), is the
kernel of the homomorphism φ∗ : Br(K) → Br(L) given by φ∗([A]) = [A ⊗ φL]. The
subgroup Br(L/K) is the set of Brauer equivalence classes of central simple algebras
over K which are split by L. Every element of Br(L/K) has the form [A], where A is
a central simple algebra that contains L as a maximal subfield. The algebra A with
this property is unique up to isomorphism. The relative Brauer group is useful for
studying the Brauer group, for one can reduce questions about Br(K) to questions
about Br(L/K) for certain L, and Br(L/K) is often easier to work with.

Now we introduce cohomology as another point of view from which to study the
Brauer group. We present the notion in a slightly more general setting than will be
actually used here. The cohomology groups of a group were first defined by Hopf in the
early 1940’s by means of algebraic topology, and were used to study the relationship
between the homology and homotopy groups of spaces. The definition of Hn(G,M)
was algebraicized by Eilenberg–MacLane and independently by Eckmann in the course
of the development of homological algebra. It was they who realized that many clas-
sical constructions, such as equivalence classes of factor sets, could be described as
cohomology groups in dimensions 0, 1, 2 and 3.

If G is a group, then a ZG-module is simply an abelian group together with an
action of G on M by group automorphisms. We consider the action of G on the right.
Classically, a ZG-module is called a G-module, so that the category of right G-modules
is simply the category of right ZG-modules.

Definition 1.53. For any group G and any abelian group M on which G acts, de-
fine C0(G,M) = M and for n ≥ 1 define Cn(G,M) = {f |f : Gn → M}. No-
tice that Cn(G,M) is an abelian group under pointwise addition of functions and
it is called the n-th cochain group. Let δ0 : C0(G,M) → C1(G,M) be defined by
δ0(f)(g0) = f ·g0−f for f ∈ C0(G,M). For n ≥ 1, define δn : Cn(G,M) → Cn+1(G,M)
by δn(f)(g0, . . . , gn) = f(g1, . . . , gn) +

∑n
i=1(−1)if(g0, . . . , gi−2, gi−1gi, . . . , gn) +

(−1)n+1f(g0, . . . , gn−1)·gn+1, for f ∈ Cn(G,M). The map δn is called the n-th cobound-
ary map.

In particular, for n = 1 this map is defined by δ1(f)(g0, g1) = f(g1) − f(g0g1) +
f(g0) · g1 and for n = 2 one has δ2(f)(g0, g1, g2) = f(g1, g2)− f(g0g1, g2)+ f(g0, g1g2)−
f(g0, g1) · g3.

Each δn is a group homomorphism and δn+1 ◦ δn = 0. Therefore, {Cn, δn} forms a
cochain complex of the form

0 −→ C0 δ0−→ C1 −→ · · · −→ Cn
δn−→ Cn+1 −→ · · ·

Let Zn = Ker(δn) and Bn = Im(δn−1), so that Bn ⊆ Zn because of the property
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δn+1 ◦ δn = 0. The elements of Zn are called n-cocycles and the elements of Bn are the
n-coboundaries. The n-th cohomology group of G with coefficients in M is defined as
Hn(G,M) = Zn/Bn.

An alternative construction of the cohomology groups Hn(G,M) using complexes
and projective resolutions from homological algebra, is the following. Take a projective
resolution

P• = (· · · → P2
p2→ P1

p1→ P0 → Z → 0)

of the trivial G-module Z, i.e. an infinite exact sequence with every Pi projective.
Consider the sequence HomG(P•,M) defined by

HomG(P0,M) → HomG(P1,M) → HomG(P2,M) → · · ·

where the maps HomG(Pi,M) → HomG(Pi+1,M) are given by f 7→ f ◦ pi+1. The fact
that P• is a complex of G-modules implies that HomG(P•,M) is a complex of abelian
groups. We index it by defining HomG(Pi,M) to be the term in degree i. We may now
put

H i(G,M) = H i(HomG(Pi,M))

for i ≥ 0. The defined groups do not depend on the choice of the projective resolution
P•.

The above construction is a special case of that of Ext-groups in homological algebra:
for two R-modules M and N , these are defined by Extn(M,N) = Hn(HomR(P•, N))
with a projective resolution P• of M . In our case we get

Hn(G,M) = ExtnZG(Z,M)

where Z is to be regarded as trivial G-module.
The cohomological dimension of a group G is n if n is the maximal non-negative

integer for which Hn(G,M) 6= 0, for some ZG-module M and Hn(G,M) is the coho-
mology of G with coefficients in M . Equivalently, G has the cohomological dimension
n if the trivial ZG-module Z has a projective resolution of length n. See for exam-
ple [Bro]. The virtual cohomological dimension of a group is n if it has a torsion-free
subgroup of finite index that has the cohomological dimension n.

We are interested in the special case when G = Gal(L/K) and M = L∗ for a Galois
extension L/K. The groups Hn(G,L∗) are called the Galois cohomology groups of the
extension L/K with coefficients in L∗. In particular, we need H2(Gal(L/K), L∗), the
second Galois cohomology group of the extension L/K with coefficients in L∗.

The cocycle condition (1.4) can be interpreted as cohomology relation for a suitable
abelian group, which is L∗. The second coboundary homomorphism takes the following
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form δ2(τ)(x, y, z) = τ(y, z)τ(xy, z)−1τ(x, yz)(τ(x, y)z)−1 for a mapping τ : G × G →
L∗. Therefore, the cocycle condition on a mapping τ : G × G → L∗ is identical with
the assumption that τ ∈ Z2(G,L∗). Thus, every 2-cocycle τ ∈ Z2(G,L∗) gives rise to
a crossed product algebra (L/K, τ). A diagonal change of basis in (L/K, τ) produces a
new representation of (L/K, τ) as (L/K, τ ′) with τ ′ ≡ τ mod B2(G,L∗). Conversely,
if τ, τ ′ ∈ Z2(G,L∗) are congruent modulo B2(G,L∗) then (L/K, τ) and (L/K, τ ′) are
isomorphic as K-algebras. This induces a map H2(G,L∗) → Br(L/K). The next
theorem provides a cohomological interpretation of the relative Brauer group.

Theorem 1.54. For a Galois extension L/K with G = Gal(L/K), H2(G,L∗) is
isomorphic to the relative Brauer group Br(L/K) and the isomorphism is given by
[τ ] 7→ [(L/K, τ)], where τ is a 2-cocycle from Z2(G,L∗) and [τ ] denotes the class of τ
in H2(G,L∗).

To prove that the above correspondence is a group homomorphism, one uses the
following proposition.

Proposition 1.55 (The Product Theorem). Let L/K be a Galois extension with
G = Gal(L/K). If τ1, τ2 ∈ Z2(G,L∗), then (L/K, τ1)⊗K (L/K, τ2) ∼ (L/K, τ1τ2).

As a consequence of Theorem 1.55, we can now state the following properties of
cyclic algebras. First, let us set NL/K(L∗) = {NL/Kx : x ∈ L∗}, where NL/K : L→ K

denotes the norm of the extension L/K.

Proposition 1.56. Let G = Gal(L/K) = 〈σ〉 be cyclic of order n, and let a, b ∈ K∗.
Then

(i) (L/K, σ, a) ∼= (L/K, σs, as) for each s ∈ Z such that (s, n) = 1.

(ii) (L/K, σ, 1) ∼= Mn(K).

(iii) (L/K, σ, a) ∼= (L/K, σ, b) if and only if b = (NL/Kc)a for some c ∈ L∗. In partic-
ular, (L/K, σ, a) ∼ K if and only if a ∈ NL/K(L∗).

(iv) (L/K, σ, a)⊗K (L/K, σ, b) ∼ (L/K, σ, ab).

The following corollary gives an important result, helping to compute the Schur
index of cyclic algebras.

Corollary 1.57. Let A = (L/K, σ, a). Then exp[A] is the least positive integer t such
that at ∈ NL/K(L∗).

Proof. We have [A]t = [(L/K, σ, at)] in Br(K). Thus, by Proposition 1.56, [A]t = 1 if
and only if at belongs to NL/K(L∗).
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Theorem 1.54 provides a cohomological description of the relative Brauer groups.
The cohomological description of Br(K) is now a consequence of the following propo-
sition.

Proposition 1.58. For a field K, Br(K) =
⋃

Br(L/K), where L ranges over all finite
Galois extensions of K. In other words, for every central simple K-algebra there is a
finite Galois extension of K which splits A.

Summarizing, the Brauer group Br(K) is the union over all Galois extensions L/K
of the relative Brauer groups Br(L/K) and the relative Brauer groups can be identified
with cohomology groups. In order to relate the full Brauer group to cohomological
data, an interpretation is needed for the inclusion mappings Br(L/K) → Br(E/K)
that arise when K ⊆ L ⊆ E with L/K and E/K Galois extensions. Those inclusions
correspond to the inflation homomorphisms.

Let L/K and E/K be finite Galois extensions with L ⊆ E. Denote G = Gal(E/K)
and H = Gal(L/K). The restriction mapping σ 7→ σ|L is a surjective homomorphism
of G to H that induces an adjoint homomorphism Cn(H,L∗) → Cn(G,E∗) by f 7→ f∗,
where f∗(σ1, . . . , σn) = f(σ1|L, . . . , σn|L). A simple calculation shows that this map
commutes with the coboundary, i.e. (δnf)∗ = δn(f∗). Thus, the adjoint map carries
Zn(H,L∗) to Zn(G,E∗) and Bn(H,L∗) to Bn(G,E∗). Consequently, it induces a group
homomorphism of Hn(H,L∗) to Hn(G,E∗) that it is called the inflation mapping and is
denoted by Inf or, if necessary, InfnL/K→E/K . Explicitly, Inf[f ] = [f∗] for f ∈ Zn(H,L∗).

In particular, given the 2-cocycle τ : H ×H → L∗, we define the 2-cocycle Inf(τ) :
G×G→ L∗ ⊂ E∗ by Inf(τ)(g1, g2) = τ(g1|H , g2|H), for g1, g2 ∈ G, that is, the initial 2-
cocycle from H to L∗ inflates to a 2-cocycle from G to E∗. Furthermore, if we consider
the crossed product algebras (L/K, τ) and (E/K, Inf(τ)), then

(L/K, τ) ∼ (E/K, Inf(τ))

as K-algebras. This is equivalent to the following proposition.

Proposition 1.59. Let K ⊆ L ⊆ E be field extensions. If i : Br(L/K) → Br(E/K) is
the inclusion homomorphism, then the following diagram commutes

H2(H,L∗) Inf //

��

H2(G,E∗)

��
Br(L/K)

i
// Br(E/K),

where the vertical arrows are the isomorphisms of Theorem 1.54.

The action of the inflation on cyclic algebras is given by the following result.
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Theorem 1.60. Let K ≤ L ≤ E, where G = Gal(E/K) = 〈σ〉 is cyclic of finite order
t. Let H = Gal(E/L), Ĝ = G/H = Gal(L/K) = 〈σ̂〉, where σ̂ is the image of σ in Ĝ.
Then for any a ∈ K∗,

(L/K, σ̂, a) ∼ (E/K, σ, a[E:L]).

The next result establishes an isomorphism between the Brauer group of a field K
and the second Galois cohomology group of K which is obtained as a direct limit of
the groups H2(Gal(L/K), L∗). Theorem 1.61 can be stated as follows: Every element
of the group Br(K) is determined by a 2-cocycle in a finite Galois extension L/K.

Theorem 1.61. The isomorphism Br(L/K) ∼= H2(Gal(L/K), L∗) lifts to
an isomorphism between Br(K) and the direct limit lim−→H2(Gal(L/K), L∗) =
H2(Gal(Ks/K),K∗

s ), where Ks is the maximal separable extension of K.

If K is a subfield of L, then the inclusion mapping ι : K → L induces a homomor-
phism ι∗ : Br(K) → Br(L). When these Brauer groups are represented as unions of
relative Brauer groups corresponding to cohomology groups, the description of ι∗ can
be given in terms of certain homomorphisms that are standard tools in cohomology
theory. We now define these homomorphisms and we relate them to the mappings of
the Brauer groups.

Definition 1.62. LetH be a subgroup of the finite groupG. IfM is a right ZG-module,
then M can also be viewed as a ZH-module and the trivial left action of G and H on
M yields a ZG-bimodule and a ZH-bimodule. Let f ∈ Cn(G,M) be an n-cochain,
considered as a mapping from Gn to M . The restriction f |Hn is then an element of
Cn(H,M). The coboundary homomorphism clearly satisfies δn(f |Hn) = (δnf)|Hn , so
that f 7→ f |Hn maps Zn(G,M) to Zn(H,M) and Bn(G,M) to Bn(H,M). Therefore,
f 7→ f |Hn induces a group homomorphism

ResG→H : Hn(G,M) → Hn(H,M)

which is called the restriction map . Explicitly, ResG→H [f ] = [f |Hn ] for all f ∈
Zn(G,M).

The applications of the restriction mapping that we are interested in occur when n =
2, G = Gal(E/K) and H = Gal(E/L), where K ⊆ L ⊆ E are field extensions and E/K
is Galois. Moreover, M will generally be E∗ with the usual ZG-bimodule structure.
By Hilbert’s so-called ‘Theorem 90’, H0(G,E∗) = (E∗)G = K∗ and H1(G,E∗) =
1. Similarly, H0(H,E∗) = (E∗)H = L∗ and the restriction ResG→H : H0(G,E∗) →
H0(H,E∗) is the inclusion map of K∗ into L∗.
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Proposition 1.63. Let K ⊆ L ⊆ E be fields with E/K a Galois extension. If ι : K →
L is the inclusion mapping, then ι∗(Br(E/K)) ⊆ Br(E/L) and the diagram

H2(G,E∗)
ResG→H//

∼=
��

H2(H,E∗)

∼=
��

Br(E/K)
ι∗|Br(E/K)

// Br(E/L)

is commutative, where the vertical isomorphisms are those of Theorem 1.54.

The family of restriction homomorphisms induces a restriction homomorphism of
the Galois cohomology groups Res : Hn(Gal(Ks/K),K∗

s ) → Hn(Gal(Ks/L),K∗
s ). If

ι : K → L is the inclusion mapping, then ι∗ : Br(K) → Br(L) is the limit of ι∗|Br(E/K)

for E running through the finite Galois extensions of K containing L. Then, when
L/K is a finite separable extension, the diagram

H2(Gal(Ks/K),K∗
s )

Res //

lim−→
��

H2(Gal(Ks/L),K∗
s )

lim−→
��

Br(K) ι∗
// Br(L)

is commutative.
We denote by ResK→L or simply by Res the restriction homomorphism induced by

extension of scalars ResK→L : Br(K) → Br(L) and defined by ResK→L([A]) = [A⊗KL],
for [A] ∈ Br(K). In particular, if χ is an irreducible character of the finite group G

with K(χ) = K, then Res([A(χ,K)]) = [A(χ,L)], where A(χ,K) denotes the simple
component of the group algebra KG associated to the character χ. The action of the
restriction on cyclic algebras is summarized in the following result.

Theorem 1.64. Let G = Gal(L/K) = 〈σ〉 be cyclic of order n, and let a ∈ K∗. Let E
be any field containing K, and let EL be the composite of E and L in some large field
containing both E and L. We may write H = 〈σk〉 = Gal(L/L ∩ E) ∼= Gal(EL/E),
where k is the least positive integer such that σk fixes L ∩ E. Then

E ⊗K (L/K, σ, a) ∼ (EL/E, σk, a).

Now we define the corestriction map which is a weak inverse to restriction. The
definition starts in dimension 0 and is extended to n by dimension shifting, which is
the technique to extend a result or construction from dimension 0 to dimension n.

Definition 1.65. Let H be a subgroup of index m in the finite group G, T =
{x1, . . . , xm} a right transversal of H in G and M a right ZG-module. For u ∈ MH ,
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define

CorH→G u = u ·
m∑
k=1

xk.

The definition does not depend on the choice of coset representatives and CorH→G is
a group homomorphism from MH = H0(H,M) to MG = H0(G,M) = HomG(Z,M),
the group of invariants, that is, the largest submodule of M on which G acts trivially.

Fix an exact sequence 0 → M → N → P → 0 of right ZG-modules such that
Hn(G,N) = 0 for all n ≥ 1. By induction on n we get a sequence of homomorphisms
CorH→G : Hn(H,M) → Hn(G,M) such that the following diagram commutes:

Hn−1(H,N) //

CorH→G
��

Hn−1(H,P ) //

CorH→G
��

Hn(H,M) //

CorH→G
��

0

Hn−1(G,N) // Hn−1(G,P ) // Hn(G,M) // 0

The defined homomorphisms are called corestriction mappings. Usually we denote
the corestriction simply by Cor.

The following result from [HS] establishes the relation between the restriction and
the corestriction.

Theorem 1.66. If H is a subgroup of index m in the finite group G and M is a right
ZG-module, then CorH→G ◦ ResG→H : Hn(G,M) → Hn(G,M) (n ≥ 0) is just the
multiplication by m.

For a field extension L of K, denote by CorL→K or simply by Cor the corestriction
homomorphism from the Brauer group Br(L) to Br(K). Then the previous theorem
can be restated as follows.

Theorem 1.67. If L is a finite Galois extension of K with [L : K] = n, then

CorL→K ◦ ResK→L([A]) = ([A])n.

The degree mapping is clearly not invariant under the Brauer equivalence. Because
of this fact, and for other reasons, it is useful to define a different numerical function
on central simple algebras. This is given by the Schur index of a central simple algebra.

Definition 1.68. Let A be a central simple K-algebra, so that A ∼= Mm(D) for some
unique division K-algebra D. We define the Schur index of A, denoted ind(A), to be
the degree of D, that is, the square root of the dimension of D as a vector space over
K.
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If χ is an irreducible complex character of a finite group G and K is a field of
characteristic zero, then the Schur index of χ with respect to K, denoted mK(χ), is the
Schur index of the simple component of the group algebra KG corresponding to the
character χ, denoted A(χ,K).

The Schur index was introduced by Issai Schur (1875–1941) in 1906. As a student
of Frobenius, he worked on group representations (the subject with which he is most
closely associated), but also in combinatorics and even theoretical physics. He is per-
haps best known today for his result on the existence of the Schur decomposition. He
had a number of students, among them R. Brauer.

Brauer proved that the Brauer group is torsion, that is, every element of Br(K)
has finite order. The exponent of a central simple K-algebra A, denoted exp(A), is the
order of [A] in the Brauer group Br(K). That is, exp(A) is the smallest number m such
that A⊗m ∼= Mr(K) for some r, where A⊗m denotes the tensor product of m copies of
A. In other words, the exponent of A is the least m ∈ N such that the tensor product
of m copies of A is a matrix algebra over K. This terminology had been chosen by
Brauer because, he said, in the context of the theory of algebras the word “order” is
used for another concept [Roq].

The exponent is similar to the index in many ways and for important classes of
algebras these invariants are equal. In the following proposition we collect some of
Brauer’s results about the connection between the exponent and the index of a central
simple algebra.

Proposition 1.69 (Brauer). Let A be a central simple K-algebra. Then:

(1) ind(A) divides deg(A) and ind(A) = deg(A) if and only if A is a division algebra.

(2) exp(A) divides ind(A) and every prime divisor of ind(A) also divides exp(A).

(3) If K is a number field, then exp(A) = ind(A).

There is an alternative way of defining the Schur index of an irreducible complex
character with respect to a field K which is related to the following question:

For which fields K ≤ C is the character χ ∈ Irr(G) afforded by a K-
representation?

If K ≤ C is not one of these fields, we wish to measure the extent to which χ fails to
be afforded over K. This suggests the following definition from [Isa].

Definition 1.70. Let K ≤ L, where L is any splitting field for the finite group
G. Choose an irreducible L-representation ρ which affords χ and an irreducible K-
representation ϕ such that ρ is a constituent of ϕL. Then the multiplicity of ρ as a
constituent of ϕL is the Schur index of χ over K and is denoted by mK(χ).
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Apparently, mK(χ) as given in Definition 1.70 could depend on the splitting field
L. However, an easy exercise shows that the definition of mK(χ) in Definition 1.68 and
Definition 1.70 are equivalent, and so mK(χ) is independent of L.

If K is a field with positive characteristic then mK(χ) = 1 for every irreducible
character χ of a finite group. This is because if L is the prime field of K then A(χ,L)
is finite and therefore split as central simple algebra over its center. Hence the char-
acteristic zero case is the one that presents interest for the computation of the Schur
indices of irreducible characters of finite groups. Many important results about Schur
indices appear to depend on deep facts about division algebras and number theory.
Nevertheless, much can be done by means of character theory, as presented in [Isa]
or [CR], where it is also proved that every positive integer can occur as Schur index,
despite of the fact that most of the elementary results are directed to showing that the
Schur indices are small.

1.6 Local fields

In order to understand the Brauer group of a number field, it is convenient to start
by studying the Brauer groups of some special fields called local fields. The results
presented in this section are mainly from [Rei] and [Pie].

Throughout R is an integral domain with quotient field K, R 6= K. We describe
some properties of the ring R and of R-modules with respect to localization at prime
ideals of R.

We start with some basic facts about localization at prime ideals. Starting with a
prime ideal P of R, we may form the multiplicative set S = R−P , and then define the
ring of quotients RP := S−1R, called the localization of R at P . Since every element
of R − P is invertible in RP , it is easily verified that RP has a unique maximal ideal,
namely P ·RP . We should remark that the ring homomorphism i : R→ RP , i(x) = x/1,
x ∈ R, enables us to view RP (and all RP -modules) as R-modules (ker i is precisely
the set of S-torsion elements of R). Thus, P · RP is the same as i(P ) · RP . Since R
is an integral domain, the mapping i : R → RP is an embedding. In particular, when
P = {0} then RP is precisely the quotient field of the domain R. Let now M be any
R-module. We define MP = RP ⊗M , an RP -module called the localization of M at P .

We often refer to problems concerning R-modules and R-homomorphisms as global
problems, whereas those involving RP -modules are called local problems. A fundamen-
tal technique in commutative algebra, algebraic number theory and algebraic geometry
is the method of solving global questions by first settling the local case, and then
applying this information to the global case.
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Let us now introduce some concepts from valuation theory. Let R+ denote the set
of non-negative real numbers.

Definition 1.71. A valuation of K is a mapping ϕ : K → R+ such that for a, b ∈ K
(i) ϕ(a) = 0 if and only if a = 0;
(ii) ϕ(ab) = ϕ(a)ϕ(b);
(iii) ϕ(a+ b) ≤ ϕ(a) + ϕ(b).
If the valuation also satisfies the stronger condition
(iv) ϕ(a + b) ≤ max(ϕ(a), ϕ(b)), we call ϕ non-archimedean. It is easily verified

that every non-archimedean valuation satisfies
(v) ϕ(a+ b) = max(ϕ(a), ϕ(b)) whenever ϕ(a) 6= ϕ(b).
The trivial valuation is defined by ϕ(0) = 0 and ϕ(a) = 1 for a ∈ K, a 6= 0. By

default all valuations are considered to be non-trivial.

The value group of a valuation ϕ is the multiplicative group {ϕ(a) : a ∈ K,

a 6= 0}. If this value group is an infinite cyclic group, ϕ is a discrete valuation, and
it is necessarily non-archimedean. Two valuations ϕ and ψ are equivalent if for a ∈ K,
ϕ(a) ≤ 1 if and only if ψ(a) ≤ 1. Each valuation ϕ onK gives rise to a topology onK, by
taking as basis for the neighborhoods of a point a ∈ K the sets {x ∈ K : ϕ(x−a) < ε},
where ε ranges over all positive real numbers. Equivalent valuations give the same
topology on K.

Given any non-archimedean valuation ϕ on K, let R = {a ∈ K : ϕ(a) ≤ 1}. Then R
is a subring of K and is called the valuation ring of ϕ. The set P = {a ∈ K : ϕ(a) < 1}
is the unique maximal ideal of R. If ϕ is a discrete valuation, then P is a principal
ideal, namely P = Rπ, where π is any element of P such that ϕ(π) < 1 and ϕ(π)
generates the value group of ϕ. In this case, R is a discrete valuation ring, by which we
shall mean a principal ideal domain having a unique maximal ideal P such that P 6= 0.

Example 1.72 (Example of discrete valuation ring). Let p be a prime number,
and let Z(p) be the subset of the field Q of rationals consisting of the fractions r/s,
where s is not divisible by p. This is a discrete valuation ring with residue field the
field Fp with p elements.

One way of obtaining archimedean valuations is the following. The ordinary absolute
value | | on the complex field C is an archimedean valuation, whose restriction to any
subfield of C is an archimedean valuation on that subfield. Now let K be a field which
can be embedded in C, and let µ : K → C be an embedding. Define ϕ : K → R+ by
setting ϕ(a) = |µ(a)|, a ∈ K. Then ϕ is an archimedean valuation on K. In particular,
if K is a number field with r1 embeddings in R and r2 pairs of complex embeddings
in C then one can obtain in this way r1 + r2 archimedean valuations. The Ostrowski
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Theorem states that every archimedean valuation of K (a number field) is equivalent
to exactly one of these r1 + r2 valuations.

Now we give the connection between prime ideals of Dedekind domains and the
non-archimedean valuations. From the standpoint of ideal theory, Dedekind domains
are the simplest type of domains beyond principal ideal domains, and share many of
their arithmetical properties. They arise naturally, as follows. Let R be a principal
ideal domain with quotient field K, let L be a finite extension of K, and let S be the
integral closure of R in L. Then S is a Dedekind domain with quotient field L. For a
rigorous definition see Definition 1.3.

Definition 1.73. Let R be a Dedekind domain, and let P be a nonzero prime ideal
of R, or equivalently, a maximal ideal of R. For each nonzero a ∈ K, we may factor
the principal ideal Ra into a product of powers of prime ideals. Let vP (a) denote the
exponent to which P occurs in this factorization. If P does not occur, set vP (a) = 0.
Also, put vP (0) = +∞. We call vP the exponential valuation associated with P .

Now fix some κ ∈ R+, κ > 1, and define ϕP (a) = κ−vP (a), a ∈ K, a 6= 0, and
ϕP (0) = 0. Then ϕP is a discrete non-archimedean valuation on K, whose value group
is the cyclic group generated by κ. (If instead of κ we used another real number κ′

with κ′ > 1, the valuation ϕ′P thus obtained would be equivalent to the above-defined
valuation ϕP ). The properties of ϕP are consequences of the following properties of vp:

(i) vP (a) = ∞ if and only if a = 0.
(ii) vP (ab) = vP (a) + vP (b).
(iii) vP (a+ b) ≥ min(vP (a), vP (b)), with equality whenever vP (a) 6= vP (b).

Let RP be the localization of R at P , defined as before by RP = {x/s : x ∈ R,

s ∈ R − P}. This ring is in fact the valuation ring of the P -adic valuation ϕP on R

and its unique maximal ideal is precisely P ·RP . Thus RP is a discrete valuation ring
and is automatically a principal ideal domain. We may choose a prime element π of
the ring RP , that is, an element π ∈ RP such that πRP = P · RP . Indeed, π may
be chosen to lie in R. The fractional RP -ideals of K are {πnRP : n ∈ Z}. It follows
that localization does not affect residue class fields, that is, R/P ∼= RP /(P ·RP ). This
isomorphism is not only an R-isomorphism, but is in fact a field isomorphism. More
generally, there are ring isomorphisms R/Pn ∼= RP /(Pn ·RP ), for n ≥ 1.

A prime of K is an equivalence class of valuations of K. We exclude the “trivial”
valuation ϕ defined by ϕ(0) = 0, ϕ(a) = 1 for a ∈ K, a 6= 0. If K is a number field,
there are the archimedean or infinite primes, arising from embeddings of K into the
complex field C and the non-archimedean or finite primes of K, arising from discrete
P -adic valuations of K, with P ranging over the distinct maximal ideals in the ring of
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algebraic integers ofK. Every other valuation is equivalent to one of these valuations, so
the concept of prime in K is equivalent to the concept of equivalence class of valuations.
In many references the primes in K are also called places.

The completion of a valuation field is a field which usually has better properties
than the original one. Let K be a field with a valuation ϕ, topologized as before.
Let K̂ denote the completion of K relative to this topology. Then K̂ is a field whose
elements are equivalence classes of Cauchy sequences of elements of K, two sequences
being equivalent if their difference is a sequence converging to zero. The field K is
embedded in K̂ and the valuation ϕ extends to a valuation ϕ̂ on K̂. The field K̂ is
complete relative to the topology induced by ϕ̂, that is, every Cauchy sequence from K̂

has a limit in K̂.
If ϕ is an archimedean valuation, then so is ϕ̂, and K̂ is a complete field with respect

to an archimedean valuation. The only possibilities for K̂ are R, the real field or C,
the complex field, and in each case ϕ̂ is equivalent to the usual absolute value.

If ϕ is non-archimedean, so is ϕ̂. The two valuations have the same value group, and
the same residue class field (up to isomorphism). In particular, let R be a Dedekind
domain with quotient field K, where K 6= R, and let P be a maximal ideal of R. The
completion of K with respect to the P -adic valuation ϕP on K will be denoted by K̂P

(or just K̂ or even KP , if there is no danger of confusion). Call K̂P a P -adic field, and
its elements P -adic numbers.

The discrete valuation ϕP extends to a discrete valuation ϕ̂P on K̂P . We have
already remarked that the valuation ring of ϕP is the localization RP . Let R̂P be the
valuation ring of ϕ̂P . Every element of R̂P can be represented by a Cauchy sequence
from RP (or from R, for that matter). If π is a prime element of RP , then π is also a
prime element of R̂P . Let S denote a full set of residue class representatives in R of
the residue class field R̂ = R/P , with 0 ∈ S. Each x ∈ R̂P is uniquely expressible as
x = X0 +X1π +X2π

2 + . . . , Xi ∈ S, and each y ∈ K̂P \ {0} is uniquely of the form
y = πk · x, with k = ϕ̂P (y) ∈ Z and x as above, with X0 6= 0. If y = 0, take k = −∞.

Example 1.74 (Complete valuation fields). (1) The completion of Q with respect
to vp is denoted by Qp and is called the field of p-adic numbers. Certainly, the comple-
tion of Q with respect to the absolute value is R. Embeddings of Q in Qp for all prime
p and in R is a tool to solve various problems over Q. An example is the Minkowski–
Hasse Theorem: an equation

∑
aijXiXj = 0 for aij ∈ Q has a nontrivial solution in Q

if and only if it admits a nontrivial solution in Qp for all prime p (including infinity).
The ring of integers of Qp is denoted by Zp and is called the ring of p-adic integers.
The residue field of Zp is the finite field Fp consisting of p elements.

(2) The completion of K(X) with respect to vX is the formal power series field
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K((X)) of all formal series
∑+∞

−∞ αnX
n with αn ∈ K and αn = 0 for almost all

negative n. The ring of integers with respect to vX is K[[X]], that is, the set of all
formal series

∑+∞
0 αnX

n, αn ∈ K. Its residue field may be identified with K.

Definition 1.75. A complete discrete valuation ring R is a principal ideal domain
with unique maximal ideal P = πR 6= 0 such that R is complete relative to the P -adic
valuation. If K is the quotient field of R and R̂ = R/P is its residue class field, we call
K a local field.

The following theorem is a useful result that we will use later.

Theorem 1.76. Let W be an unramified extension of K of degree f , and let v be the
P -adic valuation on K. Given any element α ∈ K, the equation NW/K(x) = α, with
x ∈W is solvable for x if and only if f divides v(α).

Let K be a field which is complete with respect to a valuation ϕ, and let K̃ be an
algebraic closure of K. Then we may extend ϕ to a valuation ϕ̃ on K̃ as follows. Every
a ∈ K̃ lies in some field L with K ≤ L ≤ K̃, [L : K] finite (for example, L = K(a) will
do). Set ϕ̃(a) = {ϕ(NL/Ka)}1/[L:K]. Then the value ϕ̃(a) is independent on the choice
of L and every finite extension of K contained in K̃ is complete with respect to the
valuation ϕ̃.

If ϕ is archimedean, there are only two possibilities: one with K = C = K̃ and
ϕ = ϕ̃ and the other one with K = R, K̃ = C and ϕ̃ extends ϕ, where ϕ̃ and ϕ are the
usual absolute values on R or C.

If ϕ is non-archimedean, so is ϕ̃. However, ϕ̃ need not be a discrete valuation, even
if ϕ is discrete. If ϕ is a discrete valuation on K, denote by oK its valuation ring and
by pK the maximal ideal of oK . Let ôK = oK/pK be the residue class field and let
pK = πK · oK , so πK is a prime element of oK . Let vK be the exponential valuation on
K, defined by setting aR = p

vK(a)
K , for a ∈ K and a 6= 0, and vK(0) = +∞. Any finite

extension L of the complete field K can be embedded in K̃ and the restriction of ϕ̃ to
L gives a discrete valuation ψ which extends ϕ. It can be shown that, for each a ∈ L,
vL(a) = f(L/K)−1 · vK(NL/K(a)). In this case, the ramification index e = e(L/K)
and the residue class degree f = f(L/K) are given by the formulas vL(πK) = e and
[ôL : ôK ] = f . Moreover, the extension L of K is unramified if e(L/K) = 1 and ôL is a
separable extension of ôK , and it is completely (or totally) ramified if ôL = ôK , that is
f(L/K) = 1.

Theorem 1.77. Let L be a finite extension of K and assume the complete field K has
finite residue class field ôK with q elements. Then, for each positive integer f , there is
a unique unramified extension W of K with [W : K] = f , namely W = K(ζ), for ζ
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a primitive (qf − 1)th root of unity over K. Furthermore, oW = oK [ζ], ôW = ôK(ζ̂),
where ζ̂ is a primitive (qf − 1)th root of unity.

Corollary 1.78. The extensions W/K and ôW /ôk are Galois with cyclic Galois groups
of order f , generated by the Frobenius automorphism σ defined by ζ 7→ ζq, and respec-
tively by the automorphism σ̂ which maps ζ̂ to ζ̂q.

Theorem 1.79. With the above notation, let L = K(α), where α has the minimal
polynomial over K given by the nth degree Eisenstein polynomial over oK , for n a
positive integer. Then L is completely ramified over K, [L : K] = n, and α is a prime
element of oL. Furthermore, oL = oK(α).

Summarizing, if L/K is finite, we assume that the residue class field ôK is finite,
and W is the inertia field of the extension L/K, then we have K ⊆ W ⊆ L, ôW = ôL,
e(L/K) = 1, f(L/W ) = 1, f(W/K) = f(L/K), e(L/W ) = e(L/K). Thus, the step
from K to L is divided into an unramified step from K to W , followed by a completely
ramified step from W to L.

Now let K be a field with a valuation ϕ (archimedean or not) and ϕ̂ the extension
of ϕ to the algebraic closure Ω of the completion K̂. Given a separable extension
L of K, we wish to determine all extensions of the valuation ϕ from K to L. Each
such extension determines an embedding of L in Ω which preserves the embeddings
of K in K̂. Two embeddings µ, µ′ of L in Ω are called equivalent if there exists a
K-isomorphism σ : µ(L) ∼= µ′(L) such that σµ = µ′. Let µ1, . . . , µr be a full set of
inequivalent isomorphisms of L into Ω which preserve the embeddings of K in K̂. Let
L̂i = K̂ · µi(L) be the composite of K̂ and µi(L) in Ω and set ni = [L̂i : K̂]. Then,
there are precisely r inequivalent valuations ψ1, . . . , ψr of L which extend ϕ, and these
are given by the formula ψi(a) = µ̂i(a) = {ϕ̂(N

L̂i/K̂
(µi(a)))}1/ni , for 1 ≤ i ≤ r.

If R is now a Dedekind domain with quotient field K and S the integral closure of
R in L, then for every maximal ideal P of R let P · S =

∏r
i=1 P

ei
i be the factorization

of P · S into a product of distinct maximal ideals {Pi} of S. Then there are precisely
r inequivalent valuations ψ1, . . . , ψr of L which extend the P -adic valuation ϕP on K,
obtained by choosing ψi to be the Pi-adic valuation on L. The fields L̂i are precisely
the Pi-adic completions of L. If K is a number field so that the residue class fields R/P
and S/Pi are finite, we may normalize the P -adic valuation ϕP of K and the Pi-adic
valuation ϕi of L, by setting ϕP (a) = card(R/P )−vP (a) and ϕPi(b) = card(S/Pi)−vPi (b),
for a ∈ K and b ∈ L. In this case, ϕPi = ϕniP on K, so ϕ1/ni

Pi
is the valuation on L̂i

which extends ϕP on K̂P .
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1.7 Simple algebras over local fields

In this section we define the local index of a central simple algebra. The description of
the Brauer group appears in what is called local class field theory. This theory is about
extensions, primarily abelian, of local fields (i.e. complete for a discrete valuation) with
finite residue class field. Throughout let R be a complete discrete valuation ring with
field of quotients K, that is, R is a principal ideal domain with a unique maximal ideal
P = πR 6= 0 and R is complete relative to the P -adic valuation v on K. Let R̂ = R/P ,
the residue class field. We assume that R̂ is a finite field with q elements.

Let D be a division algebra with center K and index m. The valuation v on K can
be extended to a valuation vD on D given by the formula vD(a) = m−1v(ND/Ka) for
a ∈ D. The next result shows that D contains a unique maximal R-order.

Theorem 1.80. ∆ = {a ∈ D : vD(a) ≥ 0} is the integral closure of R in D, hence ∆
is the unique maximal R-order in D with p = {a ∈ D : vD(a) > 0} the unique maximal
ideal.

Furthermore, π∆ is a power of p and it can be shown that π∆ = pm and ∆̂ = ∆/p,
is a field of order qm, where π is a prime element of R.

We shall see that the structures of D and ∆ can be described explicitly in this case,
and depend only on the index m and some integer r such that 1 ≤ r ≤ m, (r,m) = 1.
The unique unramified extension of K of degree m is K(ζ), where ζ is a primitive
(qm − 1)-th root of unity over K. By Corollary 1.78, the Galois group Gal(K(ζ)/K)
is cyclic of order m, and has as canonical generator the Frobenius automorphism of
K(ζ)/K denoted by σK(ζ)/K . Recall that it is defined only for unramified extensions.

We wish to show that, in analogy with the results for the case of fields, the division
ring D comes from an unramified extension, followed by a complete ramified extension.
To begin with, D contains a subfield W isomorphic to K(ζ), so that W is an unramified
extension of K such that [W : K] = [∆̂ : R̂] = m. So, W is a maximal subfield of D,
W is the inertia field of D and it is unique up to conjugacy.

Let πD be a prime element of ∆, that is, a generator of p. Since π∆ = πmD∆, the
field K(πD) is a completely ramified extension of K of degree m, and is a maximal
subfield of D. Furthermore, ∆ = R[ζ, πD] and D = K[ζ, πD]. Thus D is obtained by
adjoining the element πD to any of its inertia fields K(ζ), or equivalently, by adjoining
ζ to the field K(πD). Note that ζ and πD do not commute, unless m = 1. The inertia
field K(ζ) is uniquely determined up to K-isomorphism by the index m. The next
theorem shows that one can select the prime element πD with better properties.

Theorem 1.81. Let ζ ∈ D be a primitive (qm − 1)-th root of 1, and let π be any
prime element of R. Then there exists a prime element πD ∈ ∆ such that πmD = π,
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πDζπ
−1
D = ζq

r
, where r is a positive integer such that 1 ≤ r ≤ m, (r,m) = 1. Then

D = K(ζ, πD) = (K(ζ)/K, σK(ζ)/K , πD), where σK(ζ)/K(ζ) = ζq
r

and the integer r is
uniquely determined by D, and does not depend upon the choice of ζ or π.

The above shows that once the complete field K is given, the division ring D is
completely determined by its index m, and by the integer r. Indeed, we first form
the field K(ζ), with ζ any primitive (qm − 1)-th root of 1. Then we pick any prime
π ∈ R, and adjoin to the field W an element πD satisfying the conditions listed in
Theorem 1.81. This determines the division ring D = K(ζ, πD) up to K-isomorphism.
The fraction r/m is called the Hasse invariant of D.

Theorem 1.82. Let 1 ≤ r ≤ m, (r,m) = 1. Given the complete field K, there exists a
division ring D with center K, index m, and Hasse invariant r/m, that is each fraction
r/m arises from some division ring.

We showed that W can be embedded in D, and that there exists a prime element
z ∈ D such that

D =
m−1⊕
j=0

Wzj , zαz−1 = σr(α), α ∈W, zm = π.

The integer r is relatively prime to the index m, and D determines r mod m
uniquely. Further, it can be shown that each pair r,m with (r,m) = 1 arises from
some D. In terms of the notation for cyclic algebras, we have D ' (W/K, σr, π).
Choose s ∈ Z so that rs ≡ 1(mod m). Then also (s,m) = 1 and D ∼= (W/K, σr, π) ∼=
(W/K, σrs, πs) = (W/K, σ, πs). Furthermore, we could have restricted s to lie in the
range 1 ≤ s ≤ m. An important consequence of this is the following result.

Theorem 1.83. Let D be a division algebra with center K and index m. Then m =
exp[D]. Hence, for each [A] ∈ Br(K), exp[A] = ind[A].

Whether or not (s,m) = 1, we may still form the cyclic algebra A = (W/K, σ, πs).
The isomorphism class of A depends only on s(mod m), that is, on the fraction s/m

viewed as an element of the additive group Q/Z. Let us find the division algebra part
of A. Of course, we already know that A is a division algebra whenever (s,m) = 1.

Theorem 1.84. Let W/K be an unramified extension of degree m, with Frobenius
automorphism σ, and let s ∈ Z. Write s/m = s′/m′, where (s′,m′) = 1. Then
(W/K, σ, aπs) ∼ (W ′/K, σ′, πs

′
), where the latter is a division algebra of index m′

and W ′/K is an unramified extension of degree m′, with Frobenius automorphism σ′.
Furthermore, if a ∈ K∗, then the cyclic algebra (W/K, σ, a) is a division algebra if and
only if (m, vK(a)) = 1.
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Let W/K be an unramified extension of degree m, with Frobenius automorphism
σW/K . Given an integer s, not necessarily prime to m, let us consider the cyclic algebra
A = (W/K, σW/K , πs).

Definition 1.85. We define the Hasse invariant of A, denoted by invA, by the formula

inv(W/K, σW/K , π
s) = s/m ∈ Q/Z.

The division algebra part of A can be calculated by use of Theorem 1.84, and it has the
same Hasse invariants as A. Therefore, invA depends only upon the class [A] ∈ Br(K),
and we shall write inv[A] rather than invA hereafter. Furthermore, by Theorem 1.81,
every class in Br(K) is represented by some cyclic algebra (W/K, σW/K , πs) with W/K
unramified, and hence there is a well defined map

inv : Br(K) → Q/Z.

Let L/K be a cyclic extension with Galois group 〈σ〉 cyclic of order n, and let
a ∈ K∗. Then the cyclic algebra B = (L/K, σ, a) determines a class [B] in Br(K).
However, it is not necessarily true that inv[B] = vK(a)/m. Indeed, even when L/K is
unramified, the formula is valid only when σ equals the Frobenius automorphism σL/K .
In the ramified case, the Frobenius automorphism σL/K is not even defined and in order
to compute inv[B] when L/K is ramified, we must first write B ∼ (W/K, σW/K , πs) = A

for some unramified extension W/K, and then we have inv[B] = inv[A] = s/m.

Theorem 1.86. inv : Br(K) ∼= Q/Z.

We shall denote inv by invK when we need to specify the underlying field K. The
next result describes the effect on inv of a change in ground fields.

Theorem 1.87. Let L be any finite extension of K. The following diagram commutes:

Br(K)
invK //

L⊗K−
��

Q/Z

[L:K]
��

Br(L)
invL

// Q/Z,

where the horizontal maps are isomorphisms, and the second vertical map is defined to
be the multiplication by [L : K].

Corollary 1.88. Let D be a division algebra with center K and index m, and let L be
any finite extension of K. Then L splits D if and only if m|[L : K].

A further consequence of Theorem 1.86 and Theorem 1.87 is the following result.

Theorem 1.89. Let L/K be any finite extension of degree m. Then Br(L/K) is cyclic
of order m. Hence, Br(L/K) = {[A] ∈ Br(K) : [A]m = 1}.
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1.8 Simple algebras over number fields

This section contains some deep and beautiful results in modern algebra such as the
theorems that classify and describe the central simple algebras over number fields. This
work is associated with the names of several of the greatest heroes of mathematics:
Hasse, Brauer, Noether, and Albert. It is based on developments in number theory
that are due to Kronecker, Weber, Hilbert, Minkovski, Furtwangler, Artin, Takagi,
Hasse, Witt and many others.

Throughout K denotes a number field. We have seen that a prime of K is an
equivalence class of valuations of K. If K is a number field, there are the archimedean
or infinite primes, arising from embeddings of K into the complex field C and the non-
archimedean or finite primes of K, arising from discrete P -adic valuations of K, with
P ranging over the distinct maximal ideals in the ring of all algebraic integers of K.

Let A be a central simple K-algebra and let P range over the primes of K. We
shall use KP (rather than K̂P ) to denote the P -adic completion of K. Put

AP = KP ⊗K A = P -adic completion of A.

Then, AP is a central simple KP -algebra and the map [A] → [AP ] yields a homomor-
phism of Brauer groups Br(K) → Br(KP ).

Definition 1.90. The local Schur index of A at P is defined as mP (A) = ind[AP ].

Clearly AP ∼ KP if and only if mP (A) = 1. We say that A ramifies at P , or that
P is ramified in A, if mP (A) > 1. In the present discussion, the infinite primes of
K will play an important role. Such infinite primes occur only when K is a number
field. In this case, an infinite prime P of K corresponds to an archimedean valuation
on K which extends the ordinary absolute value on the rational field Q. The P -adic
completion KP is either the real field R (in which case P is called a real prime), or else
the complex field C (and P is a complex prime).

Theorem 1.91. Let A be a central simple K-algebra, and let mP be the local index of
A at an infinite prime P of K.

(i) If P is a complex prime, then AP ∼ KP and mP = 1.

(ii) If P is a real prime, then either AP ∼ KP and mP = 1, or else AP ∼ H and
mP = 2, where H is the division algebra of real quaternions.

If P is any finite prime of K, then KP is a complete field relative to a discrete
valuation, and has a finite residue class field. We defined the Hasse invariant inv[AP ] of
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a central simple KP -algebra, thereby obtaining an isomorphism inv : Br(KP ) ' Q/Z.
We showed that inv[AP ] = sP /mP ,

exp[AP ] = mP ,
(1.6)

where mP = ind[AP ], (sP ,mP ) = 1.

We would like to have the same formulas true for the case of infinite primes. First
we define Hasse invariants when P is an infinite prime, and it is sufficient to define
these invariants for the three cases C, R and H. Set

inv[C] = 0, inv[R] = 0, inv[H] = 1/2.

Formulas (1.6) then hold equally well when P is infinite provided we know that exp[H] =
2 when [H] is considered as an element of Br(R).

Now let A be any central simple K-algebra, and let P be any prime of K (finite
or infinite). Clearly, A ∼ K ⇒ AP ∼ KP for all P . It can be proved the extremely
important converse of this implication, by using the Hasse Norm Theorem. Let L be
a finite Galois extension of K, with Galois group G = Gal(L/K). Let P be a prime of
K, finite or infinite.

Even when P is a finite prime, it is convenient to think of P as representing a class
of valuations on K, rather than an ideal in some valuation ring. From this point of
view, the valuation P extends to a finite set of inequivalent valuations on L, denoted
by p(= p1), p2, . . . , pg. For each σ ∈ G, there is a valuation pσ on L, defined by the
formula pσ(x) = p(σ−1x), x ∈ L. We call pσ a conjugate of p. If p is a finite prime,
then σ carries the valuation ring of p onto the valuation ring of pσ. Whether or not p

is finite, each pi is of the form pσ for some σ ∈ G.

We set Gp = {σ ∈ G : pσ = p}, and call Gp the decomposition group of p relative
to the extension L/K. The groups {Gpi} are mutually conjugate in G. Each σ ∈ Gp

induces a KP -automorphism σ̂ of the p-adic completion Lp, since σ maps each Cauchy
sequence from L (relative to the p-adic valuation) onto another such sequence. The
map σ → σ̂ yields an isomorphism Gp

∼= Gal(Lp/KP ). We define nP = [Lp : KP ] the
local degree of L/K at P . Then nP = |Gp| and nP |[L : K] for each P . Notice that the
fields {Lpi : 1 ≤ i ≤ g} are mutually KP -isomorphic, so nP does not depend on the
choice of the prime p of L which extends P .

The next theorem is of fundamental importance for the entire theory of simple
algebras over number fields.

Theorem 1.92 (Hasse Norm Theorem). Let L be a finite cyclic extension of the
number field K and let a ∈ K. For each prime P of K, we choose a prime p of L which
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extends P . Then

a ∈ NL/K(L) ⇐⇒ a ∈ NLp/KP (Lp) for each P.

The theorem asserts that a is a global norm (from L to K) if and only if at each P , a
is a local norm (from Lp to KP ). Notice that the theorem does not refer to algebras, it
concerns number fields only. In the case when the degree n of L/K is a prime number,
the Norm Theorem was known for a long time already, in the context of the reciprocity
law of class field theory. It has been included in Hasse’s class field report from 1930
where Hasse mentioned that it had first been proved by Furtwängler in 1902. For
quadratic fields (n = 2) the Norm Theorem had been given by Hilbert in 1897. In
1931 Hasse succeeded to generalize this statement to arbitrary cyclic extensions L/K
of number fields, not necessarily of prime degree.

If p and p′ are primes of L, both of which extend P , then there is a KP -isomorphism
Lp
∼= Lp′ , and therefore

NLp/KP (Lp) = NLp′/KP
(Lp′).

This shows that in determining local norms at P , it does not matter which prime p of
L we use, provided only that p is an extension of the valuation P from K to L.

It can be easily proved that every global norm is also a local norm at each P . The
difficult part of the proof of Hasse’s Norm Theorem is the converse: if a ∈ K is a local
norm at each P , then a is a global norm. In proving this, it is necessary to know that
A is a local norm at EVERY prime P of K, including the infinite primes. The theorem
breaks down if we drop the hypothesis that L/K be cyclic. There are counterexamples
even when L/K is abelian.

Corollary 1.93. Let A = (L/K, σ, a) be a cyclic algebra, where Gal(L/K) = 〈σ〉 and
a ∈ K∗. Then A ∼ K if and only if AP ∼ KP for each prime P of K.

The following result is also known as the “Local–Global Principle for algebras”.

Theorem 1.94 (Hasse–Brauer–Noether–Albert). Let A be a central simple K-
algebra. Then

A ∼ K ⇐⇒ AP ∼ KP for each prime P of K.

Remarks 1.95. (i) For each prime P ofK, there is a homomorphism Br(K) → Br(KP )
defined by KP ⊗K −. Let [A] ∈ Br(K) and mP be the local index of A at P . Then
mP = 1 almost everywhere, which means that [AP ] = 1 almost everywhere. Hence
there is a well defined homomorphism

Br(K) →
⊕
P

Br(KP ).
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The Hasse–Brauer–Noether–Albert Theorem is precisely the assertion that this map is
monic.

(ii) A stronger result, due to Hasse, describes the image of Br(K) in
⊕

P Br(KP )
by means of Hasse invariants. It can be shown that the following sequence is exact:

1 → Br(K) →
⊕
P

Br(KP ) inv→ Q/Z → 0, (1.7)

where inv denotes the Hasse invariant map, computed locally on each component:
inv =

⊕
invKp . From the exactness of the previous sequence (1.7) it follows the next

relation which is considered many times a formulation of the Hasse–Brauer–Noether–
Albert Theorem in terms of Hasse invariants:∑

P

inv[AP ] = 0, [A] ∈ Br(K). (1.8)

Of course, inv[AP ] = 0 if P is a complex prime, while inv[AP ] = 0 or 1/2 if P is a
real prime. The exactness of (1.7) also tells us that, other than (1.8), these are the
only conditions which the set of local invariants {inv[AP ]} must satisfy. In other words,
suppose that we are given in advance any set of fractions {xP } from Q/Z, such that
xP = 0 almost everywhere,

∑
xP = 0, xP = 0 if P is complex, xP = 0 or 1/2 if P is

real. Then there is a unique [A] ∈ Br(K) such that

inv[AP ] = xP for all P .

As a first application of Theorem 1.94, we give a simple criterion for deciding
whether a finite extension of the global field K splits a given central simple K-algebra.

Theorem 1.96. Let A be a central simple K-algebra. For each prime P of K, let
mP = ind[AP ]. Let L be any finite extension of K, not necessarily a Galois extension.
Then L is a splitting field extension for A if and only if for each prime p of L,

mP |[Lp : KP ], (1.9)

where P is the restriction of p to K.

Proof. If P is the restriction to K of a prime p of L, then Lp⊗KP AP ∼= Lp⊗L (L⊗K A).
If L splits A, then L ⊗K A ∼ L, whence Lp ⊗KP AP ∼ Lp, and so Lp splits AP and
relation (1.9) follows.

Conversely, suppose that (1.9) holds for each p. Then (for each p) Lp splits AP , by
Corollary 1.88. It follows that the central simple L-algebra L ⊗K A is split locally at
every prime p of L. Hence by Theorem 1.94, L ⊗K A ∼ L. Therefore, L splits A, as
claimed.
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Theorem 1.97. Let A be a central simple K-algebra with local indices {mP }, where
P ranges over the primes of K. Then exp[A] = lcm{mP }, the least common multiple
of the mP ’s.

Proof. By Theorem 1.94, [A]t = 1 in Br(K) if and only if [AP ]t = 1 in Br(KP ) for
each P . But exp[AP ] = mP , so [AP ]t = 1 if and only if mP |t, by each mP , hence
exp[A] = lcm{mP }.

Two of the major consequences of the Brauer–Hasse–Noether–Albert Theorem are
the following two theorems.

Theorem 1.98. Let [A] ∈ Br(K) have local indices {mP }. Then

ind[A] = exp[A] = lcm {mP }.

Theorem 1.99. Every central simple K-algebra is isomorphic to a cyclic algebra.

Remark 1.100. Theorem 1.99 has become known as the Brauer–Hasse–Noether The-
orem and was also called the “Main Theorem” in the theory of algebras. It appeared
for the first time in a special volume of Crelle’s Journal who was dedicated to Kurt
Hensel (the mathematician who had discovered p-adic numbers) on his 70th birthday,
since he was the chief editor of the journal at that time. The paper [BHN] had the
title: Proof of a Main Theorem in the theory of algebras and was originally stated as
follows:

Main Theorem. Every central division algebra over a number field is
cyclic (or as it is also said, of Dickson type).

The theorem asserts that every central division algebra over a number field K is
isomorphic to (L/K, σ, a) for a suitable cyclic extension L/K with generating auto-
morphism σ and suitable a ∈ K∗. Equivalently, A contains a maximal commutative
subfield L which is a cyclic field extension of K. The authors themselves, in the first
sentence of their joint paper from 1932, tell us that they see the importance of the
Main Theorem in the following two directions:

1. Structure of division algebras, since the theorem allows a complete classification
of division algebras over a number field by means of what today are called Hasse
invariants. Thereby the structure of the Brauer group of a number field is determined.
This was elaborated in Hasse’s subsequent paper from 1933 [Has2] which was dedicated
to E. Noether on the occasion of her 50th birthday on March 23, 1932. The splitting
fields of a division algebra can be explicitly described by their local behavior. This is
important for the representation theory of groups and had been the main motivation
for R. Brauer in this project.
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2. Beyond the theory of algebras, the theorem opened new directions into one of the
most exciting ares of algebraic number theory at the time, namely the understanding
of Class Field Theory (its foundation, its structure and its generalization) by means of
the structure of algebras. This had been suggested for some time by E. Noether.

Example 1.101. Let us determine some of the local Hasse invariants of the cyclic
algebra A = (L/K, σ, a), where Gal(L/K) = 〈σ〉 and a ∈ K∗. Let P denote a
prime of K, and p an extension of P to L. Then by [Rei, Proposition 30.8] we have
AP ∼ (Lp/KP , σ

k, a), where k is the least positive integer such that σk lies in the de-
composition group Gp of p relative to L/K. Of course, inv[AP ] = 0 whenever AP ∼ KP .

(i) If P is complex, or if both P and p are real, then AP ∼ KP .

(ii) Suppose that P is real, p complex. Then AP ∼ KP , if aP > 0, and AP ∼ H,
if aP < 0, where aP represents the image of a under the embedding K → KP . In the
latter case, inv[AP ] = 1

2 .

(iii) Let P be a finite prime, and assume that P is unramified in the extension
L/K. This is equivalent to assuming that Lp/KP is unramified. Since Gp = 〈σk〉, we
may choose r ∈ Z relatively prime to the local degree nP = |Gp|, such that σkr is the
Frobenius automorphism of the extension Lp/KP . We obtain

inv[AP ] = r · vP (a)/nP ,

where vP is the exponential P -adic valuation. If we reduce the fraction r · vP (a)/nP to
lowest terms, then mP is the denominator of the fraction thus obtained. In particular,
mP = 1 whenever vP (a) = 0. Thus, mP = 1 for every finite prime P , except possibly
for those primes P which ramify in L/K, or which contain a.

1.9 Schur groups

The simple components of a semisimple group algebra are called Schur algebras and
represent the elements of a subgroup in the Brauer group, called the Schur subgroup.
In this section we provide information about Schur algebras and cyclotomic algebras,
main ingredients in the Brauer–Witt Theorem. The study of the Schur subgroup of
the Brauer group was begun by Issai Schur (1875–1941) in the beginning of the last
century. The Schur group of a field K, denoted by S(K), is the answer to the following
question:

What are the classes in Br(K) occurring in the Wedderburn decomposition
of the group algebra KG?
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Considering an irreducible character of the group G that takes values in the field K,
the Wedderburn component of KG corresponding to the character is a central simple
K-algebra. The Schur group of K hence delimits the possibilities for the division ring
part of this component, independently on the group G under consideration. There
are interesting problems related to this topic such as to compute the associated Schur
subgroup S(K) of a given field K or to find properties of a given Schur algebra over K.
The Brauer–Witt Theorem has been the corner stone result for solving these questions.
It asserts that in order to calculate S(K), one may restrict to the classes in Br(K)
containing cyclotomic algebras.

In this section we consider a field K of characteristic 0. In fact, the Schur group
over fields of positive characteristic is trivial, as we already explained at the end of
section 1.5.

Definition 1.102. Let A be a central simple algebra over K. If A is spanned as a
K-vector space by a finite subgroup of its group of units A∗, then A is called a Schur
algebra over K. Equivalently, A is a Schur algebra over K if and only if A is a simple
component central over K of the group algebra KG for some finite group G. The Schur
subgroup, denoted by S(K), of the Brauer group Br(K), consists of those classes that
contain a Schur algebra over K. The fact that S(K) is a subgroup of Br(K) is a direct
consequence of the isomorphism KG⊗K KH ∼= K(G×H).

Definition 1.103. A cyclotomic algebra over K is a crossed product algebra
(K(ζ)/K, τ), where ζ is a root of 1, the action is the natural action of Gal(K(ζ)/K)
on K(ζ) and all the values of the 2-cocycle τ are roots of 1 in K(ζ).

Lemma 1.104. Let C1 = (K(ζn1)/K, τ1) and C2 = (K(ζn2)/K, τ2) be two cyclotomic
algebras over K, where ζni are roots of 1, for i = 1, 2.

Then the tensor product C1 ⊗K C2 is Brauer equivalent to a cyclotomic algebra
C = (K(ζm)/K, τ), where m is the least common multiple of n1 and n2 and τ is the
2-cocycle Inf(τi)Inf(τ2) for Inf = InfK(ζni )/K→K(ζm)/K .

Proof. Using Proposition 1.59 and InfK(ζni )/K→K(ζm)/K , we inflate the cyclotomic al-
gebras Ci, for i = 1, 2 to the crossed product algebras C ′i = (K(ζm)/K, Inf(τi)) that
are similar to Ci. Moreover, the algebras C ′i are cyclotomic algebras because the values
of its 2-cocycles Inf(τi) are roots of 1 in K(ζm) by the definition of the inflation.

Furthermore, using Proposition 1.55 we can now have the tensor product over K of
the cyclotomic algebras C ′1 and C ′2 and obtain an algebra which is Brauer equivalent to
the cyclotomic algebra C = (K(ζm)/K, Inf(τi)Inf(τ2)). Denote now by τ the 2-cocycle
Inf(τi)Inf(τ2) and obtain the desired result.
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Let us consider the set of all those elements of the Brauer group Br(K) which are
represented by a cyclotomic algebra over K. Then this is a subgroup of Br(K). One
can consider this subgroup and the Schur subgroup S(K) of Br(K). The following
proposition gives one inclusion between these two subgroups.

Proposition 1.105. A cyclotomic algebra over K is a Schur algebra over K.

Proof. Let A = (K(ζ)/K, τ) be a cyclotomic algebra over K, that is, a crossed product

K(ζ) ∗ατ Gal(K(ζ)/K) =
⊕

σ∈Gal(K(ζ)/K)

K(ζ)σ,

where ζ is a root of 1, the action α is the natural action of Gal(K(ζ)/K) on K(ζ) and all
the values of the 2-cocycle τ are roots of 1 in K(ζ). The values of the 2-cocycle τ and ζ
generate a finite cyclic group 〈ζ ′〉 in the group of units K(ζ)∗ and K(ζ ′) = K(ζ), where
ζ ′ is some root of unity, so we may assume that ζ = ζ ′. The Galois group Gal(K(ζ)/K)
can be regarded as a subgroup of the group of automorphisms of the cyclic group 〈ζ〉
and the values of the 2-cocycle belong to 〈ζ〉.

The elements σ, for σ ∈ Gal(K(ζ)/K) and ζ generate a finite subgroup G in the
multiplicative group of units of the algebra A. This happens because from the formulas
σζi = ζσσ and σβ = τ(σ, β)σβ one deduces that 〈ζ〉 is a normal subgroup of G and
the factor group G/〈ζ〉 is isomorphic to Gal(K(ζ)/K), hence one has the short exact
sequence

1 → 〈ζ〉 → G→ Gal(K(ζ)/K) → 1.

Since G spans A with coefficients in K, the center of A, it follows that A is a Schur
algebra over K.

The other inclusion, namely of S(K) in the subgroup formed by classes in Br(K)
that are represented by a cyclotomic algebra over K, is given by the Brauer–Witt
Theorem. In the 1950’s, R. Brauer and E. Witt independently found that questions
on the Schur subgroup are reduced to a treatment for a cyclotomic algebra. It follows
that S(K) = C(K) and so, one only has to study cyclotomic algebras over K on all
matters about the Schur subgroup S(K). A precise formulation of the theorem is the
following and a proof of Theorem 1.106 is given in the next chapter.

Theorem 1.106 (Brauer–Witt). A Schur algebra over K, that is, a simple compo-
nent of a group algebra KG with center K, is Brauer equivalent to a cyclotomic algebra
over K.

The elements of the Brauer group are characterized by invariants, hence it is rea-
sonable to ask whether the elements of S(K) are distinguished in Br(K) by behavior
of invariants. M. Benard had shown the following [Ben].
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Theorem 1.107. If [A] ∈ S(K), for K an abelian number field, p is a rational prime
and P1, P2 are primes of K over the prime p, then A⊗K KP1 and A⊗K KP2 have the
same index.

Furthermore, M. Benard and M. Schacher in [BeS] have shown the following.

Theorem 1.108. If [A] ∈ S(K) then:

(1) If the index of A is m then ζm is in K, where ζm is a primitive m-th root of unity.

(2) If P is a prime of K lying over the rational prime p and σ ∈ Gal(K/Q) with
ζσm = ζbm then the p-invariant of A satisfies: invP (A) ≡ b invPσ(A) mod 1.

If a central simple algebra A over K satisfies (1) and (2) above then A is said to
have uniformly distributed invariants. Based on this result, R.A. Mollin defined the
group U(K) as the subgroup of Br(K) consisting of those algebra classes which contain
an algebra with uniformly distributed invariants [Mol]. It follows from the Benard-
Schacher result that S(K) is a subgroup of U(K). General properties of U(K) and the
relationship between S(K) and U(K) are investigated in [Mol].

There are additional restrictions on the collection of local indices of central simple
algebras that lie in the Schur subgroup of an abelian number field. The following is a
consequence of results of Witt ([Wit], Satz 10 and 11). It also holds in the more general
setting of central simple algebras over K that have uniformly distributed invariants
[Mol].

Theorem 1.109. If K is an abelian number field, A ∈ S(K) and p is an odd prime,
then p ≡ 1 mod mp(A). If p = 2 then m2(A) ≤ 2.

The previous result is also a consequence of a result from [Jan1] and [Yam] describing
the Schur group of a subextension of a cyclotomic extension of the local field Qp, for p
an odd prime number.

Theorem 1.110. Let k be a subfield of the cyclotomic extension Qp(ζm), e = e(k/Qp)
and e0 the largest factor of e coprime to p. Then S(k) is a cyclic group of order
(p− 1)/e0 and it is generated by the class of the cyclic algebra (k(ζp)/k, σ, ζ), where ζ
is a generator of the group of roots of unity in k with order coprime to p.

For a field K and a positive integer n, let W (K,n) denote the group of roots of
unity in K whose multiplicative order divides some power of n. In particular, if p is a
prime, W (K, p) denotes the roots of unity of p-power order in K. The next result from
[Jan1] is a very useful reduction theorem.
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Theorem 1.111. Let K be a field of characteristic zero, L/K an extension and G =
Gal(L/K). Let n be a fixed integer and suppose that W (L, n) is finite. Let K ≤ F ≤ L

be such that

(i) Gal(L/F ) = 〈θ〉 is cyclic,

(ii) the norm map NL/F carries W (L, n) onto W (F, n).

Let (L/K,α) be a crossed product such that α ∈ W (L, n). Then there is a crossed
product (F/K, β), with β ∈ W (F, n) such that (L/K,α) and (F/K, β) lie in the same
class of the Brauer group of K.

To fix the notation, let q be a prime integer, Qq the complete q-adic rationals, and
k a subfield of Qq(ζm) for some positive integer m. The following lemma from [Jan1]
is helpful to compute the index of cyclic algebras over the local field k.

Proposition 1.112. Let E/k be a Galois extension with ramification index e = e(E/k)
and ζ be a root of unity in k having order relatively prime to q. Then

ζ = NE/k(x) for some x ∈ E ⇐⇒ ζ = ξe for ξ a root of unity in k.

Notice that by Corollary 1.57, having A = (E/k, σ, a) a cyclic algebra, exp[A] is
the least positive integer t such that at ∈ NE/k(E∗). Moreover, if exp[A] = [E : k],
then A is a division algebra. This is a corollary of Theorem 1.56 which says that
(E/k, σ, a) ∼ k if and only if a ∈ NE/k(E∗).) Proposition 1.112 gives a criterion to
decide when at ∈ NE/k(E∗), for a a root of 1, that is, exactly when at = ξe(E/k), for ξ
a root of 1 in k.

By the Brauer–Witt Theorem, every Schur algebra is equivalent to a cyclotomic
algebra and, if the center is a number field, then it is isomorphic to a cyclic algebra.
We call cyclic cyclotomic algebra the algebra with these two features. Let K be a
number field.

Definition 1.113. A cyclic cyclotomic algebra over K is a cyclic algebra that can be
presented in the form (K(ζ)/K, σ, ξ), where ζ and ξ are roots of unity.

A Schur algebra over K is cyclic cyclotomic algebra if and only if it is generated
over K by a metacyclic group if and only if it is a simple component of a group algebra
KG for G a metacyclic group (see e.g. [OdRS1]).

In Chapter 6 we will study some properties of these algebras. The next proposition
gives information about the local indices of cyclic cyclotomic algebras.
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Proposition 1.114. Let A = (K(ζn)/K, σ, ζm), where K is a number field and ζn and
ζm are roots of unity of orders n and m respectively. If p is a prime of K, then mp(A)
divides m and if mP (A) 6= 1 and p is a finite prime then p divides n.

Proof. [A]m = [(K(ζn)/K, σ, 1)] = 1, hence mp(A) divides m(A) which divides m.
Furthermore, if p - n, then K(ζn)/K is unramified at p and vp(ζm) = 0 since ζm is a
unit in the ring of integers of K. By Theorem 1.76, the equation NKp(ζn)/Kp(x) = ζm

has a solution in K(ζn) and so mp(A) = 1.

Notes on Chapter 1

This chapter mainly contains standard material on the topics listed as sections of
the chapter. The references used to collect the definitions and results presented in this
chapter are mainly [Bro, CR, FD, Hup, Isa, Pie, Rei, Seh, Ser].

Now we give a few biographical notes about the main contributors to the develop-
ment of the theory of central simple algebras, principal structures in this book. We
reserve some space at the end of the next chapter for R. Brauer.

Emmy Noether (1882–1935) had a great influence on the development of many of
the results presented in this chapter. She strongly proposed that the non-commutative
theory of algebras should be used for a better understanding of commutative algebraic
number theory, in particular class field theory. She also had an important contribution
to the theory of algebras and an important role, together with R. Brauer and H. Hasse,
in the proof of the “Main Theorem in the theory of algebras”.

Helmut Hasse (1898–1979) was the one who actually wrote the article [BHN] with
the proof of the Main Theorem. He also established a collaboration with A. Albert
who had, mainly independently, an important contribution to the development of the
theory of algebras.

A. Adrian Albert (1905–1972) was a disciple of L.E. Dickson. Albert remained
interested for the rest of his career with the crossed product algebras he had studied
in his earliest work.



Chapter 2

Wedderburn decomposition of

group algebras

Let F be a field of characteristic zero and G a finite group. By the Maschke Theorem,
the group algebra FG is semisimple and then FG is a direct sum of simple algebras.
This decomposition is usually known as the Wedderburn decomposition of FG because
the Wedderburn–Artin Theorem describes the simple factors, known as the Wedderburn
components of FG, as matrix algebras over division rings.

The Wedderburn decomposition of a semisimple group algebra FG is a helpful tool
for studying several problems. For example, a good description of the Wedderburn
components has applications to the study of units [JL, JLdR, JdR, LdR, dRR, RitS2,
Seh], automorphisms of group rings [CJP, Her3, OdRS2] or in coding theory if F is
a finite field [KS, PH]. The computation of the Wedderburn decomposition of group
algebras and, in particular, of the primitive central idempotents, has attracted the
attention of several authors [BP, BdR, JLPo, OdR1, OdRS1].

In this chapter we present an algorithmic method to compute the Wedderburn
decomposition of FG, for G an arbitrary finite group and F an arbitrary field of char-
acteristic 0, which is based on a constructive approach of the Brauer–Witt Theorem.
The Brauer–Witt Theorem states that the Wedderburn components of FG (i.e. the
factors of its Wedderburn decomposition) are Brauer equivalent to cyclotomic algebras
(see [Yam] or the original papers of R. Brauer [Bra2] and E. Witt [Wit]). By the
computation of the Wedderburn decomposition of FG we mean the description of its
Wedderburn components as Brauer equivalent to cyclotomic algebras. The Brauer–
Witt Theorem is also a standard theoretical method for computing the Schur index of
a character in the above situation. See [Shi], [Her2], [Her4] or [Her5] for an approach
that studies this aspect of the theorem, i.e. the computation of the Schur index of the
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simple components.
The computation of the Wedderburn decomposition of FG (i.e. the precise descrip-

tion of a list of cyclotomic algebras Brauer equivalent to the simple factors of FG) for a
given semisimple group algebra FG is not obvious from the proofs of the Brauer–Witt
Theorem available in the literature (e.g. see [Yam]). The proof of the Brauer–Witt
Theorem presented in [Yam] relies on the existence, for each prime integer p, of a p-
elementary subgroup of G that determines the p-part of a given simple component up
to Brauer equivalence in the corresponding Brauer group. Our approach of the proof of
the theorem uses strongly monomial characters or strongly monomial subgroups, that
allow a good description of the simple algebras, instead of p-elementary subgroups.
Moreover, with this approach the number of subgroups to look for is larger and eventu-
ally one could obtain easier a description of a simple component or even a description
in which it is not necessary to consider each prime separately as it has to be done in
general.

The identities of the Wedderburn components of FG are the primitive central
idempotents of FG and can be computed from the character table of the group G.
A character-free method to compute the primitive central idempotents of QG for G
nilpotent has been introduced in [JLPo]. In [OdRS1], it was shown how to extend
the methods of [JLPo] to compute not only the primitive central idempotents of QG,
if G is a strongly monomial group, but also the Wedderburn decomposition of QG.
See section 2.1 for the definition of strongly monomial groups, where we also present
several results on strongly monomial characters, mainly from [OdRS1]. This approach
was generalized to arbitrary groups by using the Brauer–Witt Theorem in [Olt2]. We
present this method in Section 2.2 of this chapter and we give the algorithmic proof of
the Brauer–Witt Theorem in four steps. In section 2.3 we give a theoretical algorithm
for the computation of the Wedderburn decomposition of a semisimple group algebra
based on the algorithmic proof presented in the previous section.

2.1 Strongly monomial characters

The problem of computing the Wedderburn decomposition of a group algebra leads
naturally to the problem of computing the primitive central idempotents of QG. The
classical method used to do this is to calculate the primitive central idempotents e(χ)
of CG associated to the irreducible characters of G and then sum up all the primitive
central idempotents of the form e(σ ◦ χ) with σ ∈ Gal(Q(χ)/Q) and χ ∈ Irr(G) (see
Proposition 1.24).

Recently, Jespers, Leal and Paques introduced a method to compute the primitive
central idempotents of QG for G a finite nilpotent group that does not use the character
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table of G [JLPo]. Olivieri, del Ŕıo and Simón pointed out that the method from
[JLPo] relies on the fact that nilpotent groups are monomial and used an old theorem
of Shoda (see Theorem 1.26) to give an alternative presentation [OdRS1]. In this way,
the method introduced by Jespers, Leal and Paques, that shows how to produce the
primitive central idempotents of QG from certain pairs of subgroups (H,K) of G,
was simplified in [OdRS1] and the mentioned pairs (H,K) were named Shoda pairs
of G. Furthermore, Olivieri, del Ŕıo and Simón noticed that if a Shoda pair satisfies
some additional conditions, then one can describe the simple component associated to
the given primitive central idempotent, denoted e(G,H,K), as a specific cyclotomic
algebra. This gives a constructive means of the Brauer–Witt Theorem for computing
the Wedderburn decomposition of every semisimple group algebra, as we are going to
see in this section.

The following results are mostly from [OdRS1] and play an important role in our
proof of the Brauer–Witt Theorem. We present a method to calculate the primitive
central idempotents of QG in the case of finite monomial groups given in [OdRS1]. The
primitive central idempotent of QG associated to a monomial complex character of G
is of the form αe(G,H,K), for α ∈ Q and (H,K) a pair of subgroups of G that satisfy
some easy to check conditions. We call these pairs of subgroups Shoda pairs due to
their relation with a theorem of Shoda (Theorem 1.26).

Now we introduce some useful notation, mainly from [JLPo] and [OdRS1]. If K �

H ≤ G then let ε(K,K) = K̂ = 1
|K|
∑

k∈K k ∈ QK, and if H 6= K then let

ε(H,K) =
∏

M/K∈M(H/K)

(K̂ − M̂),

where M(H/K) denotes the set of all minimal normal subgroups of H/K.
Furthermore, let e(G,H,K) denote the sum of the different G-conjugates of

ε(H,K) in QG, that is, if T is a right transversal of CenG(ε(H,K)) in G, then
e(G,H,K) =

∑
t∈T ε(H,K)t, where CenG(ε(H,K)) is the centralizer of ε(H,K) in

G. Clearly, e(G,H,K) is a central element of QG. If the G-conjugates of ε(H,K) are
orthogonal, then e(G,H,K) is a central idempotent of QG.

A Shoda pair of G is a pair (H,K) of subgroups of G with the properties that K�H

and there is ψ ∈ Lin(H,K) such that the induced character ψG is irreducible, where
Lin(H,K) denotes the set of linear characters of H with kernel K. Using Theorem 1.26,
it is easy to show that a pair (H,K) of subgroups of G is a Shoda pair if and only if
K � H, H/K is cyclic, and if g ∈ G and [H, g] ∩ H ⊆ K then g ∈ H. Moreover, if
(H,K) is a Shoda pair of G, there is a unique rational number α such that αe(G,H,K)
is a primitive central idempotent of QG [OdRS1].
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A strong Shoda pair of G is a Shoda pair (H,K) of G such that H � NG(K) and
the different conjugates of ε(H,K) are orthogonal. If (H,K) is a strong Shoda pair
then e(G,H,K) is a primitive central idempotent of QG.

If (H,K) is a strong Shoda pair of G and ψ1, ψ2 ∈ Lin(H,K), then A(ψG1 ,Q) =
A(ψG2 ,Q), so we denote A(G,H,K) = A(ψG,Q) for any ψ ∈ Lin(H,K). In other
words, the sum of the different characters induced by the elements of Lin(H,K) is
an irreducible rational character of G and A(G,H,K) is the simple component of QG
associated to this character. Consider now ψ ∈ Lin(H,K) and let ψ(h) = ζm, an m-th
primitive root of unity, where H/K = 〈h〉 and m = [H : K]. Denote by θ the induced
character ψG. Notice that the character θ depends not only on the strong Shoda pair
(H,K), but also on the choice of ζm. We refer to any of the possible characters θ = ψG

with ψ ∈ Lin(H,K) as a character induced by the strong Shoda pair (H,K). If θ and
θ′ are two characters of G induced by (H,K) (with different choice of m-th roots of
unity) then eQ(θ) = e(G,H,K) = eQ(θ′), i.e. θ and θ′ are Q-equivalent. Two strong
Shoda pairs of G are said to be equivalent if they induce Q-equivalent characters.

Definition 2.1. An irreducible monomial (respectively strongly monomial) character
χ of G is a character of the form χ = ψG for ψ ∈ Lin(H,K) and some Shoda (respec-
tively strong Shoda) pair (H,K) of G, or equivalently A(χ,Q) = A(G,H,K) for some
Shoda (respectively strong Shoda) pair (H,K) of G. Then we say that A(G,H,K) is
a monomial (respectively strongly monomial) component of QG.

Recall that a finite group G is monomial if every irreducible character of G is
monomial. Similarly, we say that G is strongly monomial if every irreducible character
of G is strongly monomial. It is well known that every abelian-by-supersolvable group
is monomial, and recently it was proved that it is even strongly monomial [OdRS1].
In the same article it is shown that every monomial group of order less than 500 is
strongly monomial. We recently found using the package wedderga that all monomial
groups of order smaller than 1000 are strongly monomial and the smallest monomial
non-strongly monomial group is a group of order 1000, the 86-th one in the library
of the GAP system. However, there are irreducible monomial characters that are not
strongly monomial in groups of smaller order. The group of the smallest order with
such irreducible monomial non-strongly monomial characters has order 48.

If (H,K) is a strong Shoda pair of a group G, then one can give a description of
the structure of the simple component A(G,H,K) as a matrix algebra over a crossed
product of an abelian group by a cyclotomic field with action and twisting that can
be described with easy arithmetic using information from the group G. Namely, in
[OdRS1, Proposition 3.4] it is shown the following.
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Theorem 2.2. Let (H,K) be a strong Shoda pair of G and m = [H : K], N = NG(K),
n = [G : N ], hK a generator of H/K and n, n′ ∈ N . Then

A(G,H,K) 'Mn(Q(ζm) ∗ατ N/H),

where the action α and the twisting τ are given as follows: α(nH) = ζim, if n−1hnK =
hiK and τ(nH, n′H) = ζjm, if [n, n′]K = hjK and i, j ∈ Z.

Proof. Let ε = ε(H,K), e = e(G,H,K) and T a right transversal of N in G, so that e =∑
g∈T ε

g. First we prove that CenG(ε) = NG(K) and e is a primitive central idempotent
of QG. Since H �NG(K), it follows that NG(K) ≤ CenG(ε) because εg = ε(Hg,Kg),
for all g ∈ G. Now let g ∈ CenG(ε) and k ∈ K. Then g−1kgε = g−1kεg = g−1εg = ε,
so g−1kg ∈ K, hence CenG(ε) ⊆ NG(K). Furthermore, the action of N/H is faithful
since (H,K) is a strong Shoda pairs, hence if g ∈ N \ H, then [H, g] ∩ H 6⊆ K. By
Theorem 1.42, the algebra QGe is simple and e is a primitive central idempotent.

The elements of {εg|g ∈ G} are orthogonal, hence QGe =
⊕

g∈T QGεg. If g ∈ G,
then the map given by h 7→ hg is an isomorphism between QGε and QGεg. Then

QGQGe =
⊕

g∈T QGεg ∼= (QGε)n. We have

QGe ∼= EndQG(QGe) ∼= EndQG(QGε)n ∼= Mn(EndQG(QGε)) ∼= Mn(εQGε).

But εQGε = QNε because, if g ∈ G \N then εgε = gg−1εgε = gεgε = 0. Furthermore,
ε is a central idempotent in QN , so that εQNε = QNε.

So far we obtained QGe ∼= Mn(QNε). To finish the proof we show that QNε ∼=
Q(ζm) ∗στ N/H. Using the crossed product structure QN ∼= QH ∗ N/H, one has
that QNε = QHε ∗σ′τ ′ N/H is a crossed product of N/H over the field QHε. Since
H/K is cyclic, ε = eQ(ψ), where ψ is a linear character of H with kernel K, hence
QHε = QHeQ(ψ) ∼= Q(ζm) and the isomorphism of QHε to Q(ζm) is given by K 7→ 1
and h 7→ ζm, where H = 〈K,h〉. The isomorphism QHε ∼= Q(ζm) extends naturally to
an N/H-graded isomorphism

QHε ∗σ′τ ′ N/H ∼= Q(ζm) ∗στ N/H,

where σ, τ are the action and the twisting σ : N/H → Aut(Q(ζm)), τ : N/H×N/H →
U(Q(ζm)) given by σn(ζm) = ζim, if hnK = hiK and τ(n, n′) = ζjm, if [n, n′]K = hjK,

for i, j ∈ Z. So we have that QNε ∼= Q(ζm) ∗στ N/H.

The action σ and the twisting τ of the crossed product are the action and the
twisting associated to the short exact sequence of the group extension

1 → H/K ∼= 〈ζm〉 → N/K → N/H → 1.

The action is provided by the action of N/K on H/K by conjugation, that gives the
action σ of N/K in Aut(Q(ζm)).
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2.2 An algorithmic approach of the Brauer–Witt Theo-

rem

The Brauer–Witt Theorem states that the simple component A(χ, F ) corresponding to
the irreducible character χ of the group G over the field F is a simple algebra which is
Brauer equivalent to a cyclotomic algebra over its center F = F (χ), that is, a crossed
product algebra (F(ζ)/F, τ), with ζ a root of unity and all the values of the 2-cocycle
τ roots of unity in F(ζ).

In this section we present a new proof of the Brauer–Witt Theorem that gives a
method to explicitly construct the above cyclotomic algebra. Our proof of the Brauer–
Witt Theorem is divided into four steps that one could name as: constructible descrip-
tion for the strongly monomial case, reduction to the strongly monomial case, existence
of strongly monomial characters and change of field.

First we present the strongly monomial case, that is, the constructible description of
the simple component associated to a strongly monomial character. The reduction of the
problem to strongly monomial subgroups is presented next. The reduction step consists
of describing the p-part of A(χ, F ) as the p-part of the algebra A(θ, F ) associated to a
strongly monomial character θ of a subgroup of G. Then we are faced with the problem
of showing that the desired strongly monomial character θ does exist, for every prime p.
One of the conditions on θ in the reduction step is that F(θ) = F, and it is not always
true that such a character with this condition exists. However, it does exist a character
θ such that F(θ) ⊆ Lp, where Lp is the p′-splitting field of A(χ, F ) (see 3.2. for the
definition). The proof of the existence of the desired strongly monomial character uses
the Witt–Berman Theorem. This step is the third step. So we have gone up to each
Lp to describe the p-part and now we have to return to the initial field F . The way
back is the change of field part which is obtained through the corestriction map.

The strongly monomial case

The following proposition provides the constructible Brauer–Witt Theorem for strongly
monomial characters. It gives a precise description of the simple algebra associated
to a strongly monomial character as a matrix algebra of a cyclotomic algebra. In this
particular case, one obtains the description of the strongly monomial simple component
at once, without the need to follow the next steps as it has to be done in the general
case.

Proposition 2.3. Let (H,K) be a strong Shoda pair of the group G, ψ ∈ Lin(H,K),
N = NG(K), m = [H : K] and n = [G : N ]. Then N/H ' Gal(Q(ζm)/Q(ψG)).
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Furthermore, if F is a field of characteristic 0, F = F (ψG), d = [Q(ζm):Q(ψG)]
[F(ζm):F] and

τ ′ is the restriction to Gal(F(ζm)/F) of the cocycle τ associated to the natural extension

1 → H/K ' 〈ζm〉 → N/K → N/H → 1 (2.1)

then
A(ψG, F ) 'Mnd(F(ζm)/F, τ ′). (2.2)

Proof. It is proved in Theorem 2.2 that

A(ψG,Q) 'Mn(Q(ζm) ∗ατ N/H),

where the action α is induced by the natural conjugation map f : N → Aut(H/K) '
Gal(Q(ζm)/Q) and the twisting is the cocycle τ given by the exact sequence (2.1).
Since H/K is maximal abelian in N/K, the kernel of f is H. The center of A(ψG,Q)
is Q(ψG), hence f(N/H) ⊆ Gal(Q(ζm)/Q(ψG)) and the isomorphism holds because
[N : H] = deg(A(ψG,Q))

n = [Q(ζm) : Q(ψG)].
Furthermore, [A(ψG, F )] = ResQ(ψG)→F([A(ψG,Q)]) = [(F(ζm)/F, τ ′)] and

deg(A(ψG, F ))
deg(F(ζm)/F, τ ′)

=
[G : H]

[F(ζm) : F]
=
n[Q(ζm) : Q(ψG)]

[F(ζm) : F]
= nd,

which yields the isomorphism A(ψG, F ) 'Mnd(F(ζm)/F, τ ′).

Remark 2.4. Notice that the description in (2.2) can be given by the numerical infor-
mation of a 4-tuple:

(nd,m, (oi, αi, βi)1≤i≤l, (γij)1≤i<j≤l), (2.3)

where n, d andm are as in Proposition 2.3 and the tuples of integers (αi)1≤i≤l, (βi)1≤i≤l,
(γij)1≤i<j≤l satisfy the relations: xgi = xαi , goii = xβi , [gj , gi] = xγij , for x a generator
of H/K, g1, . . . , gl ∈ N/K such that N1/H = 〈g1〉 × · · · × 〈gl〉 (with gi the image
of gi ∈ N/K in N/H), where N1/H is the image of Gal(F(ζm)/F) in N/H under the
isomorphism N/H ' Gal(Q(ζm)/Q(ψG)) and oi is the order of gi, for every i = 1, . . . , l.

Thus A(ψG, F ) 'Mnd(A), where A is the algebra defined by the following presen-
tation:

A = F(ζm)(g1, . . . , gl|ζgim = ζαim , g
oi
i = ζβim , gjgi = gigjζ

γij
m , 1 ≤ i < j ≤ l). (2.4)

Reduction to strongly monomial characters

Let the finite group G have exponent n. For every irreducible character χ of G and
every prime p, the p′-splitting field of the simple component A(χ, F ) over F = F (χ)
is the unique field Lp between F and F(ζn) such that [F(ζn) : Lp] is a power of p and
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[Lp : F] is relatively prime to p. That is, the field Lp is the field corresponding to the
p-Sylow subgroup of Gal(F(ζn)/F) by the Galois correspondence.

Let D be a division algebra central over F with index m that has the following
factorization into prime powers m = pa1

1 p
a2
2 . . . pass . Then D is F-isomorphic to the

tensor product D1 ⊗D2 ⊗ · · · ⊗Ds, where Di is a division algebra central over F with
index paii for every i from 1 to s [Pie]. We call the algebra class [Di] the pi-part of
[D] and we denote it by [D]pi . If p - m, then let the p-part of [D] be equal to [F],
the identity in the Brauer group of F. Recall that mF(χ) denotes the Schur index of χ
over F, which coincides with the Schur index of the simple component A(χ, F ) of FG
corresponding to χ. Furthermore, mF(χ)p is the p-part of the Schur index of χ over F.

The following proposition from [Yam, Proposition 3.8] gives the reduction part (up
to Brauer equivalence) of the computation of a simple p-component [A(χ, F )]p, for
every prime p, to the computation of the p-part corresponding to a suitable subgroup
of G and an irreducible character of it that verifies some additional conditions.

Proposition 2.5. Let G be a finite group of exponent n, χ an irreducible character of
G, F a field of characteristic 0 and F = F (χ). Let M be a subgroup of G and θ an
irreducible character of M such that for each prime p

(∗) (χM , θ) is coprime to p and θ takes values in Lp, the p′-part of F (ζn)/F (χ).

Then one has [A(χ, F )]p = [A(θ, F )]p. Moreover, mF(χ)p = mLp(θ).

Proof. By Theorem 1.21, F(ζn) is a splitting field for FG. Thus, F(ζn) is a splitting
field for both A(χ,F) and A(θ,F). Let Lp be the p′-splitting field of the simple algebra
A(χ,F). Then the exponents of A(χ,Lp) and A(θ, Lp) in Br(Lp) are both powers of p.
Furthermore, if χ is the character given by χ(g) = χ(g−1), for g ∈ G, then

[A(χ⊗ χ,Lp)] = [A(χ,Lp)] · [A(χ,Lp)] = [Lp].

Hence, the character χ ⊗ χ of G × G is realized in Lp, so the character (χM ) ⊗ χ of
M × G is also realized in Lp. The character θ ⊗ χ of M × G is irreducible and by
hypothesis Lp(θ ⊗ χ) ⊆ Lp. Let t = (χM , θ) such that (p, t) = 1, by hypothesis. Then

((χM )⊗ χ, θ ⊗ χ)M×G = (χM , θ)M · (χ, χ)G = (χM , θ) = t.

Hence the multiplicity of the character θ ⊗ χ of M ×G in the decomposition as a sum
of irreducible characters of (χM ) ⊗ χ is t and therefore the Schur index mLp(θ ⊗ χ)
divides t.

Since [A(θ ⊗ χ,Lp)] = [A(θ, Lp)] · [A(χ,Lp)] and both exponents of [A(θ, Lp)] and
[A(χ,Lp)] are powers of p, it follows that the exponent of [A(θ⊗χ,Lp)] is a power of p.
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Furthermore, the exponent of [A(θ ⊗ χ,Lp)] divides the Schur index mLp(θ ⊗ χ) that
divides t. Because (p, t) = 1, one has mLp(θ ⊗ χ) = 1 and [A(θ, Lp)] = [A(χ,Lp)]−1 =
[A(χ,Lp)]. By the injectivity of Res : Br(F)p → Br(Lp)p, one obtains that [A(χ,F)]p =
[A(θ,F)]p.

Furthermore, (mF(χ))p = m([A(χ,F)]p) = m([A(χ,Lp)]) = m([A(θ, Lp)]) =
mLp(θ).

Existence of suitable strongly monomial characters

Proposition 2.5 states that the p-part of A(χ, F ) is Brauer equivalent to the p-part
of A(θ, F ), provided (χM , θ) is coprime to p and χ and θ take values in F. If θ is
a strongly monomial character then this p-part would be described as explained in
Proposition 2.3. Therefore, one would like to show that such a character θ does exist
for every prime p dividing the Schur index of χ. However, this is not true. Alternatively,
using the following Proposition 2.6, which is a corollary of the Witt–Berman Theorem
(Theorem 1.32), one can find such a character θ if F is replaced by Lp, the p′-splitting
field of A(χ, F ).

Proposition 2.6. Every F-character of G is a Z-linear combination
∑

i aiθ
G
i , where

every ai ∈ Z and each θi is an irreducible character of a strongly monomial subgroup
of G.

Proof. By the Witt–Berman Theorem (Theorem 1.32), every F-character of G is a Z-
linear combination

∑
i aiθ

G
i , where the θi’s are irreducible F-characters of F-elementary

subgroups Hi of G. In particular, the Hi’s are cyclic-by-pi-groups for some primes pi,
and by [OdRS1] each Hi is strongly monomial.

The next proposition establishes the existence of a strongly monomial subgroup and
a character with the desired properties that appear in Proposition 2.5, relative to the
field Lp, the p′-splitting field of A(χ, F ).

Proposition 2.7. Let the finite group G have exponent n, ζ = ζn and χ be an irre-
ducible F-character of G. For every prime p, there exist a strongly monomial subgroup
M of G and an irreducible character θ of M satisfying relation (∗) for every prime p:

(∗) (χM , θ) is coprime to p and θ takes values in Lp, the p′-part of F (ζn)/F (χ).

Proof. Let b be a divisor of |G| such that |G|/b is a power of p and (p, b) = 1. Then,
by Proposition 2.6, b1G =

∑
i ciλ

G
i , where each λi is an F-character of a subgroup Mi

of G which is strongly monomial. Furthermore,

bχ =
∑
i

ciχλ
G
i =

∑
i

ci(χMiλi)
G.
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Moreover F(χMi) ⊆ F(χ) ⊆ F, F(λi) ⊆ F for every i and F(ζ) is a splitting field of
every subgroup of G. Thus, if θj is a constituent of χMiλi, that is, θj appears in the
decomposition of χMiλi as a sum of irreducible characters, then (θj , λi) is multiple of
[F(θj) : F] and therefore

bχ =
∑
j

dj [F(θj) : F]θGj ,

where each θj is an irreducible character in a group M ′
j which is strongly monomial.

Then
b = (χ, bχ) =

∑
j

dj [F(θj) : F](χ, θGj ).

Since b is not multiple of p, there is j such that if M = M ′
j and θ = θj then [F(θ) :

F](χ, θG) is not multiple of p. Thus (χ, θG) is not multiple of p. Since F ⊆ F(θ) ⊆ F(ζ)
and [F(ζ) : Lp] is a prime power, one has that F(θ) ⊆ Lp.

Proposition 2.7 proves that, for each prime p, there exists a strongly monomial
character θ of a subgroup M of G that takes values in Lp and (χM , θ) is coprime to p.
Hence, from Proposition 2.5 it follows that A(χ,Lp) is Brauer equivalent to A(θ, Lp),
because the index of A(χ,Lp) is a power of p.

Observe that it was proved that the subgroup M in Proposition 2.7 can be taken
to be strongly monomial. Moreover, using the Witt–Berman Theorem, one can prove
that M could be taken p-elementary. However, for practical reasons, it is better not
to impose M to be p-elementary or even strongly monomial, because the role of M , or
better said θ, is to use the presentation of A(θ, Lp) as a cyclotomic algebra given in
Proposition 2.3 in order to describe the p-part of A(χ,Lp), which is Brauer equivalent to
A(θ, Lp) by Proposition 2.5. So, by not imposing conditions on M but on θ, a strongly
monomial character in a possibly non-strongly monomial group, the list of possible θ’s
is larger and it is easier to find the desired strongly monomial character. The proof of
Proposition 2.7 does not provide a constructive way to find the character θ, but this is
clearly a finite computable searching problem. One only needs to compute Lp, an easy
Galois theory problem, and then run through the strongly monomial characters θ of
the subgroups M of G computing (χM , θ) and F(θ) until the character satisfying the
hypothesis of Proposition 2.7 is found. The search of the strongly monomial characters
of a given group can be performed using the algorithm explained in [OdR1].

Change of field. The corestriction

In this last step we complete the proof of the Brauer–Witt Theorem. Moreover, using
an explicit formula for the corestriction CorLp→F on 2-cocycles, where Lp is the p′-
splitting field of A(χ, F ), and the description of the simple components A(χ,Lp) as
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algebras Brauer equivalent to precise cyclotomic algebras, we obtain a description of
the simple algebra A(χ, F ) as Brauer equivalent to a cyclotomic algebra.

The proof of the Brauer–Witt Theorem in standard references like [Yam] does not
pay too much attention to effective computations of the corestriction CorLp→F. Un-
likely, we are interested in explicit computations of the cyclotomic form of an element
of the Schur subgroup. After decomposing the simple algebra A(χ, F ) in p-parts and
describing every simple p-part as Brauer equivalent over Lp to a cyclotomic algebra
[(F(ζ)/Lp, τ)], the corestriction allows us to return to the initial field F. Hence, for
every prime p, we have

CorLp→F([(F(ζ)/Lp, τ)]) = [(F(ζ)/F,CorLp→F(τ))].

A formula for the action of the corestriction on 2-cocycles is given in [Wei2, Proposi-
tion 2-5-2]. This formula takes an easy form in our situation, because we only need to
apply CorLp→F to a 2-cocycle τ that takes values in a cyclotomic extension F(ζ) of F
such that [Lp : F] and [F(ζ) : Lp] are coprimes. In particular, H = Gal(F(ζ)/Lp), the
Sylow p-subgroup of the abelian group G, has a complement H ′ = Gal(F(ζ)/L′p) on
G = Gal(F(ζ)/F). We can formulate the following proposition.

Proposition 2.8. Let E/F be a finite Galois extension and F ≤ L,L′ ≤ E fields such
that L ∩ L′ = F and LL′ = E. Let G = Gal(E/F), H = Gal(E/L), H ′ = Gal(E/L′)
and τ ∈ H2(H,E∗) a 2-cocycle of H. Then G ' H ×H ′ and

(CorL→F(τ))(g1, g2) = NE
L′(τ(π(g1), π(g2))), (2.5)

where π : G → H denotes the projection, NE
L′ is the norm function of the extension

L′ ≤ E and g1, g2 ∈ G. In particular, if [(E/L, τ)] is a cyclotomic algebra and E is a
cyclotomic extension of F, then

CorL→F([(E/L, τ)]) = [(E/F,CorL→F(τ))]

is a cyclotomic algebra.

Proof. By [Spi, Theorem 22.17], H ' Gal(L′/F) and H ′ ' Gal(L/F) and the mapping
ϕ : G → Gal(L′/F) × Gal(L/F) given by σ 7→ (σ|L′ , σ|L) is an isomorphism, hence
G ' H × H ′. Then, using H ′ as a transversal of H in G, the formula from [Wei2,
Proposition 2-5-2] for the corestriction in the particular case of the 2-cocycle τ ∈
H2(H,E∗) takes the following form, where π′ : G→ H ′ denotes the projection:
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CorL→F(τ)(g1, g2) =
∏
t∈H′

t−1τ(tg1π′(tg1)−1, π′(tg1)g2π′(tg1g2)−1)

=
∏
t∈H′

t−1τ(π(tg1), π(π′(tg1)g2))

=
∏
t∈H′

t−1τ(π(g1), π(g2)) = NE
L′(τ(π(g1), π(g2))).

We now present a proof of the Brauer–Witt Theorem as an easy consequence of the
previous steps of the algorithmic proof.

Theorem 2.9 (Brauer–Witt). If G is a finite group of exponent n, χ is an irreducible
character of G, F is a field of characteristic 0 and F = F (χ), then the simple component
A(χ, F ) is Brauer equivalent to a cyclotomic algebra over F.

Proof. Let p be an arbitrary prime. Using the restriction homomorphism, we obtain
that ResF→Lp([A(χ, F )]p) = [A(χ,Lp)] = [C], that is, a cyclotomic algebra over Lp,
the p′-splitting field of A(χ, F ). Proposition 2.8 implies that CorLp→F([C]) is a class of
Br(F) represented by a cyclotomic algebra over F. Let [F(ζn) : Lp] = pα and [Lp : F] =
m 6≡ 0(mod p). Let a be an integer such that am ≡ 1(mod pα). Then, using the relation
between the restriction and the corestriction given by CorLp→F ◦ ResF→Lp([A(χ, F )]p) =
([A(χ, F )]p)m, we obtain

(CorLp→F([C]))a = (CorLp→F ◦ ResF→Lp([A(χ, F )]p))a

= ([A(χ, F )]p)am = [A(χ, F )]p.

Because p is arbitrary and the tensor product of cyclotomic algebras over F is Brauer
equivalent to a cyclotomic algebra by Lemma 1.104, we conclude that the class [A(χ, F )]
is represented by a cyclotomic algebra over F.

Notice that in the proof of Theorem 2.9 we mentioned that the tensor product of
cyclotomic algebras over F is Brauer equivalent to a cyclotomic algebra. The proof of
this claim is also constructible as it appears in Lemma 1.104. Namely, by inflating two
cyclotomic algebras, say C1 = [(F(ζn1)/F, τ1)] and C2 = [(F(ζn2)/F, τ2)], to a common
cyclotomic extension, for example F(ζn) for n the least common multiple of n1 and n2,
one may assume that n1 = n2 and hence C1 ⊗ C2 ∼ (F(ζn)/F, τ1τ2).

This algorithmic proof shows that one may describe A(χ, F ) by making use of
Proposition 2.3 to compute its p-parts up to Brauer equivalence. In other words, each
p-part of A(χ, F ) can be described in terms of ALp(M,H,K), where (H,K) is a suitable
strong Shoda pair of a subgroup M of G. A strong Shoda triple of G is by definition
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a triple (M,H,K), where M is a subgroup of G and (H,K) is a strong Shoda pair of
G. Notice that the p-part of A(χ, F ) is Brauer equivalent to CorLp→F (χ)(A(θ, Lp))⊗r,
where r is an inverse of [Lp : F (χ)] modulo the maximum p-th power dividing χ(1).
This suggests the algorithm presented in next section.

2.3 A theoretical algorithm

We present a constructive algorithm of the cyclotomic structure of a simple component
A(χ, F ) of FG given by the proof of the Brauer–Witt Theorem, which can be used
to produce an algorithm for the computation of the Wedderburn decomposition of the
group algebra FG.

Algorithm 1. Theoretical algorithm for the computation of the Wedderburn decom-
position of FG.

Input: A group algebra FG of a finite group G over a field F of zero characteristic.

Precomputation: Compute n, the exponent of G and E, a set of representatives of
the F -equivalence classes of the irreducible characters of G.

Computation: For every χ ∈ E:

(1) Compute F := F (χ), the field of character values of χ over F .

(2) Compute p1, . . . , pr, the common prime divisors of χ(1) and [F(ζn) : F].

(3) For each p ∈ [p1, . . . , pr]:

(a) Compute Lp, the p′-part Lp of F(ζn)/F.

(b) Search for a strong Shoda triple (Mp,Hp,Kp) of G such that the char-
acter θp of Mp induced by (Hp,Kp) satisfies:
(∗) (χMp , θp) is coprime to p and θp takes values in Lp.

(c) Compute Ap = (Lp(ζmp)/Lp, τp = τLp), as in Proposition 2.3.

(d) Compute τ ′p = CorLp→F(τp).

(e) Compute ap, an inverse of [Lp : F] modulo the maximum p-th power
dividing χ(1).

(4) Compute m, the least common multiple of mp1 , . . . ,mpr .

(5) Compute τ̂pi := InfF(ζmpi )→F(ζm)(τ ′pi), for each i = 1, . . . , r.

(6) Compute B := (F(ζm)/F, τ), where τ = τ̂p1
ap1 · · · τ̂pr

apr .

(7) Compute Aχ := Md1/d2(B), where d1, d2 are the degrees of χ and B respec-
tively.
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Output: {Aχ : χ ∈ E}, the Wedderburn components of FG.

Remarks 2.10. (i) The basic approach presented in this chapter is still valid for F a
field of positive characteristic, provided FG is semisimple (i.e. the characteristic of F
is coprime with the order of G) (see [BdR] for the strongly monomial part). On the one
hand we have only considered the zero characteristic case for simplicity. On other hand
the problem in positive characteristic is somehow simpler, because the Wedderburn
components of FG are split, that is, they are matrices over fields.

(ii) In some cases, the algebra Aχ obtained in step (7) of Algorithm 1 is not a genuine
matrix algebra, because d2 does not necessarily divide d1. This undesired phenomenon
cannot be avoided because it is not true, in general, that every Wedderburn component
of FG is a matrix algebra of a cyclotomic algebra (see Example 3.6). Luckily, this is a
rare phenomenon and, even when it is encountered, the information given by d1

d2
and B

is still useful to describe Aχ (for example, it can be used to compute the index of Aχ).
(iii) From the implementation point of view, a more efficient algorithm is the one

used in the wedderga package [BKOOdR] that, instead of considering every irreducible
character and then searching for some strongly monomial characters of subgroups that
give the reduction step, searches for strong Shoda pairs of subgroups that verify the
conditions from step (3)(b) of Algorithm 1 running on descending order and analyzes
their contribution in step (3)(c) of Algorithm 1 for the different characters and primes.
Some of the strong Shoda pairs of subgroups contribute to more than one character or
more than one prime. In the next chapter we present a working algorithm and a list of
examples that explain how the algorithm works.

Notes on Chapter 2

We give some biographical data about the protagonists of this chapter and some
perspectives to be followed in the study of this topic.

Joseph Henry Maclagan Wedderburn (1882–1948) was a Scottish mathematician,
who had taught at Princeton University for most of his career. A significant algebraist,
he proved that a finite division algebra is a field, and part of the Artin–Wedderburn
Theorem on simple algebras. He had also worked in group theory and matrix algebra.

Wedderburn’s best known paper is “On hypercomplex numbers”, published in the
1907 Proceedings of the London Mathematical Society [Wed1], and for which he was
awarded the D.Sc. the following year by the University of Edinburgh. This paper gives
a complete classification of simple and semisimple algebras. He then showed that every
semisimple algebra can be constructed as a direct sum of simple algebras and that
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every simple algebra is isomorphic to a matrix algebra over some division ring. The
Artin–Wedderburn Theorem generalizes this result, being a classification theorem for
semisimple rings. The theorem states that a semisimple ring R is isomorphic to a finite
direct product of matrix rings over division rings Di, which are uniquely determined
up to permutation of the indices i. In particular, any simple left or right Artinian
ring is isomorphic to an n × n matrix ring over a division ring D, where both n and
D are uniquely determined. As a direct corollary, the Artin–Wedderburn Theorem
implies that every simple ring which is finite dimensional over a division ring (a simple
algebra) is a matrix ring. This is Joseph Wedderburn’s original result. Emil Artin later
generalized it to the case of Artinian rings.

In the structure theorems he presented in his 1907 paper [Wed1], Wedderburn had
effectively shown that the study of finite dimensional semisimple algebras reduces to
that of division algebras. Thus, the search for division algebras and, in general, the
classification of them became a focal point of the new theory of algebras. With Wedder-
burn’s paper from 1907, “On Hypercomplex Numbers”, the first chapter in the history
of the theory of algebras came to a close. His work neatly and brilliantly placed the
theory of algebras in the proper, or at least in the modern, perspective. Later, re-
searchers in the area such as L.E. Dickson, A.A. Albert, R. Brauer and E. Noether,
to name only a few, turned to questions concerning more specific types of algebras
such as cyclic algebras and division algebras over arbitrary and particular fields like
the rational numbers.

The Brauer–Witt Theorem is a result that was independently found in the early
1950’s by R. Brauer and E. Witt. It proves that questions on the Schur subgroup are
reduced to a treatment of cyclotomic algebras and it can now be said that almost all
detailed results about Schur subgroups depend on it.

Richard Brauer (1901–1977) was a leading mathematician, who had worked mainly
in abstract algebra, but had made important contributions to number theory. He was
also the founder of modular representation theory. Several theorems bear his name,
including Brauer’s Induction Theorem which has applications in number theory as well
as finite groups, and its corollary on Brauer’s characterization of characters which is
central to the theory of group characters.

Ernst Witt (1911–1991) was a former Ph.D. student of E. Noether, who has taught
at the Göttingen and Hamburg Universities. His work was mainly concerned with the
theory of quadratic forms and related subjects such as algebraic function fields.

We present now some directions that can be followed by the interested reader in the
study of this topic. The description of the Wedderburn components that we presented
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in this chapter can be improved by a detailed study of the (local) Schur indices and the
Hasse invariants. This is the first natural next step to be followed for future study on
this topic, that is, to add local information obtained by using local methods and which
complete the previous data. This direction is followed in Chapter 5, where a study of
the Schur group of an abelian number field is presented and the maximum of the local
Schur indices of the Schur algebras is computed. In order to compute the Schur indices,
there can be also used new methods using G-algebras, introduced by A. Turull, as seen
in [Her5] or [Tur].

A related topic to the one presented in this chapter is the projective Brauer group.
Recently, a projective version of the Brauer–Witt Theorem has been given by Á. del Ŕıo
and E. Aljadeff [AdR], proving that

Any projective Schur algebra over a field is Brauer equivalent to a radical algebra.

This result was conjectured in 1995 by E. Aljadeff and J. Sonn. In this article it is
obtained a characterization of the projective Schur group by means of Galois coho-
mology. This result provides useful information that can be used to study a similar
problem as the one studied in this chapter in the case of twisting group algebras, that
is, to describe the simple components of semisimple twisted group algebras given by
projective characters of the group as radical algebras in the projective Schur group.



Chapter 3

Implementation: the GAP

package wedderga

The computational approach and the theoretical algorithm for the computation of the
Wedderburn decomposition of semisimple group algebras presented in the previous
chapter made possible the implementation and the creation of the functions that are
the core of the GAP package wedderga [BKOOdR]. These functions upgrade a previous
version of the package wedderga, enlarging its functionality to the computation of the
Wedderburn decomposition and the primitive central idempotents of arbitrary semisim-
ple group algebras of arbitrary finite groups with coefficients in arbitrary number fields
or finite fields that are supported by the GAP system [GAP].

What is GAP? The complete name already gives us a clue: GAP - Groups, Algo-
rithms, Programming - a System for Computational Discrete Algebra. We cite from its
webpage at http://www.gap-system.org:

“GAP is a system for computational discrete algebra, with particular emphasis on
Computational Group Theory. GAP provides a programming language, a library of
thousands of functions implementing algebraic algorithms written in the GAP language
as well as large data libraries of algebraic objects. GAP is used in research and teaching
for studying groups and their representations, rings, vector spaces, algebras, combina-
torial structures, and more.”

Many people have helped in different ways to develop the GAP system, to maintain
it, and to provide advice and support for users. All of these are nowadays refered to as
the GAP Group. The concrete idea of GAP as a truly ‘open’ system for computational
group theory was born in 1985 and the GAP system was officially presented in 1988.
Since then, the GAP system has continue to grow with the implementation of many
functions which are either in the core of the system or inside its packages.

79
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What is a GAP package? We cite again from the GAP webpage:
“Since 1992, sets of user contributed programs, called packages, have been distributed

with GAP. For convenience of the GAP users, the GAP Group redistributes packages,
but the package authors remain responsible for their maintenance.

Some packages represent a piece of work equivalent to a sizeable mathematical publi-
cation. To acknowledge such work there has been a refereeing process for packages since
1996. We call a package an accepted package (with GAP 3 the term share packages was
used) when it was successfully refereed or already distributed with GAP before the ref-
ereeing process was started. All other packages distributed here and not in this category
are called deposited packages, these may be submitted for refereeing or the authors may
not want to submit them for various reasons.”

The name wedderga stands for “Wedderburn decomposition of group algebras” 1.
This is a GAP package to compute the simple components of the Wedderburn decom-
position of semisimple group algebras of finite groups over finite fields and over subfields
of finite cyclotomic extensions of the rationals. It also contains functions that produce
the primitive central idempotents of these group algebras. Other functions of wedderga
allow one to construct crossed products over a group with coefficients in an associative
ring with identity and the multiplication determined by a given action and twisting.
In the light of the previous “definition” of a GAP package, we should call wedderga a
deposited package, since it is still in refereeing process. However, for briefness we will
call it a package.

In the first section of this chapter we give a working algorithm which is closer to
the real algorithm than the one presented in section 2.3 and in the second section we
give some examples that give a good idea about the process to be followed during the
implementation.

More aspects of the implementation and data on the wedderga package are given in
Appendix that contains the manual of the package. Throughout this chapter we keep
the notation from Chapter 2.

3.1 A working algorithm

Algorithm 1 presented in the previous chapter is not the most efficient way to compute
the Wedderburn decomposition of a semisimple group algebra FG for several reasons.

Firstly, it is easy to compute the Wedderburn decomposition of FG from the Wed-
1The first version of wedderga was only computing Wedderburn decomposition of some rational

group algebras and, in fact, the original name stood for “Wedderburn decomposition of rational group

algebras”.
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derburn decomposition of QG. More precisely, if χ is an irreducible character of G,
k = Q(χ) and F = F (χ), then A(χ, F ) ' F⊗kA(χ,Q). In particular, if A(χ,Q) is equiv-
alent to the cyclotomic algebra (k(ζ)/k, τ), then A(χ, F ) is equivalent to (F(ζ)/F, τ ′),
where τ ′ is the restriction of τ via the inclusion Gal(F(ζ)/F) ⊆ Gal(k(ζ)/k). Moreover,
the degrees of A(χ,Q) and A(χ, F ) are equal (the degree of χ). This suggests to use
the description of the Wedderburn decomposition of QG as information to be stored as
an attribute of G. (Recall that an attribute of a GAP object is information about the
object saved the first time when is computed in a GAP session, to be quickly accessed
in subsequent computations). The implemented algorithm computes some data which
can be easily used to determine the Wedderburn decomposition of QG. A small mod-
ification will be enough to use this data to produce the Wedderburn decomposition of
FG. In this way, the first time that the Wedderburn decomposition of a group algebra
FG is calculated by the program it takes more time that the next time it computes
the Wedderburn decomposition of LG, a group algebra of the same group over a field
L non necessarily equal to F .

gap> G:=SmallGroup(512,21);;

gap>FG:=GroupRing(CF(5),G);;

gap>LG:=GroupRing(CF(7),G);;

gap>WedderburnDecomposition(FG);;

gap>time;

11767

gap>WedderburnDecomposition(LG);;

gap>time;

20

Secondly, if χ is a strongly monomial character of G, then A(χ, F ) can be computed
at once by using Proposition 2.3. That is, there is no need to compute the p-parts
separately and merging them together.

Example 3.1. Let p be a prime and consider Z∗p acting on Zp by multiplication. Let
G = Zp o Z∗p be the corresponding semidirect product. Then (Zp, 1) is a strong Shoda
pair of G and if χ is the induced strongly monomial character, then A = A(χ, F ) has
degree p−1. For example, if p = 31, then A has degree 30. So according to Algorithm 1,
one should describe the cocycles τ2, τ3 and τ5 in step (3) and then perform steps (4)–
(6) to compute τ = τ̂2

a2 τ̂3
a3 τ̂5

a5 . Instead, one can compute A(χ,F) at once using
Proposition 2.3.

In particular, if G is strongly monomial (as so is the group of Example 3.1), then
instead of running through the irreducible characters χ of G and looking for some
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strong Shoda pairs (H,K) of G such that χ is the character of G induced by (H,K),
it is more efficient to produce a list of strong Shoda pairs of G and, at the same time,
produce the primitive central idempotents e(G,H,K) of QG, which helps to control if
the list is complete. This was the approach in [OdR1].

Thirdly, even if χ is not strongly monomial and the number r of primes appearing
in step (2) of Algorithm 1 is greater than 1, it may happen that one strongly monomial
character θ of a subgroup M of G satisfies condition (∗) of Proposition 2.5 for more
than one prime p.

Example 3.2. Consider the permutation group G = 〈(3, 4)(5, 6), (1, 2, 3)(4, 5, 7)〉 and
its subgroup M = 〈(1, 3, 5)(4, 6, 7), (1, 6)(5, 7)〉. Then G has an irreducible character χ
of degree 6, such that Q(χ) = Q and (χM , 1M ) = 1. Clearly 1M , the trivial character of
M , is strongly monomial and satisfies condition (∗) for the two possible primes 2 and
3. Using this, it follows at once that A(χ, F ) = M6(F ) for each field F , and so there is
no need to consider the two primes separately.

Fourthly, a strongly monomial character θ of a subgroup of G may satisfy condition
(∗) for more than one irreducible character χ of G.

Example 3.3. Consider the group G = SL(2, 3) = 〈a, b〉 o 〈c〉 (where 〈a, b〉 is the
quaternion group of order 8 and c has order 3). The group G has one non-strongly
monomial character χ1 of degree 2 with Q(χ1) = Q and two non-strongly monomial
Q-equivalent characters χ2 and χ′2, also of degree 2, with Q(χ2) = Q(χ′2) = Q(ζ3).
Then (M = 〈a, b〉,H = 〈a〉, 1) is a strong Shoda triple. If θ is the strongly monomial
character of M induced by (H, 1), then θ satisfies condition (∗) for both χ1 and χ2 and
p = 2, the unique prime involved.

Finally, the weakest part of Algorithm 1 is step (3)(b), where a blind search of a
strong Shoda triple of G satisfying condition (∗) for each irreducible character of G and
each prime p1, . . . , pr may be too costly.

Taking all these into account, it is more efficient to run through the strong Shoda
triples of G and for each such triple evaluate its contribution to the p-parts of A(χ, F )
for the different irreducible characters χ of G and the different primes p. This leads to
the question of what is the most efficient way to systematically compute strong Shoda
triples of G. The first version of wedderga included a function StrongShodaPairs

which computes a list of representatives of the equivalence classes of the strong Shoda
pairs of the group given as input. So one can use this function to compute the strong
Shoda pairs for each subgroup of G. However, most of the strong Shoda triples of G are
not necessary. For example, if G is strongly monomial, we only need to compute the
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strong Shoda triples of the form (G,H,K), i.e. in this case one needs to compute only
the strong Shoda pairs (H,K) of G. Again, this is the original approach in [OdR1].
This suggests to start by computing the strong Shoda pairs of G and the associated
simple components as in Proposition 2.3. If the group is strongly monomial, we are
done.

Which are the next natural candidates of subgroups M of G for which we should
compute the strong Shoda pairs of M? That is, what are the strong Shoda triples
(M,H,K) most likely to actually contribute in the computation? Take any strong
Shoda triple (M,H,K) of G. If M1 is a subgroup of M containing H, then (M1,H,K)
is also a strong Shoda triple of G. Now let ψ be a linear character of H with kernel
K and set θ = ψM and θ1 = ψM1 . Then, for every irreducible character χ of G,
(χM1 , θ1) = (χ, θG1 ) = (χ, θG) = (χM , θ), by Frobenius Reciprocity. So θ satisfies the
first part of condition (∗) if and only if so does θ1. However, F (θ) ⊆ F (θ1) and so, the
bigger M , the more likely θ to satisfy the second condition of (∗) and, in fact, all the
contributions of θ1 are already realized by θ.

Example 3.3. (continuation) Notice that (H, 1) is a strong Shoda pair of M , but
it is not a strong Shoda pair of G. In some sense, (H, 1) is very close to be a strong
Shoda pair of G, because it is a strong Shoda pair in a subgroup of prime index in G.
On the other hand, (H,H, 1) is also a strong Shoda triple of G. However, the strongly
monomial character θ of H (in fact linear) induced by (H, 1) does not satisfy condition
(∗) with respect to either χ1 or χ2, because the field of character values of θ contains
i =

√
−1. So, G is too big for (G,H, 1) to be a strong Shoda triple of G, while H is

too small for (H,H, 1) to contribute in terms of satisfying condition (∗).

Notice also that if M is a subgroup of G and g ∈ G, then the strong Shoda pairs
of M and Mg are going to contribute equally in terms of satisfying condition (∗) for a
given irreducible character χ. This is because if (H,K) is a strong Shoda pair of M ,
then (Hg,Kg) is a strong Shoda pair of Mg, and if θ is the character of M induced by
(H,K), then θg is the character induced by (Hg,Kg). Then (χM , θ) = (χM , θg) and θ
and θg take the same values. So, we only have to compute strong Shoda pairs for one
representative of each conjugacy class of subgroups of G.

Summarizing, we chose the algorithm to run through conjugacy classes of sub-
groups of G in decreasing order and evaluate the contribution on as many p-parts of
as many irreducible characters as possible. In fact, we consider the group M = G

separately, because Proposition 2.3 tells us how to compute the corresponding simple
algebras without having to consider the p-parts separately. This is called the Strongly

Monomial Part of the algorithm and takes care of the Wedderburn components of
the form A(χ, F ) for χ ∈ Irr(G) strongly monomial. The remaining components are
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computed in the Non-Strongly Monomial Part, where we consider proper sub-
groups M (actually representatives of conjugacy classes). For such an M we use the
function StrongShodaPairs to compute a set of representatives of strong Shoda pairs
(H,K) of M and for each (H,K) we check to which p-parts of the non-strongly mono-
mial characters of G the character θ induced by (H,K) contributes (i.e. condition (∗)
is satisfied). The algorithm stops when all the p-parts of all the irreducible characters
are covered. In most of the cases, only a few subgroups M of G have to be used.

Now we are ready to present the algorithm.

Algorithm 2. Computes data for the Wedderburn decomposition of QG.

Input: A finite group G (of exponent n).

Strongly Monomial Part:

1. Compute S, a list of representatives of strong Shoda pairs of G.

2. Compute Data := [[nx,kx,mx,Galx, τx] : x ∈ S], where for each x =
(H,K) ∈ S:

• nx := [G : N ], with N = NG(K);

• kx := Q(θx), for θx a strongly monomial character of G induced by
(H,K);

• mx := [H : K];

• Galx := Gal(kx(ζmx)/kx);

• τx := τQ, the 2-cocycle of Galx with coefficients in Q(ζmx) given as in
Proposition 2.3.

Non-Strongly Monomial Part: If G is not strongly monomial

1. Compute E, a set of representatives of the Q-equivalence classes of the non-
strongly monomial irreducible characters of G.

2. Compute PrimesLps := [PrimesLpχ : χ ∈ E], where PrimesLPχ is the
list of pairs [p, Lp], with p a prime dividing gcd(χ(1), [Q(ζn) : Q(χ)]) and Lp
is the p′-part of the extension Q(ζn)/Q(χ).

3. Initialize E′ = E, a copy of E, and

Parts := [Partsχ := [ ] : χ ∈ E], a list of length |E| formed by empty lists.

4. For M running in decreasing order over a set of representatives of conjugacy
classes of proper subgroups of G (while E′ 6= ∅):
Compute SM , the strong Shoda pairs of M and for each (H,K) ∈ SM :



3.1. A WORKING ALGORITHM 85

• Compute θ, a strongly monomial character of M induced by (H,K).

• Compute Drop := [Dropχ : χ ∈ E], where Dropχ is the set of [p, Lp] in
PrimesLpsχ, for which (∗) holds.

• For each [p, Lp] in Dropχ, compute mp, τ ′p and ap as in Step (3) of
Algorithm 1 and add this information to Partsχ.

• PrimesLpsχ := PrimesLpsχ \Dropχ.
• E′ := E′ \ {χ ∈ E : PrimesLps = ∅}.

5. Compute Data′ := [[nχ,kχ,mχ,Galχ, τχ] : χ ∈ E], where

• kχ := Q(χ);

• mχ := Least common multiple of the mp’s appearing in Partsχ;

• nχ := χ(1)
[kχ(ζmχ ):kχ] ;

• Galχ := Gal(kχ(ζmχ)/kχ);

• τχ is computed from m = mχ and the τ ′p’s and ap’s in Partsχ, as in
Steps (3)-(6) of Algorithm 1.

Output: The list obtained by merging Data and Data′.

Notice that the question of whether G is strongly monomial or not, needed to decide
whether the Non-Strongly Monomial Part of Algorithm 2 should be ran for G,
is already answered in the first part because the actual algorithm for the Strongly

monomial part computes at the same time the primitive central idempotents associ-
ated to the strongly monomial pairs obtained. The algorithm stops if the sum of the
primitive central idempotents at one step is 1.

The output of Algorithm 2 can be used right away to produce the Wedderburn
decomposition of QG. Each entry [n,k,m,Gal, τ ] parameterizes one Wedderburn com-
ponent of QG which is isomorphic to Mn((k(ζm)/k, τ)).

For an arbitrary field F of zero characteristic, some modifications are needed. The
number of 5-tuples, say r, of the output of Algorithm 2 is the number of Q-equivalence
classes of irreducible characters of G. Let χ1, . . . , χr be a set of representatives of Q-
equivalence classes of irreducible characters of G. Then QG = ⊕ri=1A(χi,Q) and so
FG = F ⊗Q QG = ⊕ri=1F ⊗Q A(χi,Q). Moreover, if A = A(χ,Q), then

F ⊗Q A = F ⊗Q Q(χ)⊗Q(χ) A ' [F ∩Q(χ) : Q]F (χ)⊗Q(χ) A = [F ∩Q(χ) : Q]A(χ, F ).

Thus, an entry [n,k,m,Gal, τ ] of the output parameterizes [F∩k : Q] Wedderburn com-
ponents of FG, each one isomorphic to F ⊗k Mn((k(ζm)/k, τ)) ' Mnd((F(ζm)/F, τ ′)),
where F is the compositum of k and F , d = [k(ζm):k]

[F(ζm):F] = |Gal|
|Gal′| , Gal′ = Gal(F(ζm)/F) and

τ ′ is the restriction of τ ∈ H2(Gal,F(ζm)) to a 2-cocycle τ ′ ∈ H2(Gal′,F(ζm)).
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If ζm ∈ k then Gal = 1 and, in fact, Algorithm 2 only loads the information
[n,k], which parameterizes the simple component Mn(k) of QG and [F ∩ k : Q] simple
components of FG isomorphic to Mn(F). If ζm 6∈ k, then the simple component of
QG is a matrix algebra of size n of a non-commutative cyclotomic algebra. However,
if ζm ∈ F (equivalently if Gal′ = 1), then the simple components of FG given by this
entry of the output are isomorphic to Mnd(F).

3.2 Examples

In this section we give a list of examples that illustrate the performance of the package
wedderga and how to use the main functions of the package.

Example 3.4. Consider the group G = 〈(3, 4)(5, 6), (1, 2, 3)(4, 5, 7)〉 from Example 3.2.
This group is the group (168, 42) from the GAP library of small groups and it is
isomorphic to SL(3, 2). The Wedderburn decomposition of QG can be computed by
using the function WedderburnDecomposition of wedderga.

gap> G:=SmallGroup(168,42);;

gap>QG:=GroupRing(Rationals,G);;

gap>WedderburnDecomposition(QG);

[ Rationals, ( Rationals^[ 7, 7 ] ), ( NF(7,[ 1, 2, 4 ])^[ 3, 3 ] ),

( Rationals^[ 6, 6 ] ), ( Rationals^[ 8, 8 ] ) ]

Thus
QG ' Q⊕M7(Q)⊕M3(Q(

√
−7))⊕M6(Q)⊕M8(Q).

Notice that the center of the third component is Q(
√
−7), the subfield of Q(ζ7) con-

sisting of the elements fixed by the automorphism ζ7 7→ ζ2
7 .

Now we explain how the package obtains this information. As it is explained above,
the first part of the algorithm computes a list of representatives of the strong Shoda
pairs of G using the function StrongShodaPairs. This part of the algorithm provides
two strong Shoda pairs and the first two Wedderburn components of QG, which are
calculated as explained in Proposition 2.2.

gap> StrongShodaPairs(G);

[ [ Group([ (3,4)(5,6), (1,2,3)(4,5,7) ]),

Group([ (3,4)(5,6), (1,2,3)(4,5,7) ]) ],

[ Group([ (3,4)(5,6), (1,7)(5,6), (1,3,5)(4,6,7), (3,6)(4,5) ]),

Group([ (3,4)(5,6), (1,7)(5,6), (1,3,5)(4,6,7) ]) ] ]
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The other part of the calculation provides another three Wedderburn components.
They correspond to three Q-equivalence classes of non-strongly monomial characters
represented by the following characters, where α = ζ7 + ζ2

7 + ζ4
7 = −1+

√
−7

2 :

1 (3, 4)(5, 6) (2, 3, 4)(5, 6, 7) (2, 3, 7, 5)(4, 6) (1, 2, 3, 5, 6, 7, 4) (1, 2, 3, 7, 4, 6, 5)
χ1 3 −1 0 1 −1− α α

χ2 6 2 0 0 −1 −1
χ3 8 0 −1 0 1 1

So the center of A1 := A(χ1,Q) is Q(χ1) = Q(α) and the centers of A2 := A(χ2,Q)
and A3 := A(χ3,Q) are Q(χ2) = Q(χ3) = Q. Now the program has to compute
cyclotomic algebras equivalent to A1, A2 and A3. The degrees of these algebras are 3,
6 and 8 respectively. Since the index of a central simple algebra divides its degree, one
has to describe the 3-part of A1, the 2 and 3-parts of A2 and the 2-part of A3. By
Proposition 2.5, the 2 and 3-parts of A2 can be obtained by using two strong Shoda
triples of G. However, as we have seen in Example 3.2, ((χ2)M , 1M ) = 1 for M =
〈(1, 3, 5)(4, 6, 7), (1, 6)(5, 7)〉. So, there is a unique strong Shoda triple of G, namely
(M,M,M), which provides the strongly monomial character 1M satisfying condition
(∗) for the two primes involved. It was already explained that A(χ2,Q) ' M6(Q) and
this takes care of the fourth entry given as output by WedderburnDecomposition.

For the other two characters the algorithm obtains the strong Shoda triple
(M,H = 〈(3, 4)(5, 6), (1, 6, 7, 5)(3, 4)〉,K = 〈(1, 6, 7, 5)(3, 4)〉) for both of them. Since
H = NM (K) and [H : K] = 2, the algebra A(M,H,K) is Brauer equivalent to
Q(ζ2) = Q (Proposition 2.3). Let θ be the strongly monomial character of M induced
by (H,K). If F is the center of A(χi,Q) (i = 1 or 3) then A(χi,Q) = A(χi, F ) is Brauer
equivalent to A(θ, F ) (Proposition 2.5) and this is isomorphic to F⊗QA(M,H,K) ' F .
So we obtain A(χ1,Q) 'M3(Q(

√
−7)) and A(χ3,Q) 'M8(Q).

Notice that for all the used strong Shoda triples (L,H,K) of G, the subgroup
L is either G (for the Strongly Monomial Part) or M (for the Non-Strongly

Monomial Part). The group G has 15 conjugacy classes of subgroups, one formed
by G, two classes consisting of subgroups of order 24 and the other classes formed by
subgroups of smaller order. The advantage of running through subgroups in decreasing
order becomes apparent in this computation, for only the groups M and G have been
considered in the search of “useful” strong Shoda triples. This has avoided many
unnecessary computations.

The Wedderburn components of QG for the group G of Example 3.4 are matrix
algebras over fields. Of course this does not occur always. In general, the Wedderburn
components are equivalent to cyclotomic algebras, which WedderburnDecomposition

presents as matrix algebras over crossed products. In this case it is difficult to use the
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output WedderburnDecomposition to describe the corresponding factors. The other
main function WedderburnDecompositionInfo provides a numerical alternative, giving
as output a list of tuples of length 2, 4 or 5, with numerical information describing the
Wedderburn decomposition of the group algebra given as input. The tuples of length
5 are of the form

[n,k,m, [oi, αi, βi]1≤i≤l, [γij ]1≤i<j≤l], (3.1)

where k is a field and n, k,m, oi, αi > 0 and βi, γij ≥ 0 are integers. The data of
(3.1) represents the matrix algebra Mn(A) with A the cyclotomic algebra given by the
following presentation:

A = k(ζm)(g1, . . . , gl|ζgim = ζαim , g
oi
i = ζβim , gjgi = gigjζ

γij
m , 1 ≤ i < j ≤ l). (3.2)

The tuples of length 2 and 4 are simplified forms of the 5-tuples and take the forms
[n,k] and [n,k,m, [o, α, β]] respectively. They represent the matrix algebras Mn(k) and
Mn(A), where A has an interpretation as in (3.2) for l = 1.

In Example 3.4 each Wedderburn component is described using a unique strong
Shoda triple. The next example shows a Wedderburn component which cannot be
given by a unique strong Shoda triple.

Example 3.5. Consider the groupG = 〈x, y〉o〈a, b〉, where 〈x, y〉 = Q8, the quaternion
group of order 8 and 〈a, b〉 is the group of order 27, with a9 = 1, a3 = b3 and ab = ba4.
The action of a, b on 〈x, y〉 is given by (x, a) = (y, a) = 1, xb = y and yb = xy. This is
the small group (216, 39) from the GAP library.

gap> G:=SmallGroup(216,39);;

gap>QG:=GroupRing(Rationals,G);;

gap> WedderburnDecompositionInfo(QG);

[ [ 1, Rationals ], [ 1, CF(3) ], [ 1, CF(3) ], [ 1, CF(3) ],

[ 1, CF(3) ], [ 3, Rationals ], [ 3, CF(3) ], [ 3, CF(3) ],

[ 3, CF(9) ], [ 1, Rationals, 4, [ 2, 3, 2 ] ],

[ 1, CF(3), 12, [ 2, 7, 6 ] ], [ 1, CF(3), 12, [ 2, 7, 6 ] ],

[ 1, CF(3), 12, [ 2, 7, 6 ] ], [ 1, CF(3), 4, [ 2, 3, 2 ] ],

[ 1, CF(3), 36, [ 6, 31, 18 ] ] ]

Using (3.2) one obtains

QG = Q⊕ 4Q(ζ3)⊕M3(Q)⊕ 2M3(Q(ζ3))⊕M3(Q(ζ9))⊕A1 ⊕ 3A2 ⊕A3 ⊕A4,
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where
A1 = Q(ζ4)[u : ζu4 = ζ3

4 , u
2 = ζ2

4 = −1]
A2 = Q(ζ12)[u : ζu12 = ζ7

12, u
2 = ζ6

12 = −1]
A3 = Q(ζ3)(ζ4)[u : ζu4 = ζ3

4 , u
2 = ζ2

4 = −1]
A4 = Q(ζ36)[u : ζu36 = ζ31

36 , u
6 = ζ18

36 = −1]

Recall that H(k) denotes the Hamiltonian quaternion algebra with center k. Then
A1 = H(Q) and A2 = A3 = H(Q(ζ3)). Moreover, using that −1 belongs to the image
of the norm map NQ(ζ3)/Q and Proposition 1.56 one has that A2 = A3 ' M2(Q(ζ3))
and A4 = M6(Q(ζ3)).

Now we explain which are the strong Shoda triples that the program discovers and
uses to describe the last Wedderburn component A4. The simple algebra A4 is A(χ,Q),
where χ is one of the two (Q-equivalent) characters of degree 6 of G. The field k = Q(χ)
of character values of χ is Q(ζ3). It turns out that, unlike in Example 3.4, the factor A4

of QG cannot be given by a unique strong Shoda triple able to cover both primes 2 and
3 in terms of satisfying condition (∗). Indeed, if such a strong Shoda triple (M,H,K)
exists and θ is a character of M induced by (H,K), then (χM , θ) is coprime with 6
and Q(θ) ⊆ Q(ζ3), because the exponent of G is 36 and [Q(ζ36) : k = Q(ζ3)] = 6. The
following computation shows that such a strong Shoda triple does not exist.

gap> chi:=Irr(G)[30];;

gap> ForAny(List(ConjugacyClassesSubgroups(G),Representative),

> M->ForAny(StrongShodaPairs(M),

> x->

> Gcd(6,ScalarProduct( Restricted(chi,M) ,

> LinCharByKernel(x[1],x[2])^M )) = 1 and

> ForAll(List(ConjugacyClasses(M),Representative),

> c -> c^(LinCharByKernel(x[1],x[2])^M) in CF(3) )

> )

> );

false

The function LinCharByKernel is a two argument function which, applied to a pair
(H,K) of groups with K � H and H/K cyclic, returns a linear character of H with
kernel K.

The two strong Shoda triples of G obtained by the function
WedderburnDecomposition to describe the 2 and 3-parts of A4 are

(M2 = 〈a, x, y〉,H2 = 〈a, x〉,K2 = 〈1〉),
(M3 = 〈a, x2, a2bxy〉,H3 = 〈a3, x2, a2bxy〉,K3 = 〈a2bxy〉).
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The 2′ and 3′-parts of Q(ζ36)/k are L2 = Q(ζ9) and L3 = Q(ζ12), respectively. Following
Propositions 2.3, the algorithm computes AL2(M2,H2,K2) = (Q(ζ36)/Q(ζ9), τ2) and
AL3(M3,H3,K3) = M2(Q(ζ12)) (the latter is equivalent to (Q(ζ12)/Q(ζ12), τ3 = 1)).
Then the algorithm inflates τ2 and τ3 to Q(ζ36), corestricts to Q(ζ3) and computes the
cocycle τχ as in steps (3) − (6) of Algorithm 2. This gives rise to the numerical in-
formation [ 1, CF(3), 36, [ 6, 31, 18 ] ] ] obtained above. We have seen that
the interpretation of this data is that A4 is isomorphic to M6(Q(ζ3)). This may have
also been obtained by noticing that AL2(M2,H2,K2) = H(Q(ζ9)) ' M2(Q(ζ9)). Then
the 2 and 3-parts of A4 are trivial in the Brauer group, and so A4 'M6(Q(ζ3)).

Example 3.6. Notice that the size of the matrix Aχ in step (7) of Algorithm 1 is a
rational number rather than an integer. The group of smallest order for which this
phenomenon occurs is the group [240, 89] in the library of the GAP system. Although
this does not make literal sense, still the algorithm provides a lot of information on the
Wedderburn decomposition. This example shows how one can use this information. Let
G be the mentioned group. Then the output of Algorithm 2 applied to QG provides
the following numerical information for one of the simple factors of QG:

[ 3/4, 40, [ [ 4, 17, 20 ] , [ 2, 31, 0 ] ] ].

Notice that the first entry of this 4-tuple is not an integer and a formal presentation of
the corresponding simple algebra is given by

A 'M3/4

(
Q(ζ40)(g, h|ζg4 = ζ17

40 , ζ
h
4 = ζ31

40 , g
4 = −1, h2 = 1, gh = hg)

)
.

Denote A = M3/4 (B). The center of the algebra B is Q(
√

2) and the algebras
Q(ζ8)(h|ζh8 = ζ−1

8 , h2 = 1) ' M2(Q(
√

2)) and Q(ζ5)(g|ζg5 = ζ2
5 , g

4 = −1) are simple
algebras in B. Furthermore

B = M2(Q(
√

2))⊗Q(
√

2) (Q(
√

2)⊗Q Q(ζ5)(g|ζg5 = ζ2
5 , g

4 = −1))

= M2(Q(
√

2)⊗Q Q(ζ5)(g|ζg5 = ζ2
5 , g

4 = −1))

Hence, we can describe the algebra A as

M3/2(Q(
√

2)⊗Q Q(ζ5)(g|ζg5 = ζ2
5 , g

4 = −1))

and we conclude that the algebra A is isomorphic to either M3(D) for some division
quaternion algebra over Q(

√
2) or to M6(Q(

√
2)). In fact, in order to decide which one

of these options is the correct one, one should compute the local Schur indices of the
cyclic algebra C = Q(

√
2)⊗Q Q(ζ5)(g|ζg5 = ζ2

5 , g
4 = −1) = (Q(

√
2, ζ5)/Q(

√
2),−1).
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The algebra C has local index 2 at ∞, because R⊗Q(
√

2) (Q(
√

2, ζ5)/Q(
√

2),−1) '
(C/R,−1) ' H(R). Thus A ' M3(D), for D a division algebra of index 2 and center
Q(
√

2). Notice that D is determined by its Hasse invariants by the Hasse–Brauer–
Noether–Albert Theorem. Now we prove that the local indices of A at the finite primes
are all 1. By Proposition 1.114, mp(A) = 1 for every finite prime p not dividing 5.
Thus, we only have to compute m5(A). Note that ζ4 ∈ Q5, so Q5(

√
2) = Q5(ζ8) is the

unique unramified extension of Q5 of degree 2. Thus ζ8 ∈ Z(Q(
√

2)5 ⊗Q(
√

2) C) and
NQ5(

√
2,ζ5)/Q5(

√
2)(ζ8) = −1. By Proposition 1.112, m5(A) = 1.

Thus, the Hasse invariants of A at the finite primes are all 0 and they are 1/2 at
the two infinite primes. Using these calculations, one deduces that D = H(Q(

√
2)) (see

also Example 6.13) and A 'M3(H(Q(
√

2))).

Remark 3.7. The approach presented in this chapter is still valid for a field F of
positive characteristic provided, FG is semisimple (i.e. the characteristic of F is coprime
with the order of G). The strongly monomial part has been presented in [BdR] and
implemented in the package by O. Broche and Á. del Ŕıo. In general, the problem in
positive characteristic is somehow simpler because the Wedderburn components of FG
are split, that is, they are matrices over fields.

The functionality of the package wedderga depends on the capacity of constructing
fields in the GAP system. In practice wedderga can compute the Wedderburn decom-
position of semisimple group algebras over finite abelian extensions of the rationals and
finite fields.

Notes on Chapter 3

A useful tool for further study of the description of the Wedderburn decomposition
of group algebras of finite groups could be a program able to compute the Schur indices
of Schur algebras (see e.g. Example 3.6) using methods that were developed in [Tur,
Sch, Her5].
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Chapter 4

Group algebras of Kleinian type

and groups of units

In this chapter we present some applications of the first part of this work to the study
and classification of some special algebras, called of Kleinian type, and applications to
the study of units of group rings. The algebras of Kleinian type are finite dimensional
semisimple rational algebras A such that the group of units of an order in A is com-
mensurable with a direct product of Kleinian groups. The aim of this chapter is to
classify the Schur algebras of Kleinian type and the group algebras of Kleinian type.
As an application, we want to characterize the group rings RG, with R an order in a
number field and G a finite group, such that the group of units of RG is virtually a
direct product of free-by-free groups.

Historically, the study of Kleinian groups, that is discrete subgroups of PSL(C), goes
back to the works of Poincaré and Bianchi and it has been an active field of research ever
since. Poincaré described in 1883 a method to obtain presentations of Kleinian groups
using fundamental domains [Poi]. In 1892 Bianchi computed fundamental domains for
groups of the form PSL2(R), where R is a ring of integers of an imaginary quadratic
extension [Bia]. These groups are nowadays called Bianchi groups. During the last
decades, Kleinian groups have been strongly related to the Geometrization Program of
Thurston for the classification of 3–manifolds [EGM, MR, Mas, Thu].

The method of studying a group by its action on a topological-geometrical object
was first used by Minkowski, then by Dirichlet to prove the Unit Theorem, and later
on was generalized by many authors like Eichler, Poincaré, Borel, Harish–Chandra or
Siegel. The classical method consists of finding a fundamental domain of the action,
that is, a subset of the geometrical object on which the group is acting which is almost
equal (in a precise way) to a set of representatives of the orbits of the action, and using

93
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the fundamental domain find presentations of the group. Unfortunately, unless the
geometrical object has small dimension and the action is controlable, as in the case of
the action of PSL2(Z) on the hyperbolic plane, it is very difficult to find a fundamental
domain or the problem of finding a presentation of the studied group is computationally
unfeasible.

In the case of the Dirichlet Unit Theorem, the group of units of the ring of integers
of a number field is included in the Euclidean space using the logarithmic map. In the
case of the group PSL2(Z), it acts by Möbius transformations discontinuously on the
Poincaré’s model of the hyperbolic plane H2. Recall that the Möbius transformation

associated to an invertible matrix A =

(
a b

c d

)
is the map MA : Ĉ → Ĉ given by

MA(z) = az+b
cz+d , where Ĉ denotes the compactification of the plane (identified with C)

by one point. The map A 7→MA defines a group homomorphism from PSL2(C) to the
bijections of Ĉ on itself. If we identify the hyperbolic plane with the positive semi-plane
H2 = {z = x + yi ∈ C : y > 0}, then the matrices with real entries leave H2 invariant
and they induce isometries of H2. In fact, the map A 7→ MA induces an isomorphism
between PSL2(R) and the group of orientations preserving isometries of H2. Moreover,
the set {z = x+yi : 2|x| ≤ 1, |z| ≤ 1} is a fundamental domain of the action of PSL2(Z)
on H2. Using this information and classical methods, one can deduce that PSL2(Z) is
a free product of the free groups C2 and C3.

The action of PSL2(C) on Ĉ can be extended to an action on the 3–dimensional
hyperbolic space H3, the so-called Poincaré extensions. In fact, PSL2(C) is isomorphic
via this action to the group of isometries of H3 that conserve the orientation. The
subgroups of PSL2(C) that act discontinuously on H3 are exactly the discrete subgroups
of PSL2(C), that is the projections in PSL2(C) of the subgroups of SL2(C) having the
discrete Euclidean topology induced by M2(C) (that we identify with R8 = C4). These
groups are called Kleinian groups [Bea, Mas].

The use of the methods of Kleinian groups to the study of the groups of units
of group rings was started in [Rui] and [PdRR] and led to the notions of algebras
of Kleinian type and finite groups of Kleinian type. There it is shown how one can
theoretically study U(ZG) by considering the action of the simple components of the
Wedderburn decomposition of QG on the 3–dimensional hyperbolic space if G is a finite
group of Kleinian type. These groups have “manageable” simple components S of QG
that can be fields, or totally definite positive quaternion algebras or quaternion algebras
such that the group of units of reduced norm 1 of an order in S is a discrete subgroup
of SL2(C).

In order to present the main idea of this approach it is convenient to consider a
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more general situation that we summarize from [PdRR]. Let A be a finite dimensional
semisimple rational algebra and R a Z-order in A. It is well known that R∗ is com-
mensurable with the group of units of every order in A and, if A is simple then R∗ is
commensurable with Z(R)∗ × R1, where R1 denotes the group of elements of reduced
norm 1 of R. Two subgroups of a given group are said to be commensurable if their
intersection has finite index in both of them. In particular, if A =

∏
i∈I Ai with each

Ai a simple algebra, then R∗ is commensurable with
∏
i∈I Z(Ri)∗ ×

∏
i∈I(Ri)

1, where
Ri is an order in Ai for each i ∈ I. Since Z(Ri)∗ is well understood by the Dirichlet
Unit Theorem, the difficulty in understanding R∗ up to commensurability relies on
understanding the groups of elements of reduced norm 1 of orders in the simple compo-
nents of the Wedderburn decomposition of A. If each simple component S of A can be
embedded in M2(C) so that the image of (RS)1 is a discrete subgroup of SL2(C), for
RS an order of S, then one can describe R∗ up to commensurability by using methods
on Kleinian groups to describe the groups of (RS)1, for S running through the Wedder-
burn components of A. In case A = QG, this method can be used to study the group
of units of the integral group ring ZG, which is an order in QG. This motivates the
following definitions that rigorously introduce these objects.

Let K be a number field, A a central simple K-algebra and R an order in A. By
order we always mean a Z-order. Let R1 denote the group of units of R of reduced
norm 1. Every embedding σ : K → C induces an embedding σ : A→ Md(C), where d
is the degree of A. Namely σ(a) = σ̃ϕ(1 ⊗ a), where ϕ : C ⊗K A → MD(C) is a fixed
isomorphism and σ̃ : Md(C) → Md(C) acts componentwise as an automorphism of C
which extends σ. Furthermore, σ(R1) ⊆ SLd(C).

Definition 4.1. [PdRR] A simple algebra A is said to be of Kleinian type if either
A is a number field or A is a quaternion algebra over a number field K and σ(R1) is
a discrete subgroup of SL2(C) for some embedding σ of K in C. More generally, an
algebra of Kleinian type is a finite direct sum of simple algebras of Kleinian type.

Definition 4.2. A finite group G is of Kleinian type if the rational group algebra QG
is of Kleinian type.

If G is a finite group of Kleinian type, then theoretically one can obtain a presenta-
tion of a group commensurable with U(ZG) as follows: first, compute the Wedderburn
decomposition

∏n
i Ai of the rational group algebra QG and an order Ri of Ai for each

Ai; second, apply Dirichlet Unit Theorem to obtain presentations of Z(Ri)∗; third,
compute a fundamental polyhedron of (Ri)1 for every i; fourth, use these fundamental
polyhedrons to derive presentations of (Ri)1 for each i; and finally, put all the informa-
tion together, namely U(ZG) is commensurable with the direct product of the groups
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for which presentations have been obtained.
The finite groups of Kleinian type have been classified in [JPdRRZ], where it has

been also proved that a finite group G is of Kleinian type if and only if the group of
units ZG∗ of its integral group ring ZG is commensurable with a direct product of
free-by-free groups. This article was our staring point for the study of this topic and
the main reference. Following a suggestion of Alan Reid, we continued the previous
work by studying the consequences of replacing the ring of rational integers by another
ring of integers. This leads to the following two problems:

Problem 1. Classify the group algebras of Kleinian type of finite groups
over number fields.
Problem 2. Given a group algebra of Kleinian type KG, describe the
structure of the group of units of the group ring RG for R an order in K.

The simple factors of KG are Schur algebras over their centers. So, in order to solve
Problem 1, it is natural to start by classifying the Schur algebras of Kleinian type. This
is obtained in Section 4.1. Using this classification and that of finite groups of Kleinian
type given in [JPdRRZ] we obtain the classification of the group algebras of Kleinian
type in Section 4.2. In Section 4.3 we obtain a partial solution for Problem 2.

4.1 Schur algebras of Kleinian type

Throughout K is a number field. A cyclic cyclotomic algebra is a cyclic algebra
(L/K, a), where L/K is a cyclotomic extension and a is a root of unity. A cyclic
cyclotomic algebra (L/K, a) is a Schur algebra because it is generated over K by the
finite metacyclic group 〈u, ζ〉, where ζ is a root of unity of L such that L = K(ζ).
Conversely, every algebra generated by a finite metacyclic group is cyclic cyclotomic.
Some properties of this type of algebras are studied in Chapter 6.

We will make use several times of the method to compute the Wedderburn decom-
position of QG for G an arbitrary finite group given in Chapter 2, as well as of the
GAP package wedderga presented in Chapter 3. Now we quote the following theorem
from [JPdRRZ].

Theorem 4.3. The following statements are equivalent for a central simple algebra A
over a number field K.

(1) A is of Kleinian type.

(2) A is either a number field or a quaternion algebra which is not ramified at at most
one infinite place.
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(3) One of the following conditions holds:

(a) A = K.

(b) A is a totally definite quaternion algebra.

(c) A 'M2(Q).

(d) A 'M2(Q(
√
d)), for d a square-free negative integer.

(e) A is a quaternion division algebra, K is totally real and A ramifies at all but
one real embeddings of K.

(f) A is a quaternion division algebra, K has exactly one pair of complex (non-
real) embeddings and A ramifies at all real embeddings of K.

We need the following lemmas.

Lemma 4.4. If K = Q(
√
d) with d a square-free negative integer then

(1) H(K) is a division algebra if and only if d ≡ 1 mod 8.

(2)
(
−1,−3
K

)
is a division algebra if and only if d ≡ 1 mod 3.

Proof. (1) Writing H(K) as (K(ζ4)/K,−1), one has that H(K) is a division algebra if
and only if −1 is a sum of two squares in K. It is well known that this is equivalent to
d ≡ 1 mod 8 [FGS].

(2) Assume first that A =
(
−1,−3
K

)
is not split. Then A is ramified at at least two

finite places p1 and p2 since
∑

p Inv(Ap) = 0 in Q/Z by Hasse–Brauer–Noether–Albert
Theorem (see Remark 1.95 (ii)) and A is not ramified at any infinite place. Writing A
as (K(ζ3)/K,−1) and using Theorem 1.76, one deduces that p1 and p2 are divisors of
3. Thus 3 is totally ramified in K and this implies that the Legendre symbol

(
D
3

)
= 1,

where D is the discriminant of K (see Theorem 1.9). Since D = d or D = 4d and(p
3

)
≡ p mod 3, for each rational prime p, one has d =

(
d
3

)
=
(
D
3

)
≡ 1 mod 3.

Conversely, assume that d ≡ 1 mod 3. Then 3 is totally ramified in K. Let p be a
prime divisor of 3 in K. Then the residue field of Kp has order 3 and Kp(ζ4)/Kp is the
unique unramified extension of degree 2 of Kp by Theorem 1.77. Since vp(−3) = 1, we
deduce from Theorem 1.76 that −3 is not a norm of the extension Kp(ζ4)/Kp. Thus
Kp ⊗K A = (Kp(ζ4)/Kp,−3) is a division algebra, hence so is A.

Lemma 4.5. Let D be a division quaternion Schur algebra over a number field K.
Then D is generated over K by a metabelian subgroup of D∗.

Proof. By means of contradiction we assume that D is not generated over K by a
metabelian group. Using Amitsur’s classification of the finite subgroups of division rings
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(see [Ami] or [SW]) we deduce that D is generated by a group G which is isomorphic
to one of the following groups: O∗, the binary octahedral group of order 48; SL(2, 5),
the binary icosahedral group of order 120; or SL(2, 3) ×M , where M is a metacyclic
group. Recall that O∗ = 〈x, y, a, b|x4 = x2y2 = x2b2 = a3 = 1, ab = a−1, xy = x−1, xb =
y, xa = x−1y, ya = x−1〉. We may assume without loss of generality that G is one of the
above groups. Let D1 be the rational subalgebra of D generated by G. It is enough to
show that D1 is generated over Q by a metabelian group. So we may assume that D is
generated over Q by G, and so D is one of the factors of the Wedderburn decomposition
of QG.

Computing the Wedderburn decomposition of Q(O∗) and Q SL(2, 5) and having in
mind that D has degree 2, we obtain that D ' (Q(ζ8)/Q(

√
2),−1), if G = O∗, and

D ' (Q(ζ5)/Q(
√

5),−1), if G = SL(2, 5). In both cases D is generated over its center
by a finite metacyclic group.

Finally, assume that G = SL(2, 3) ×M , with M metacyclic. Then D is a simple
factor of A1 ⊗Q A2, where A1 is a simple epimorphic image of Q SL(2, 3) and A2 is a
simple epimorphic image of QM . Since A2 is generated by a metacyclic group, it is
enough to show that so is A1. This is clear if A1 is commutative. Assume otherwise
that A1 is not commutative. Having in mind that D is a division quaternion algebra,
one deduces that so is A1 and, computing the Wedderburn decomposition of Q SL(2, 3),
one obtains that A1 is isomorphic to H(Q). This finishes the proof because H(Q) is
generated over Q by a quaternion group of order 8.

For a positive integer n we set

ηn = ζn + ζ−1
n and λn = ζn − ζ−1

n .

Observe that η2
n − λ2

n = 4 and hence Q(η2
n) = Q(λ2

n). Furthermore, if n ≥ 3, then λ2
n

is totally negative because ζ2i
n + ζ−2i

n ≤ 1, for every i ∈ Z prime with n. Therefore, if
λ2
n ∈ K then

(
λ2
n,−1
K

)
ramifies at every real embedding of K.

We are ready to classify the Schur algebras of Kleinian type.

Theorem 4.6. Let K be a number field and let A be a non-commutative central simple
K-algebra. Then A is a Schur algebra of Kleinian type if and only if A is isomorphic
to one of the following algebras:

(1) M2(K), with K = Q or Q(
√
d) for d a square-free negative integer.

(2) H(Q(
√
d)), for d a square-free negative integer, such that d ≡ 1 mod 8.

(3)
(
−1,−3

Q(
√
d)

)
, for d a square-free negative integer, such that d ≡ 1 mod 3.
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(4)
(
λ2
n,−1
K

)
, where n ≥ 3, ηn ∈ K and K has at least one real embedding and at

most one pair of complex (non-real) embeddings.

Proof. That the algebras listed are of Kleinian type follows at once from Proposition 4.3.
Let K be a field. Then M2(K) is an epimorphic image of KD8 and if λ2

n ∈ K then the
algebra

(
λ2
n,−1
K

)
is an epimorphic image of KQ2n. This shows that the algebras listed

are Schur algebras because H(K) =
(
ζ24 ,−1
K

)
and

(
−3,−1
K

)
=
(
ζ26 ,−1
K

)
.

Now we prove that if A is a Schur algebra of Kleinian type then one of the cases
(1)–(4) holds. If A is not a division algebra, Proposition 4.3 implies that A = M2(K)
for K = Q or an imaginary quadratic extension of Q, so (1) holds.

In the remainder of the proof we assume that A is a division Schur algebra of
Kleinian type. By Lemma 4.5, A is generated over K by a finite metabelian group G.
Then A = K ⊗L B, where B is a simple epimorphic image of QG with center L and,
by Proposition 2.3, B is a cyclic cyclotomic algebra (Q(ζn)/L, ζan) of degree 2. Since A
is of Kleinian type, so is B.

Now we prove that L is totally real. Otherwise, since L is a Galois extension of Q,
L is totally complex and therefore K is also totally complex. By Proposition 4.3, both
L and K are imaginary quadratic extensions of Q and so L = K and ϕ(n) = 4, where
ϕ is the Euler function. Then either (a) n = 8 and K = Q(ζ4) or K = Q(

√
−2); or (b)

n = 12 and K = Q(ζ4) or K = Q(ζ3). If n = 8, then B is generated over Q by a group
of order 16 containing an element of order 8. Since B is a division algebra, G = Q16 and
so B = H(Q(

√
2)), a contradiction. Thus n = 12 and hence B = (Q(ζ12)/Q(ζd), ζad ),

where d = 6 or 4. Since ζ6 is a norm of the extension Q(ζ12)/Q(ζ6), necessarily d = 4.
So A = B = (Q(ζ12)/Q(ζ4), ζa4 ) =

(
ζa4 ,−3
Q(ζ4)

)
. Since X = 1 + ζ4, Y = ζ4 is a solution of

the equation ζ4X
2 − 3Y 2 = 1, ζ4 is a norm of the extension Q(ζ12)/Q(ζ4), and hence

so is ζa4 , yielding a contradiction.

So L is a totally real field of index 2 in Q(ζn). Then L = Q(ηn) and necessarily B
is isomorphic to (Q(ζn)/Q(ηn),−1) '

(
λ2
n,−1
L

)
. This implies that A '

(
λ2
n,−1
K

)
. If K

has some embedding in R, then (4) holds. Otherwise K = Q(
√
d), for some square-free

negative integer d. This implies that L = Q. Then n = 3, 4 or 6 and so A is isomorphic
to either H(K) or

(
−1,−3
K

)
. Since A is a division algebra, Lemma 4.4 implies that, in

the first case, d ≡ 1 mod 8 and condition (2) holds, and, in the second case, d ≡ 1
mod 3 and condition (3) holds.
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4.2 Group algebras of Kleinian type

In this section we classify the group algebras of Kleinian type, that is the number fields
K and finite groups G such that KG is of Kleinian type. The classification for K = Q
was given in [JPdRRZ].

We start with some notation. The cyclic group of order n is usually denoted by
Cn. To emphasize that a ∈ Cn is a generator of the group, we write Cn either as 〈a〉 or
〈a〉n. Recall that a group G is metabelian if G has an abelian normal subgroup N such
that A = G/N is abelian. We simply denote this information as G = N : A. To give a
concrete presentation of G we will write N and A as direct products of cyclic groups and
give the necessary extra information on the relations between the generators. By x we
denote the coset xN . For example, the dihedral group of order 2n and the quaternion
group of order 4n can be given by

D2n = 〈a〉n : 〈b〉2, b2 = 1, ab = a−1.

Q4n = 〈a〉2n : 〈b〉2, ab = a−1, b2 = an.

If N has a complement in G then A can be identify with this complement and we write
G = N o A. For example, the dihedral group can be also given by D2n = 〈a〉n o 〈b〉2
with ab = a−1 and the semidihedral groups of order 2n+2 can be described as

D+
2n+2 = 〈a〉2n+1 o 〈b〉2, ab = a2n+1.

D−
2n+2 = 〈a〉2n+1 o 〈b〉2, ab = a2n−1.

Following the notation in [JPdRRZ], for a finite group G, we denote by C(G) the
set of isomorphism classes of noncommutative simple quotients of QG. We generalize
this notation and, for a semisimple group algebra KG, we denote by C(KG) the set
of isomorphism classes of noncommutative simple quotients of KG. For simplicity, we
represent C(G) by listing a set of representatives of its elements. For example, using
the isomorphisms

QD−
16
∼= 4Q⊕M2(Q)⊕M2(Q(

√
−2)) and QD+

16
∼= 4Q⊕ 2Q(i)⊕M2(Q(i))

one deduces that C(D+
16) = {M2(Q(i))} and C(D−

16) = {M2(Q),M2(Q(
√
−2))}.

The following groups play an important role in the classification of groups of
Kleinian type.
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W =
(
〈t〉2 × 〈x2〉2 × 〈y2〉2

)
: (〈x〉2 × 〈y〉2), with t = (y, x) and Z(W) = 〈x2, y2, t〉.

W1n =
(

n∏
i=1
〈ti〉2 ×

n∏
i=1
〈yi〉2

)
o 〈x〉4, with ti = (yi, x) and Z(W1n) = 〈t1, . . . , tn, x2〉.

W2n =
(

n∏
i=1
〈yi〉4

)
o 〈x〉4, with ti = (yi, x) = y2

i and Z(W2n) = 〈t1, . . . , tn, x2〉.

V =
(
〈t〉2 × 〈x2〉4 × 〈y2〉4

)
: (〈x〉2 × 〈y〉2), with t = (y, x) and Z(W) = 〈x2, y2, t〉.

V1n =
(

n∏
i=1
〈ti〉2 ×

n∏
i=1
〈yi〉4

)
o 〈x〉8, with ti = (yi, x) and

Z(V1n) = 〈t1, . . . , tn, y2
1, . . . , y

2
n, x

2〉.

V2n =
(

n∏
i=1
〈yi〉8

)
o 〈x〉8, with ti = (yi, x) = y4

i and Z(V2n) = 〈ti, x2〉.

U1 =

( ∏
1≤i<j≤3

〈tij〉2 ×
3∏

k=1

〈y2
k〉2

)
:
(

3∏
k=1

〈yk〉2
)

, with tij = (yj , yi) and

Z(U1) = 〈t12, t13, t23, y
2
1, y

2
2, y

2
3〉.

U2 =
(
〈t23〉2 × 〈y2

1〉2 × 〈y2
2〉4 × 〈y2

3〉4
)

:
(

3∏
k=1

〈yk〉2
)

, with tij = (yj , yi), y4
2 = t12,

y4
3 = t13 and Z(U2) = 〈t12, t13, t23, y2

1, y
2
2, y

2
3〉.

T = (〈t〉4 × 〈y〉8) : 〈x〉2, with t = (y, x) and x2 = t2 = (x, t).

T1n =
(

n∏
i=1
〈ti〉4 ×

n∏
i=1
〈yi〉4

)
o 〈x〉8, with ti = (yi, x), (ti, x) = t2i and

Z(T1n) = 〈t21, . . . , t2n, x2〉.

T2n =
(

n∏
i=1
〈yi〉8

)
o 〈x〉4, with ti = (yi, x) = y−2

i and Z(T2n) = 〈t21, . . . , t2n, x2〉.

T3n =
(
〈y2

1t1〉2 × 〈y1〉8 ×
n∏
i=2
〈yi〉4

)
: 〈x〉2, with ti = (yi, x), (ti, x) = t2i , x

2 = t21,

Z(T3n) = 〈t21, y2
2, . . . , y

2
n, x

2〉 and, if i ≥ 2 then ti = y2
i ,

Sn,P,Q = Cn3 o P = (Cn3 ×Q) : 〈x〉2, with Q a subgroup of index 2 in P and

zx = z−1 for each z ∈ Cn3 .

We collect the following lemmas from [JPdRRZ].

Lemma 4.7. Let G be a finite group and A an abelian subgroup of G such that every
subgroup of A is normal in G. Let

H = {H | H is a subgroup of A with A/H cyclic and G′ 6⊆ H}.

Then C(G) =
⋃
H∈H C(G/H).
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Lemma 4.8. Let A be a finite abelian group of exponent d and G an arbitrary group.

(1) If d|2 then C(A×G) = C(G).

(2) If d|4 and C(G) ⊆
{
M2(Q),H(Q),

(
−1,−3

Q

)
,M2(Q(ζ4))

}
then C(A×G) ⊆ C(G)∪

{M2(Q(ζ4))}.

(3) If d|6 and C(G) ⊆
{
M2(Q),H(Q),

(
−1,−3

Q

)
,M2(Q(ζ3))

}
then C(A×G) ⊆ C(G)∪

{M2(Q(ζ3))}.

Lemma 4.9. (1) C(W1n) = {M2(Q)}.

(2) C(W) = C(W2n) = {M2(Q),H(Q)}.

(3) C(V), C(V1n), C(V2n), C(U1), C(U2), C(T1n) ⊆ {M2(Q),H(Q),M2(Q(ζ4))}.

(4) C(T ), C(T2n), C(T3n) ⊆ {M2(Q),H(Q),M2(Q(ζ4)),H(Q(
√

2)),M2(Q(
√
−2))}.

(5) Let G = Sn,P,Q.

(a) If P = 〈x〉 is cyclic of order 2n then C(G) = C(G/〈x2〉) ∪
{(

ζ2n−1 ,−3

Q(ζ2n−1 )

)}
.

In particular,

• if P = C2 then C(G) = {M2(Q)},
• if P = C4 then C(G) =

{
M2(Q),

(
−1,−3

Q

)}
, and

• if P = C8 then C(G) =
{
M2(Q),

(
−1,−3

Q

)
,M2(Q(ζ4))

}
.

(b) If P = W1n and Q = 〈y1, . . . , yn, t1, . . . , tn, x
2〉 then C(G) ={

M2(Q),
(
−1,−3

Q

)
,

M2(Q(ζ3))}.

(c) If P = W21 and Q = 〈y2
1, x〉 then C(G) = {M2(Q),H(Q(

√
3)),M2(Q(ζ4)),

M2(Q(ζ3))}.

We are ready to present our classification of the group algebras of Kleinian type.

Theorem 4.10. Let K be a number field and G a finite group. Then KG is of Kleinian
type if and only if G is either abelian or an epimorphic image of A×H, for A an abelian
group, and one of the following conditions holds:

(1) K = Q and one of the following conditions holds.

(a) A has exponent 6 and H is either W, W1n or W2n, for some n, or H =
Sm,W1n,Q with Q = 〈y1, . . . , ym, t1, . . . , tm, x

2〉, for some n and m.
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(b) A has exponent 4 and H is either U1, U2, V, V1n, V2n or Sn,C8,C4, for some
n.

(c) A has exponent 2 and H is either T , T1n, T2n, T3n or Sn,W21,Q with Q =
〈y2

1, x〉, for some n.

(2) K 6= Q and has at most one pair of complex (non-real) embeddings, A has expo-
nent 2 and H = Q8.

(3) K is an imaginary quadratic extension of Q, A has exponent 2 and H is either
W, W1n, W2n or Sn,C4,C2, for some n.

(4) K = Q(ζ3), A has exponent 6 and H is either W, W1n or W2n, for some n, or
H = Sm,W1n,Q with Q = 〈y1, . . . , ym, t1, . . . , tm, x

2〉, for some n and m.

(5) K = Q(ζ4), A has exponent 4 and H is either U1,U2,V,V1n,V2n, T1n or Sn,C8,C4,
for some n.

(6) K = Q(
√
−2), A has exponent 2 and H is either D−

16 or T2n, for some n.

Proof. To avoid trivialities, we assume that G is non-abelian. The main theorem of
[JPdRRZ] states that QG is of Kleinian type if and only if G is an epimorphic image
of A×H for A abelian and A and H satisfy one of the conditions (a)–(c) from (1). So,
in the remainder of the proof, we assume that K 6= Q.

First we prove that if one of the conditions (2)–(6) holds, then KG is of Kleinian
type. For that we compute C(KG) and check that it consists of algebras satisfying one
of the conditions of Theorem 4.6. Since C(KG) ⊆ C(KG), for G an epimorphic image
of G, it is enough to compute C(KG) for G = A ×H and K,A and H satisfying one
of the conditions (2)–(6). We use repeatedly Lemmas 4.8 and 4.9 which provide an
approximation of C(G) and C(KG) = {KZ(A)⊗Z(A) A : A ∈ C(G)}.

If (2) holds, then C(KG) = {H(K)}.
If (3) holds, then C(G) ⊆ {M2(Q),H(Q),

(
−1,−3

Q

)
}, and we deduce that C(KG) ⊆

{M2(K),H(K),
(
−1,−3
K

)
}.

Similarly, if (4) holds then
C(G) ⊆ C(H) ∪ {M2(Q(ζ3))} ⊆ {M2(Q),H(Q),

(
−1,−3

Q

)
,M2(Q(ζ3))}. Hence C(KG) =

{M2(Q(ζ3))}, by Lemma 4.4.
Arguing similarly, one deduces that if (5) holds then C(KG) = {M2(Q(ζ4))}.
Finally, assume that (6) holds. IfH = D−

16 then C(G) = {M2(Q),M2(Q(
√
−2))} and

so C(KG) = {M2(Q(
√
−2))}. Otherwise, H = T2n for some n. In this case we show that

C(KG) = {M2(Q(
√
−2))}. For that, we need a better approximation of C(G) than the

one given in Lemma 4.9. Namely, we show that C(G) = {M2(Q),H(Q),M2(Q(
√
−2))}.
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Let L be a proper subgroup of H ′ (the derived subgroup of H) such that H ′/L is
cyclic. Using that (y, x)y2 = 1, for each y ∈ 〈y1, . . . , yn〉, one has that T2n/L is an
epimorphic image of T21×Cn−1

2 . Then Lemmas 4.7 and 4.8 imply that C(G) = C(T21).
So we may assume that G = T21. Now take B = Z(T21) = 〈t2, x2〉 ' C2

2 and L a
subgroup of B such that B/L is cyclic. If t2 ∈ L, then T21/L is an epimorphic image
of W and therefore C(T21/L) ⊆ {M2(Q),H(Q)}. Otherwise L = 〈x2〉 or L = 〈x2t2〉;
hence T21/L ' D−

16 and so C(T21/L) ⊆ {M2(Q),M2(Q(
√
−2))}. Using Lemma 4.7, one

deduces that C(T2n) = {H(Q),M2(Q),M2(Q(
√
−2))} as claimed.

Conversely, assume that KG is of Kleinian type (and G is non-abelian and K 6= Q).
Then QG is of Kleinian type, that is G is an epimorphic image of A×H for A and H
satisfying one of the conditions (a)–(c) from (1). Furthermore, K has at most one pair
of complex embeddings, by Theorem 4.6. We have to show that K, A and H satisfy
one of the conditions (2)–(6). We consider several cases.

Case 1. Every element of C(G) is a division algebra.
This implies that G is Hamiltonian and so G ' Q8 ×E × F with E an elementary

abelian 2–group and F abelian of odd order [Rob, 5.3.7]. If F = 1, then (2) holds.
Otherwise, C(KG) contains H(K(ζn)), where n is the exponent of F . Therefore n = 3
and K = Q(ζ3), by Theorem 4.6. Since Q8 is an epimorphic image of W, condition (4)
holds.

In the remainder of the proof we assume that C(G) contains a non-division algebra
B. Then B = M2(L) for some field L and therefore M2(KL) ∈ C(KG). Since K 6= Q,
KL is an imaginary quadratic extension of Q and L ⊆ K. Let E be the center of an
element of C(G). Then KE is the center of an element of C(KG). If KE 6= K, then
the two complex embeddings of K extend to more than two complex embeddings of
KE, yielding a contradiction. This shows that K contains the center of each element
of C(G).

Case 2. The center of each element of C(G) is Q.
Then Lemmas 4.8 and 4.9 imply that C(G) ⊆ {M2(Q),H(Q),

(
−1,−3

Q

)
}. Using this

and the main theorem of [LdR] one has that G = A × H, where A is an elementary
abelian 2–group and H is an epimorphic image of W, W1n, W2n or Sn,C4,C2 , for some
n. So G satisfies (3).

Case 3. At least one element of C(G) has center different from Q.
Then the center of each element of C(G) is either Q or K. Using Lemmas 4.8 and 4.9

one has: If A and H satisfy condition (1.a) then K = Q(ζ3), hence (4) holds. If either
A and H satisfy (1.b) or they satisfy (1.c) with H = T1n, for some n, then K = Q(ζ4)
and condition (5) holds.
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Otherwise, A has exponent 2 and H is either T , T2n, T3n, or Sn,W21,〈y21 ,x〉, for some
n. Since A has exponent 2, one may assume that G = A ×H1, for H1 an epimorphic
image of H and H1 is not an epimorphic image of any of the groups considered above.
We use the standard bar notation for the images of QH in QH1.

Assume first that H = T . Then (M = 〈y, t〉, L = 〈ty−2〉) is a strong Shoda pair
of T and, by using Proposition 2.3, one deduces that if e = e(T ,M,L) = L̂1−y4

2 , then
QGe ' H(Q(

√
2)). Since H(Q(

√
2)) is not of Kleinian type, we have that e = 0, or

equivalently y4 ∈ L. Hence either y4 = 1, t2 = 1 or t = y−2. So H1 is an epimorphic
image of either T /〈y4〉, T /〈t2〉 or T /〈ty2〉. In the first case H1 is an epimorphic image
of T11 and in the second case H1 is an epimorphic image of V. In both cases we obtain
a contradiction with the hypothesis that H1 is not an epimorphic image of the groups
considered above. ThusH1 is an epimorphic image of T /〈ty2〉 ' D−

16. In factH1 = D−
16,

because every proper non-abelian quotient of D−
16 is an epimorphic image of W. Then

C(G) = C(D−
16) = {M2(Q),M2(Q(

√
−2))} and so K = Q(

√
−2). Hence condition (6)

holds.

Assume now that H = T2n. By the first part of the proof we have C(H) =
{H(Q),M2(Q),

M2(Q(
√
−2))}. Since we are assuming that one element of C(G) has center different

from Q, then M2(Q(
√
−2)) ∈ C(H1) and so K = Q(

√
−2). Hence condition (6) holds.

In the two remaining options for H we are going to obtain some contradiction.

Suppose that H = T3n. We may assume that n is the minimal positive integer
such that G is an epimorphic image of T3n × A, for A an elementary abelian 2–
group. This implies that 〈t21, t2, . . . , tn〉 is elementary abelian of order 2n and hence
〈y1

2, y2, . . . , yn〉 ' Cn4 . Let M = 〈y1, y2, . . . , yn〉 and L1 = 〈t1y−2
1 , y2, y3, . . . , yn〉.

Then (M,L1) is a strong Shoda pair of H. By using Proposition 2.3, we obtain
that QHe(H,M,L1) ' H(Q(

√
2)). This implies that e(H,M,L1) = 0, or equivalently

t21 = y4
1 ∈ L1. Since t21 has order 2 and t21 6∈ 〈t2, . . . , tn〉 one has t21 = t1y

−2
1 tα2

2 · · · tαnn for
some α1, . . . , αn ∈ {0, 1}. Since, by assumption, H1 is not an epimorphic image of T2n,
we have αi 6= 0 for some i ≥ 2. After changing generators one may assume that α2 = 1
and αi = 0 for i ≥ 3. Thus t1 = y−2

1 t2. Let now L2 = 〈t1y−2
1 , y2y

−2
1 , y3, . . . , yn〉. Then

(M,L2) is also a strong Shoda pair of H and QGe(H,M,L2) ' H(Q(
√

2)). The same
argument shows that y1

4 = t21 ∈ L2 = 〈t1y−2
1 , y2y

−2
1 , y3, . . . , yn〉. This yields a contra-

diction because t1y−2
1 = (y2y

−2
1 )2 ∈ 〈y2y

−2
1 , y3, . . . , yn〉 and y1

4 6∈ 〈y2y
−2
1 , y3, . . . , yn〉.

Finally assume that H = Sn,W21,Q, with Q = 〈y2
1, x〉 and set y = y1. Since,

by assumption, G does not satisfy (1.a), one has t = t1 6= 1. Moreover, as in the
previous case, one may assume that n is minimal (for G to be a quotient of H × A,
with A elementary abelian 2–group). Let M = 〈Cn3 , x, t〉 and L = 〈Z1, tx

2〉, where
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Z1 is a maximal subgroup of Z = Cn3 . Then (M,L) is a strong Shoda pair of H
and QHe(H,M,L) ' H(Q(

√
3)). Thus 0 = e(H,M,L) = L̂(1− ẑ)(1− t̂), where z ∈

Z \ Z1. Comparing coefficients and using the fact that t 6= z, for each z ∈ Z, we have
L̂(1− ẑ) = 0, that is L = Z and this contradicts the minimality of n.

4.3 Groups of units

In this section we study the virtual structure of RG∗, for G a finite group and R an
order in a number field K. More precisely, we characterize the finite groups G and
number fields K for which RG∗ is finite, virtually abelian, virtually a direct product of
free groups or virtually a direct product of free-by-free groups.

We say that a group virtually satisfies a group theoretical condition if it has a
subgroup of finite index satisfying the given condition. Notice that the virtual structure
of RG∗ does not depend on the order R and, in fact, if S is any order in KG, then S∗

and RG∗ are commensurable (see Lemma 1.15).
It is easy to show that a group commensurable with a free group (respectively a free-

by-free group, a direct product of free groups, a direct product of free-by-free groups)
is also virtually free (respectively virtually free-by-free, virtually direct product of free
groups, virtually direct product of free-by-free groups).

An important tool is the following lemma.

Lemma 4.11. Let A =
∏n
i=1Ai be a finite dimensional rational algebra with Ai simple

for every i. Let S be an order in A and Si an order in Ai.

(1) S∗ is finite if and only if for each i, Ai is either Q, an imaginary quadratic
extension of Q or a totally definite quaternion algebra over Q.

(2) S∗ is virtually abelian if and only if for each i, Ai is either a number field or a
totally definite quaternion algebra.

(3) S∗ is virtually a direct product of free groups if and only if for each i, Ai is either
a number field, a totally definite quaternion algebra or M2(Q).

(4) S∗ is virtually a direct product of free-by-free groups if and only if for each i, S1
i

is virtually free-by-free.

Proof. We are going to use the following facts:

(a) S∗ is commensurable with
∏n
i=1 S

∗
i and S∗i is commensurable with Z(Si)∗ × S1

i .
(This is because S and

∏n
i=1 Si are both orders in A.)



4.3. GROUPS OF UNITS 107

(b) S1
i is finite if and only if Ai is either a field or a totally definite quaternion algebra

(see [Kle1] or [Seh, Lemma 21.3]).

(c) If Ai is neither a field nor a totally definite quaternion algebra and S1
i is com-

mensurable with a direct product of groups G1 and G2, then either G1 or G2 is
finite [KdR].

(d) S1
i is infinite and virtually free if and only if Ai 'M2(Q) (see [Kle2, page 233]).

(1) By (a), S∗ is finite if and only if S∗i is finite for each i if and only if Z(Si)∗ and
S1
i are finite for each i. By the Dirichlet Unit Theorem, if Ai is a number field, then S∗i

is finite if and only if Ai is either Q or an imaginary quadratic extension of Q. Using
this and (b), one deduces that, if Ai is not a number field then Z(Si)∗ and S1

i are finite
if and only if Ai is a totally definite quaternion algebra over Q.

(2) By (a), S∗ is virtually abelian if and only if S1
i is virtually abelian for each i.

If Ai is either a number field or a totally definitive quaternion algebra then S1
i is finite

and in particular virtually abelian, by (b). Conversely, assume that S1
i is virtually

abelian. We argue by contradiction to show that Ai is either a number field or a totally
definite quaternion algebra. Otherwise, S1

i is virtually infinite cyclic by (b) and (c)
and the fact that S1

i is finitely generated. Then (d) implies that Ai = M2(Q) and so
S1
i is commensurable with SL2(Z). This yields a contradiction because SL2(Z) is not

virtually cyclic.
(3) By (a) and [JdR, Lemma 3.1], S∗ is virtually a direct product of free groups if

and only if so is S1
i for each i. As in the previous proof, if Ai is neither commutative

nor a totally definite quaternion algebra, then S1
i is virtually a direct product of free

groups if and only if it is virtually free if and only if Ai 'M2(Q).
(4) Is proved in [JPdRRZ, Theorem 2.1].

The characterization of when RG∗ is finite (respectively virtually abelian, virtually
a direct product of free groups) is an easy generalization of the corresponding result
for integral group rings.

Theorem 4.12. Let R be an order in a number field K and G a finite group. Then
RG∗ is finite if and only if one of the following conditions holds:

(1) K = Q and G is either abelian of exponent dividing 4 or 6, or isomorphic to
Q8 ×A, for A an elementary abelian 2–group.

(2) K is an imaginary quadratic extension of Q and G is an elementary abelian
2–group.

(3) K = Q(ζ3) and G is abelian of exponent 3 or 6.
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(4) K = Q(ζ4) and G is abelian of exponent 4.

Proof. If K = Q, then R = Z and it is well known that ZG∗ is finite if and only if G is
abelian of exponent dividing 4 or 6 or it is isomorphic to Q8 ×A, for A an elementary
abelian 2–group [Seh].

If one of the conditions (1)–(4) holds, then KG is a direct product of copies of Q,
imaginary quadratic extensions of Q and H(Q). Then RG∗ is finite by Lemma 4.11.

Conversely, assume that RG∗ is finite and K 6= Q. Then ZG∗ is finite and therefore
G is either abelian of exponent dividing 4 or 6, or isomorphic to Q8 × A, for A an
elementary abelian 2–group. Moreover, R∗ is finite and so K = Q(

√
d) for d a square-

free negative integer. If the exponent of G is 2 then (2) holds. If G is non-abelian, i.e.
G ≡ Q8 × A with A elementary abelian 2–group, then one of the simple components
of KG is M2(Q(

√
d)), contradicting the previous paragraph. Thus G is abelian. If

the exponent of G is 3 or 6, then one of the simple components of KG is Q(
√
d, ζ3),

hence d = −3, and therefore (3) holds. If the exponent of G is 4 then one of the simple
components of KG is Q(

√
d, ζ4) and therefore d = −1, that is (4) holds.

Theorem 4.13. Let R be an order in a number field K and G a finite group. Then
RG∗ is virtually abelian if and only if either G is abelian or K is totally real and
G ' Q8 ×A, for A an elementary abelian 2–group.

Proof. As in the proof of Theorem 4.12, the sufficient condition is a direct consequence
of Lemma 4.11.

Conversely, assume that RG∗ is virtually abelian. Then ZG∗ is virtually abelian
and therefore it does not contain a non-abelian free group. Then G is either abelian or
isomorphic to G ' Q8 × A, for A an elementary abelian 2–group (Theorem 1.35). In
the latter case, one of the simple components of KG is H(K) and hence K is totally
real, by Lemma 4.11.

Theorem 4.14. Let R be an order in a number field K and G a finite group. Then
RG∗ is virtually a direct product of free groups if and only if either G is abelian or one
of the following conditions holds:

(1) K = Q and G ' H×A, for A an elementary abelian 2–group and H is either W,
W1n, W1n/〈x2〉, W2n, W2n/〈x2〉, W2n/〈x2t1〉, T3n or H = Sn,C2t,Ct, for some n
and t = 1, 2 or 4.

(2) K is totally real and G ' Q8 ×A, for A an elementary abelian 2–group.

Proof. The finite groups G such that ZG∗ is virtually a direct product of free groups
were classified in [JL, JLdR, JdR, LdR] and are the abelian groups and those satisfying
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condition (1). So, in the remainder of the proof, one may assume that R 6= Z, or
equivalently K 6= Q, and we have to show that RG∗ is virtually a direct product of free
groups if and only if either G is abelian or (2) holds.

If either G is abelian or (2) holds then RG∗ is virtually abelian, hence RG∗ is
virtually a direct product of free groups, because it is finitely generated.

Conversely, assume that RG∗ is virtually a direct product of free groups and G is
non-abelian. Since K 6= Q, M2(Q) is not a simple quotient of KG, hence Lemma 4.11
implies that every simple quotient of KG is either a number field or a totally definite
quaternion algebra. In particular, G is Hamiltonian, that is G = Q8 ×A×F , where A
is an elementary abelian 2–group and F is abelian of odd order. If n is the exponent
of F then H(K(ζn)) is a simple quotient of KG and this implies that n = 1 and K is
totally real.

Now we prove the main result of this section which provides a characterization of
when RG∗ is virtually a direct product of free-by-free groups.

Theorem 4.15. Let R be an order in a number field K and G a finite group. Then
RG∗ is virtually a direct product of free-by-free groups if and only if either G is abelian
or one of the following conditions holds:

(1) G is an epimorphic image of A×H with A abelian and K, A and H satisfy one
of the conditions (1), (4), (5) or (6) of Theorem 4.10.

(2) K is totally real and G ' A×Q8, for A an elementary abelian 2–group.

(3) K = Q(
√
d), for d a square-free negative integer, SL2(Z[

√
d]) is virtually free-by-

free, and G ' A ×H where A is an elementary abelian 2–group and one of the
following conditions holds:

(a) H is either W1n, W1n/〈x2〉, W2n/〈x2〉 or Sn,C2,1, for some n.

(b) H is either W, W2n or W2n/〈x2t1〉, for some n and d 6≡ 1 mod 8.

(c) H = Sn,C4,C2 for some n and d 6≡ 1 mod 3.

Proof. To avoid trivialities we assume that G is not abelian. Along the proof we
are going to refer to conditions (1)–(6) of Theorem 4.10 and to conditions (1)–(3) of
the theorem being proved. To avoid confusion, we establish the convention that any
reference to conditions (1)–(3) refers to condition (1)–(3) of Theorem 4.15.

We first show that if K and G satisfy one of the listed conditions then RG∗ is
virtually a direct product of free-by-free groups. By Lemma 4.11, this is equivalent to
showing that for every B ∈ C(KG) and S an (any) order in B, we have that S1 is
virtually free-by-free. By using Lemmas 4.8 and 4.9 and the computation of C(KG) in
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the proof of Theorem 4.10, it is easy to show that ifK andG satisfy one of the conditions
(1) or (2), then every element of C(KG) is either a totally definite quaternion algebra
or isomorphic to M2(K) for K = Q(

√
d), with d = 0,−1,−2 or −3. In the first case

S1 is finite and in the second case S1 is virtually free-by-free (see Lemma 4.11 and
[JPdRRZ, Lemma 3.1] or alternatively [Kle1], [MR, page 137] and [WZ]). If K and G
satisfy condition (3) then Lemmas 4.4, 4.8 and 4.9 imply that C(KG) = {M2(Q(

√
d))}.

Since S1 and SL2(Z[
√
d]) are commensurable and, by assumption, the latter is virtually

free-by-free, we have that S1 is virtually free-by-free.

Conversely, assume that RG∗ is virtually a direct product of free-by-free groups.
Let B be a simple factor of KG and S an order in B. By Lemma 4.11, S1 is virtually
free-by-free and hence the virtual cohomological dimension of S1 is at most 2. Then
B is of Kleinian type by [JPdRRZ, Corollary 3.4]. This proves that KG is of Kleinian
type. Furthermore, B is of one of the types (a)–(f) from Proposition 4.3. However, the
virtual cohomological dimension of S1 is 0, if B is of type (a) or (b); 1 if B is of type
(c); 2 if it is of type (d) or (e); and 3 if B is of type (f) [JPdRRZ, Remark 3.5]. Thus
B is not of type (f). Since every simple factor of KG contains K, either K is totally
real or K is an imaginary quadratic extension of Q and KG is split.

By Theorem 4.10, G is an epimorphic image of A×H with A abelian and K, A and
H satisfying one of the conditions (1)–(6) of Theorem 4.10. If they satisfy one of the
conditions (1), (4), (5) or (6) of Theorem 4.10, then condition (1) (of Theorem 4.15)
holds. So, we assume that K, A and H satisfy either condition (2) or (3) of Theo-
rem 4.10. Since A is an elementary abelian 2–group, one may assume that G = A×H1

with H1 an epimorphic image of H.

Assume first that K, A and H satisfy condition (2) of Theorem 4.10. Then one of
the simple quotient of KG is isomorphic to H(K). If K is totally real then condition
(2) holds. Otherwise K = Q(

√
d) for d a square-free negative integer and H(K) is split.

By Lemma 4.4, d 6≡ 1 mod 8. Since Q8 ' W21/〈x2t1〉, condition (3b) holds.

Secondly assume thatK, A andH satisfy condition (3) of Theorem 4.10 and setK =
Q(
√
d) for d a square-free negative integer. Then C(G) ⊆

{
H(Q),M2(Q),

(
−1,−3

Q

)}
, by

Lemma 4.9. By the main theorem of [JdR], H1 is isomorphic to either W, W1n, W2n,
W1n/〈x2

1〉, W2n/〈x2
1〉, W2n/〈x2

1t1〉, Sn,C2,1 or Sn,C4,C2 , for some n. If H is either W1n,
W1n/〈x2

1〉, W2n/〈x2
1〉 or Sn,C2,1, then (3a) holds. If H is either W, W2n or W2n/〈x2t1〉

then C(G) = {M2(Q),H(Q)} and, arguing as in the previous paragraph, one deduces
that d 6≡ 1 mod 8. In this case condition (3b) holds. Finally, if G = Sn,C4,C2 then
C(G) =

{
M2(Q),

(
−1,−3

Q

)}
and using the second part of Lemma 4.4 one deduces that

d 6≡ 1 mod 3, and condition (3c) holds.

The main theorem of [JPdRRZ] states that a finite group G is of Kleinian type if



4.3. GROUPS OF UNITS 111

and only if ZG∗ is commensurable with a direct product of free-by-free groups. One
implication is still true when Z is replaced by an arbitrary order in a number field.
This is a consequence of Theorems 4.10 and 4.15.

Corollary 4.16. Let R be an order in a number field K and G a finite group. If RG∗

is commensurable with a direct product of free-by-free groups then KG is of Kleinian
type.

It also follows from Theorems 4.10 and 4.15 that the converse of Corollary 4.16 fails.
The group algebras KG of Kleinian type for which the group of units of an order in
KG is not virtually a direct product of free-by-free groups occur under the following
circumstances, where G = A×H for A an elementary abelian 2–group:

(1) K is a number field of degree ≥ 3 over Q with exactly one pair of complex
embeddings and at least one real embedding and H = Q8.

(2) K = Q(
√
d), for d a square-free negative integer with d ≡ 1 mod 8 and H = W,

W2n or W2n/〈x2t1〉, for some n.

(3) K = Q(
√
d) for d a square-free negative integer with d ≡ 1 mod 3 and H =

Sn,C4,C2 .

(4) K = Q(
√
d) and d and H satisfy one of the conditions (3a)–(3c) from Theo-

rem 4.15, but SL2(Z[
√
d]) is not virtually free-by-free.

Resuming, if KG is of Kleinian type, then we have a good description of the virtual
structure of RG∗ for R an order in K, except for the four cases above. It has been
conjectured that SL2(Z[

√
d]) is virtually free-by-cyclic for every negative integer d.

This conjecture has been verified for d = −1,−2,−3,−7 and −11 (see [MR] and [WZ]).
Thus, maybe the last case does not occur and the hypothesis of SL2(Z[

√
d]) being

virtually free-by-free in Theorem 4.15 is superfluous.

In order to obtain information on the virtual structure of RG∗ in the four cases (1)–
(4) above, one should investigate the groups of units S∗, for S an order in the following
algebras: H(K), for K a number field with exactly one pair of complex embeddings
and H(K) is not split, H(Q(

√
d)) with d ≡ 1 mod 8,

(
−1,−3

Q(
√
d)

)
with d ≡ 1 mod 3 and,

of course, M(Q(
√
d)) for d a square-free negative integer. Notice that K = Q(

√
−7)

and G = Q8 = W11/〈x2t1〉 is an instance of cases (2) above and, if R is an order in K,
then RQ∗8 is commensurable with H(R)∗. A presentation of H(R)∗, for R the ring of
integers of Q(

√
−7) has been computed in [CJLdR].
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Notes on Chapter 4

The aim of this chapter was not to give a self-contained presentation about group
algebras of Kleinian type, but to continue the work presented in [JPdRRZ] generalizing
the results to arbitrary rings of integers. Since we need only selected topics, we are far
from presenting a complete picture of them, so that we do not insist on their general
history. As already mentioned, our starting point and main reference was the article
[JPdRRZ]. The reader is refereed to [Poi, Bia, WZ, Mas] for further information on
the topic of Kleinian groups and to [EGM, MR, Mas, Thu] for the applications related
to the Geometrization Problem of Thurston for the classification of 3–manifolds.

A more extensive and complete presentation of groups and algebras of Kleinian type
can be found in the thesis [Rui] and in the article [PdRR], where these notions were
first defined, in the master thesis [Pit, Bar], and in the article [JPdRRZ]. In the latter
it has been also given a characterization of finite groups of Kleinian type in terms of
the group of units of its integral group ring.

Some possible further development of the results from Section 3 of this chapter can
be the generalization of some results to semigroup algebras. It could be interesting to
know if the methods developed in [DJ] to reduce problems on semigroup rings to similar
problems on group rings and the Wedderburn components of group algebras could be
applied here.



Chapter 5

The Schur group of an abelian

number field

In this chapter we characterize the maximum r-local index of a Schur algebra over an
abelian number field K in terms of global information determined by the field K, for
r an arbitrary rational prime. This characterization completes and unifies previous
results of Janusz [Jan3] and Pendergrass [Pen2].

Throughout let K be an abelian number field. The existence of the maximum r-
local index of a Schur algebra over K is a consequence of the Benard-Schacher Theorem
(see Theorem 1.108) which gives a partial characterization of the elements of the Schur
group S(K) of the field K. According to this theorem, if n is the Schur index of a Schur
algebra A over K, then the group of roots of unity W (K) of K contains an element of
order n. Since S(K) is a torsion abelian group, it is enough to compute the maximum
of the r-local indices of Schur algebras over K with index a power of p for every prime
p dividing the order of W (K). We will refer to this number as pβp(r). In [Jan3], Janusz
gave a formula for pβp(r) when either p is odd or K contains a primitive 4-th root of
unity. The remaining cases were considered by Pendergrass in [Pen1]. However, some
of the calculations involving factor sets in [Pen1] are not correct, and as a consequence
the formulas for 2β2(r) for odd primes r that appear there are inaccurate. This work was
mainly motivated by the problem of finding a correct formula for pβp(r) in this remaining
case. Moreover, we need to apply the formula in the next chapter. Since the local index
at ∞ will be 2 when K is real and will be 1 otherwise, and for r = 2 one has βp(r) = 0
unless p = 2 and ζ4 ∈ K and S(K2) 6= 1, in which case β2(r) = 1, the only remaining
case is that of r odd. This is the case considered in this chapter. The characterization
of fields K for which S(K2) is of order 2 is given in [Pen1, Corollary 3.3].

113
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The main result of the chapter (Theorem 5.13) characterizes pβp(r) in terms of the
position of K relative to an overlying cyclotomic extension F which is determined by K
and p. The formulas for pβp(r) are stated in terms of elements of certain Galois groups
in this setting. The main difference between our approach and that of Janusz and
Pendergrass is that the field F that we use is slightly larger, which allows us to present
some of the somewhat artificial-looking calculations in [Jan3] in a more conceptual
fashion. Another highlight of our approach is the treatment of calculations involving
factor sets. First we generalize a result from [AS] which describes the factor sets for a
given action of an abelian group G on another abelian group W in terms of some data.
In particular, we give necessary and sufficient conditions that the data must satisfy in
order to be induced by a factor set. Because of the applications we have in mind, extra
attention is paid to the case when W is a cyclic p-group.

5.1 Factor set calculations

In this section W and G are two abelian groups and Υ : G→ Aut(W ) is a group homo-
morphism (later on we will assume that W is a cyclic p-group). A group epimorphism
π : G → G with kernel W is said to induce Υ if, given ug ∈ G such that π(ug) = g,
one has ugwu−1

g = Υ(g)(w) for each w ∈ W . If g 7→ ug is a crossed section of π (i.e.
π(ug) = g for each g ∈ G) then the map α : G×G→W defined by uguh = αg,hugh is a
factor set (or 2-cocycle) α ∈ Z2(G,W ). We always assume that the crossed sections are
normalized, i.e. u1 = 1 and hence αg,1 = α1,g = 1. Since a different choice of crossed
section for π would be a map g 7→ wgug, where w : G → W , π determines a unique
cohomology class in H2(G,W ), namely the one represented by α.

Given a list g1, . . . , gn of generating elements of G, a group epimorphism π : G→ G

inducing Υ, and a crossed section g 7→ ug of π, we associate the elements βij and γi of
W , for i, j ≤ n, by the equalities:

ugjugi = βijugiugj , and

uqigi = γiu
t
(i)
1
g1 · · ·ut

(i)
i−1
gi−1 ,

(5.1)

where the integers qi and t(i)j for 1 ≤ i ≤ n and 0 ≤ j < i are determined by

qi = order of gi modulo 〈g1, . . . , gi−1〉, gqii = g
t
(i)
1

1 · · · gt
(i)
i−1

i−1 , 0 ≤ t
(i)
j < qj . (5.2)

If α is the factor set associated to π and the crossed section g 7→ ug, and the generating
set g1, . . . , gn is clear from the context, then we abbreviate the above by saying that
α induces the data (βij , γi). The following proposition gives necessary and sufficient
conditions for a list (βij , γi) of elements of W to be induced by a factor set.



5.1. FACTOR SET CALCULATIONS 115

Proposition 5.1. Let W and G = 〈g1, . . . , gn〉 be abelian groups and let Υ : G →
Aut(W ) be an action of G on W . For every 1 ≤ i, j ≤ n, let qi and t(i)j be the integers
determined by (5.2). For every w ∈W and 1 ≤ i ≤ n, let

Υi = Υ(gi), N t
i (w) = wΥi(w)Υ2

i (w) · · ·Υt−1
i (w), and Ni = N qi

i .

For every 1 ≤ i, j ≤ n, let βij and γi be elements of W . Then the following
conditions are equivalent:

(1) There is a factor set α ∈ Z2(G,W ) inducing the data (βij , γi).

(2) The following equalities hold for every 1 ≤ i, j, k ≤ n:

(C1) βii = βijβji = 1.

(C2) βijβjkβki = Υk(βij)Υi(βjk)Υj(βki).

(C3) Ni(βij)γi = Υj(γi)N
t
(i)
1

1 (β1j)Υ
t
(i)
1

1 (N t
(i)
2

2 (β2j)) · · ·Υ
t
(i)
1

1 Υt
(i)
2

2 . . .Υ
t
(i)
i−2

i−2 (N
t
(i)
i−1

i−1 (β(i−1)j)).

Proof. (1) implies (2). Assume that there is a factor set α ∈ Z2(G,W ) inducing the
data (βij , γi). Then there is a surjective homomorphism π : G → G and a crossed
section g 7→ ug of π such that the βij and γi satisfy (5.1). Condition (C1) is clear.
Conjugating by ugk in ugjugi = βijugiugj yields

βjkΥj(βik)βijugiugj = βjkΥj(βik)ugjugi = βjkugjβikugi = ugkugjugiu
−1
gk

=
ugkβijugiugju

−1
gk

= Υk(βij)βikugiβjkugj = Υk(βij)βikΥi(βjk)ugiugj .

Therefore, we have βjkΥj(βik)βij = Υk(βij)βikΥi(βjk) and so (C2) follows from (C1).
To prove (C3), we use the obvious relation (wugi)

t = N t
i (w)utgi . Conjugating by ugj

in uqigi = γiu
t
(i)
1
g1 · · ·ut

(i)
i−1
gi−1 results in

Ni(βij)γiu
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 = Nqi

i (βij)uqi
gi

= (βijugi)
qi = ugju

qi
gi
u−1

gj
= ugjγiu

t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1u
−1
gj

= Υj(γi)(β1jug1)
t
(i)
1 · · · (β(i−1)jugi−1)

t
(i)
i−1 = Υj(γi)N

t
(i)
1

1 (β1j)u
t
(i)
1

g1 · · ·N t
(i)
i−1

i−1 (β(i−1)j)u
t
(i)
i−1

gi−1

= Υj(γi)N
t
(i)
1

1 (β1j)Υ
t
(i)
1

1 (N t
(i)
2

2 (β2j)) · · ·Υ
t
(i)
1

1 Υt
(i)
2

2 . . .Υ
t
(i)
i−2

i−2 (N
t
(i)
i−1

i−1 (β(i−1)j))u
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 .

Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).
Before proving (2) implies (1), we show that if π : G→ G is a group homomorphism

with kernel W inducing Υ, g 7→ ug is a crossed section of π and βij and γi are given by
(5.1), then G is isomorphic to the group Ĝ given by the following presentation: the set
of generators of Ĝ is {ŵ, ĝi : w ∈W, i = 1, . . . , n}, and the relations are

ŵ1w2 = ŵ1ŵ2, Υi(w) = ĝiŵĝ
−1
i , ĝj ĝi = β̂ij ĝiĝj , ĝqii = γ̂iĝ

t
(i)
1

1 · · · ĝt
(i)
i−1

i−1 , (5.3)

for each 1 ≤ i, j ≤ n and w,w1, w2 ∈W . Since the relations obtained by replacing ŵ by
w and ĝi by ugi in equation (5.3) for each x ∈W and each 1 ≤ i ≤ n, hold in G, there
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is a surjective group homomorphism φ : Ĝ → G, which associates ŵ with w, for every
w ∈W , and ĝi with ugi , for every i = 1, . . . , n. Moreover, φ restricts to an isomorphism
Ŵ → W and |ĝi〈Ŵ , ĝ1, . . . , ĝi−1〉| = qi. Hence [Ĝ : Ŵ | = q1 · · · qn = [G : W ] and so
|Ĝ| = |G|. We conclude that φ is an isomorphism.

(2) implies (1). Assume that the βij ’s and γi’s satisfy conditions (C1), (C2) and
(C3). We will recursively construct groups G0, G1, . . . , Gn. Start with G0 = W . As-
sume that Gk−1 = 〈W,ug1 , . . . , ugk−1

〉 has been constructed with ug1 , . . . , ugk−1
(in the

roles of ĝ1, . . . , ĝk−1) satisfying the last three relations of (5.3), for 1 ≤ i, j < k, and
that these relations, together with the relations in W , form a complete list of relations
for Gk−1. To define Gk we first construct a semidirect product Hk = Gk−1 ock 〈xk〉,
where ck acts on Gk−1 by

ck(w) = Υk(w), (w ∈W ), ck(ugi) = βikugi .

In order to check that this defines an automorphism of Gk−1 we need to check that
ck respects the defining relations of Gk−1. That it respects the relations of W is clear
because Υk is an automorphism of W . Now we check that it respects the last three
relations in (5.3) for 1 ≤ i, j < k. Using that G is commutative one has ΥkΥi = ΥiΥk

and hence

ck(Υi(w))ck(ugi) = Υk(Υi(w))βikugi = Υi(Υk(w))βikugi = βikugiΥk(w) = ck(ugi)ck(w),

which shows that ck respects the second relation. For the third relation we have

ck(ugj )ck(ugi) = βjkugjβikugi = βjkΥj(βik)βijugiugj = Υi(βjk)βikΥk(βij)ugiugj
= Υk(βij)βikugiβjkugj = ck(βij)ck(ugi)ck(ugj ).

Finally, for the last relation

ck(ugi)
qi = (βikugi)

qi = Ni(βik)uqi
gi

= Ni(βik)γiu
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1

= Υk(γi)N
t
(i)
1

1 (β1k)Υt
(i)
1

1 (N t
(i)
2

2 (β2k)) · · ·Υt
(i)
1

1 Υt
(i)
2

2 . . .Υ
t
(i)
i−2

i−2 (N
t
(i)
i−1

i−1 (β(i−1)k))ut
(i)
1

g1 · · ·ut
(i)
i−1

gi−1

= ck(γi)(N
t
(i)
1

1 (β1k)ut
(i)
1

g1 )(N t
(i)
2

2 (β2k)ut
(i)
2

g2 ) · · · (N t
(i)
i−1

i−1 (β(i−1)k)u
t
(i)
i−1

gi−1)

= ck(γi)(β1kug1)
t
(i)
1 · · · (β(i−1)kugi−1)

t
(i)
i−1

= ck(γi)ck(ug1)
t
(i)
1 · · · ck(ugi−1)

t
(i)
i−1 .

Notice that the defining relations of Hk are the defining relations of Gk−1 to-
gether with the relations xkw = Υk(w)xk and xkugi = βikugixk. Using (C3) one

deduces ugix
qk
k u

−1
gi = ugiγku

t
(k)
1
g1 · · ·ut

(k)
k−1
gk−1u

−1
gi , for each i ≤ k − 1. This shows that

yk = x−qkk γku
t
(k)
1
g1 · · ·ut

(k)
k−1
gk−1 belongs to the center of Hk. Let Gk = Hk/〈yk〉 and
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ugk = xk〈yk〉. Now it is easy to see that the defining relations of Gk are the rela-
tions of W and the last three relations in (5.3), for 0 ≤ i, j ≤ k.

It is clear now that the assignment w 7→ 1 and ugi 7→ gi for each i = 1, . . . , n defines
a group homomorphism π : G = Gn → G with kernel W and inducing Υ. If α is the
factor set associated to π and the crossed section g 7→ ug, then (βij , γi) is the list of
data induced by α.

Note that the group generated by the values of the factor set α coincides with the
group generated by the data (βij , γi). This observation will be used in the next section.

In the case G = 〈g1〉 × · · · × 〈gn〉 we obtain the following corollary that one should
compare with Theorem 1.3 of [AS].

Corollary 5.2. If G = 〈g1〉 × · · · × 〈gn〉 then a list D = (βij , γi)1≤i,j≤n of elements of
W is the list of data associated to a factor set in Z2(G,W ) if and only if the elements
of D satisfy (C1), (C2) and Ni(βij)γi = Υj(γi), for every 1 ≤ i, j ≤ n.

In the remainder of this section we assume that W = 〈ζ〉 is a cyclic p-group, for
p a prime integer. Let pa and pa+b denote the orders of WG = {x ∈ W : Υ(g)(x) =
x for each g ∈ G} and W respectively. We assume that 0 < a, b. We also set

C = Ker(Υ) and D = {g ∈ G : Υ(g)(ζ) = ζ or Υ(g)(ζ) = ζ−1}.

Note that D is subgroup of G containing C, G/D is cyclic, and [D : C] ≤ 2.
Furthermore, the assumption a > 0 implies that if C 6= D then pa = 2.

Lemma 5.3. There exists ρ ∈ D and a subgroup B of C such that D = 〈ρ〉 × B and
C = 〈ρ2〉 ×B.

Proof. The lemma is obvious if C = D (just take ρ = 1). So assume that C 6= D and
temporarily take ρ to be any element of D \ C. Since [D : C] = 2, one may assume
without loss of generality that |ρ| is a power of 2. Write C = C2 × C2′ , where C2

and C2′ denote the 2-primary and 2′-primary parts of C, and choose a decomposition
C2 = 〈c1〉 × · · · × 〈cn〉 of C2. By reordering the ci’s if needed, one may assume that
ρ2 = ca1

1 . . . cakk c
2ck+1

k+1 . . . c2ann with a1, . . . , ak odd. Then replacing ρ by ρc−ak+1

k+1 . . . c−ann

one may assume that ρ2 = ca1
1 . . . cakk , with a1, . . . , ak odd. Let H = 〈ρ, c1, . . . , ck〉.

Then |ρ|/2 = |ρ2| = exp(H ∩ C), the exponent of H ∩ C, and so ρ is an element of
maximal order in H. This implies that H = 〈ρ〉 × H1 for some H1 ≤ H. Moreover,
if h ∈ H1 \ C then 1 6= ρ|ρ|/2 = h|ρ|/2 ∈ 〈ρ〉 ∩ H1, a contradiction. This shows that
H1 ⊆ C. Thus C2 = (H ∩ C2)× 〈ck+1〉 × · · · × 〈cn〉 = 〈ρ2〉 ×H1 × 〈ck+1〉 × · · · × 〈cn〉.
Then ρ and B = H1 × 〈ck+1〉 × · · · × 〈cn〉 × C2′ satisfy the required conditions.



118 CHAPTER 5. THE SCHUR GROUP OF AN ABELIAN NUMBER FIELD

By Lemma 5.3, there is a decomposition D = B×〈ρ〉 with C = B×〈ρ2〉, which will
be fixed for the remainder of this section. Moreover, if C = D then we assume ρ = 1.
Since G/D is cyclic, G/C = 〈ρC〉 × 〈σC〉 for some σ ∈ G. It is easy to see that σ can
be selected so that if D = G then σ = 1, and σ(ζ) = ζc for some integer c satisfying

vp(cqσ − 1) = a+ b, vp(c− 1) =


a, if G/C is cyclic and G 6= D,

a+ b, if G/C is cyclic and G = D, and
d ≥ 2, for some integer d, if G/C is not cyclic,

(5.4)

where qσ = |σC| and the map vp : Q → Z is the classical p-adic valuation. In particular,
if G/C is non-cyclic (equivalently C 6= D 6= G) then pa = 2, b ≥ 2, ρ(ζ) = ζ−1 and
σ(ζ2b−1

) = ζ2b−1
.

For every positive integer t we set

V (t) = 1 + c+ c2 + · · ·+ ct−1 =
ct − 1
c− 1

.

Now we choose a decomposition B = 〈c1〉 × · · · × 〈cn〉 and adapt the notation of
Proposition 5.1 for a group epimorphism f : G → G with kernel W inducing Υ and
elements uc1 , . . . , ucn , uσ, uρ ∈ G with f(uci) = ci, f(uρ) = ρ and f(uσ) = σ, by setting

βij = [ucj , uci ], βiρ = β−1
ρi = [uρ, uci ], βiσ = β−1

σi = [uσ, uci ], βσρ = β−1
ρσ = [βρ, βσ].

We also set
qi = |ci|, qρ = |ρ|, and σqσ = ct11 . . . c

tn
n ρ

2tρ ,

where 0 ≤ ti < qi and 0 ≤ tρ < |ρ2|.
(5.5)

With a slightly different notation than in Proposition 5.1, we have, for each 1 ≤ i ≤
n, t(i)j = 0 for every 0 ≤ j < i, t(ρ)i = 0 , t(σ)

i = ti, and t
(σ)
ρ = 2tρ. Furthermore, qρ = 1

if C = D and qρ is even if C 6= D. Continuing with the adaptation of the notation of
Proposition 5.1 we set

γi = uqici , γρ = u
qρ
ρ , and γσ = uqσσ u

−t1
c1 . . . u−tncn u

2tρ
ρ .

We refer to the list {βij , βiσ, βiρ, βσρ, γi, γρ, γσ : 0 ≤ i < j ≤ n}, which we abbreviate
as (β, γ), as the data associated to the group epimorphism f : G → G and choice of
crossed section uc1 , . . . , ucn , uσ, uρ, or as the data induced by the corresponding factor
set in Z2(G,W ).

Furthermore, for every w ∈W , 1 ≤ i ≤ n and t ≥ 0 one has

N t
i (w) = wt, N t

σ(w) = wV (t) and N t
ρ(w) =


wt, if ρ = 1;
1, if ρ 6= 1 and t is even;
w, if ρ 6= 1 and t is odd.
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In particular, for every w ∈W one has

Ni(w) = wqi , Nσ(w) = wV (qσ), and Nρ(w) = 1.

Rewriting Proposition 5.1 for this case we obtain the following.

Corollary 5.4. Let W be a finite cyclic p-group and let G be an abelian group acting
on W with G = 〈c1, . . . , cn, σ, ρ〉, B = 〈c1〉 × · · · × 〈cn〉, D = B × 〈ρ〉 and C = B × 〈ρ2〉
as above. Let qi, qρ, qσ and the ti’s be given by (5.5). Let βσρ, γρ, γσ ∈W and for every
1 ≤ i, j ≤ n let βij , βiσ, βiρ and γi be elements of W . Then the following conditions are
equivalent:

(1) The given collection (β, γ) = {βij , βiσ, βiρ, βσρ, γi, γσ, γρ} is the list of data induced
by some factor set in Z2(G,W ).

(2) The following hold for every 1 ≤ i, j ≤ n:

(C1) βii = βijβji = 1.

(C2) (a) βij ∈WG.

(b) If ρ 6= 1 then β2
iσ = β1−c

iρ .

(C3) (a) βqiij = 1.

(b) βqiiσ = γc−1
i .

(c) β−V (qσ)
iσ = βt11i . . . β

tn
ni .

(d) γc−1
σ βt11σ . . . β

tn
nσ = 1.

(e) If ρ = 1 then βiρ = βσρ = γρ = 1.

(f) If ρ 6= 1 then βqiiργ
2
i = 1, βV (qσ)

σρ γ2
σ = βt11ρ . . . β

tn
nρ and γρ ∈WG.

Proof. By completing the data with βσi = β−1
iσ , βρi = β−1

iρ , βρσ = β−1
σρ and βσσ = βρρ =

1 we have that (C1) is a rewriting of condition (C1) from Proposition 5.1.
(C2) is the rewriting of condition (C2) from Proposition 5.1 because this condition

vanishes when 1 ≤ i, j, k ≤ n and when two of the elements i, j, k are equal. Further-
more, permuting i, j, k in condition (C2) of Proposition 5.1 yields equivalent conditions.
So we only have to consider three cases: substituting i = i, j = j, and k = σ; i = i,
j = j, and k = ρ; and i = i, j = ρ, and k = σ. In the first two cases one obtains
σ(βij) = ρ(βij) = βij , or equivalently βij ∈ WG. For ρ = 1 the last case vanishes, and
for ρ 6= 1 (C2) yields β2

iσ = β1−c
iρ .

Rewriting (C3) from Proposition 5.1 we obtain: condition (C3.a) for i = i, j = j;
condition (C3.b) for i = i and j = σ; condition (C3.c) for i = σ and j = i; and condition
(C3.d) for i = σ and j = σ.
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We consider separately the cases ρ = 1 and ρ 6= 1 for the remaining cases of
rewriting (C3). Assume first that ρ = 1. When i is replaced by ρ and j replaced by
i (respectively, by σ) we obtain βiρ = 1 (respectively βσρ = 1). On the other hand,
the requirement of only using normalized crossed sections implies γρ = 1 in this case.
When j = ρ the obtained conditions are trivial.

Now assume that ρ 6= 1. For i = i and j = ρ one obtains βqiiργ
2
i = 1. For i = ρ and

j = i one has a trivial condition because Nρ(x) = 1. For i = σ and j = ρ, we obtain
β
V (qσ)
σρ γ2

σ = βt11ρ . . . β
tn
nρ. For i = ρ and j = σ one has σ(γρ) = γρ, and for i = ρ and

j = ρ one obtains ρ(γρ) = γρ. The last two equalities are equivalent to γρ ∈WG.

The following result will show to be useful in the proof on the main theorem.

Corollary 5.5. With the notation of Corollary 5.4, assume that G/C is non-cyclic
and qk and tk are even for some k ≤ n. Let (β, γ) be the list of data induced by a
factor set in Z2(G,W ). Then the list obtained by replacing βkσ by −βkσ and keeping
the remaining data fixed is also induced by a factor set in Z2(G,W ).

Proof. It is enough to show that βkσ appears in all the conditions of Corollary 5.4
with an even exponent. Indeed, it only appears in (C2.b) with exponent 2; in (C3.b)
with exponent qk; in (C3.c) with exponent −V (qσ); and in (C3.d) and (C3.f) with
exponent tk. By the assumption it only remains to show that V (qσ) is even. Indeed,
v2(V (qσ)) = v2(cqσ −1)−v2(c−1) = 1+ b−v2(c−1) ≥ 1 because c 6≡ 1 mod 21+b.

The data (β, γ) induced by a factor set are not cohomologically invariant, because
they depend on the selection of π and of the uci ’s, uσ and uρ. However, at least the
βij are cohomologically invariant. For every α ∈ H2(G,W ) we associate a matrix
βα = (βij)1≤i,j≤n of elements of WG as follows: First select a group epimorphism
π : G → G realizing α and uc1 , . . . , ucn ∈ G such that π(uci) = ci, and then set
βij = [ucj , uci ]. The definition of βα does not depend on the choice of π and the uci ’s,
because if w1, w2 ∈W and π(u1), π(u2) ∈ C then [w1u1, w2u2] = [u1, u2].

Proposition 5.6. Let β = (βij)1≤i,j≤n be a matrix of elements of WG and for every
1 ≤ i, j ≤ n let aii = 0 and aij = min(a, vp(qi), vp(qj)), if i 6= j.

Then there is an α ∈ H2(G,W ) such that β = βα if and only if the following
conditions hold for every 1 ≤ i, j ≤ n:

βijβji = βp
aij

ij = 1. (5.6)

Proof. Assume first that β = βα for some α ∈ Z2(G,W ). Then (5.6) is a consequence
of conditions (C1), (C2.a) and (C3.a) of Corollary 5.4.
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Conversely, assume that β satisfies (5.6). The idea of the proof is that one can
enlarge β to a list of data (β, γ) that satisfies conditions (C1)–(C3) of Corollary 5.4.
Hence the desired conclusion follows from the corollary.

Condition (C1) follows automatically from (5.6). If i, j ≤ n then βij ∈ WG follows
from the fact that a ≥ aij and so (5.6) implies that βp

a

ij = 1. Hence (C2.a) holds. Also
(C3.a) holds automatically from (5.6) because paij divides qi. Hence, we have to select
the βiσ’s, βiρ’s, γi’s, βσρ, γσ, and γρ for (C2.b) and (C3.b)–(C3.f) to hold.

Assume first that D = G. In this case we just take βiσ = βiρ = βσρ = γi =
γσ = γρ = 1 for every i. Then (C2.b), (C3.b), (C3.d) and (C3.f) hold trivially by our
selection. Moreover, in this case σ = 1 and so ti = 0 for each i = 1, . . . , n, hence (C3.c)
also holds.

In the remainder of the proof we assume that D 6= G. First we show how one can
assign values to βσi and γi, for i ≤ n for (C3.b)–(C3.d) to hold. Let d = vp(c− 1) and
e = vp(V (qσ)) = a+b−d. (see (5.4)). Note that d = a if C = D and a = 1 ≤ 2 ≤ d ≤ b

if C 6= D (because we are assuming that D 6= G). Let X1, X2, Y1 and Y2 be integers
such that c − 1 = pdX1, V (qσ) = peX2, and X1Y1 ≡ X2Y2 ≡ 1 mod pa+b. By (5.6),
βp

aij

ij = 1 and so βij ∈W pa+b−aij . Therefore there are integers bij , for 1 ≤ i, j ≤ n such

that bii = bij + bij = 0 and βij = ζbijp
a+b−aij . For every i ≤ n set

xi = Y2

n∑
j=1

tjbjip
a−aji , βσi = ζxip

d−a
, yi = Y1Y2

n∑
j=1

tjbji
qi
paij

, and γi = ζyi .

Then V (qσ)pd−axi = peX2Y2
∑n

j=1 tjbjip
d−aji ≡

∑n
j=1 tjbjip

a+b−aji mod pa+b and
therefore

β
V (qσ)
σi = ζ

∑n
j=1 tjbjip

a+b−aji
=

n∏
i=1

β
tj
ji ,

that is (C3.c) holds. Moreover qipd−axi = pdY2
∑n

j=1 tjbji
qi
paij

≡ pdX1yi = (c−1)yi and
therefore βqiiσ = γc−1

i , that is (C3.b) holds.
We now compute∑n

i=1 tixi = Y2
∑

1≤i,j≤n titjbijp
a−aij

= Y2
∑n+1

i=1 t
2
i biip

a−aii + Y2
∑

1≤i<j≤n titj(bij + bji)pa−aij = 0.
(5.7)

Then setting γσ = 1, one has

γc−1
σ

n∏
i=1

βtiiσ =
n∏
i=1

ζ−tixip
d−a

= ζ−p
d−a ∑n

i=1 tixi = 1

and (C3.d) holds. This finishes the assignments of βiσ and γi for i ≤ n and of γσ.
If C = D then a quick end is obtained assigning βiρ = βσρ = γρ = 1.
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So it only remains to assign values to βiρ, βσρ and γρ under the assumption that
C 6= D. Set βiρ = ζ−Y1xi . In this case pa = 2 and therefore 2pd−axi = pdxi ≡ (c−1)Y1xi

and qiY1xi = 2yi. Thus β2
iσβ

c−1
iρ = ζ2pd−axiζ(1−c)Y1xi = 1, hence (C2.b) holds, and

βqiiργ
2
i = ζ−qiY1xi+2yi = 1, hence the first relation of (C3.f) follows.
Finally, using (5.7) one has

βt11ρ . . . β
tn
nρ = (βt11σ . . . β

tn
nσ)

−Y1 = 1 = γ2
σ

and the last two relations of (C3.f) hold when βσρ = γρ = 1.

Let β = (βij) be an n×n matrix of elements of WG satisfying (5.6). Then the map
Ψ : B ×B →WG given by

Ψ((cx1
1 . . . cxnn , cy11 . . . cynn )) =

∏
1≤i,j≤n

β
xiyj
ij

is a skew pairing of B over WG in the sense of [Jan3]; that is, it satisfies the following
conditions for every x, y, z ∈ B:

(Ψ1) Ψ(x, x) = Ψ(x, y)Ψ(y, x) = 1, (Ψ2) Ψ(x, yz) = Ψ(x, y)Ψ(x, z).

Conversely, every skew pairing of B over WG is given by a matrix β = (βij =
Ψ(ci, cj))1≤i,j≤n satisfying (5.6). In particular, every class in H2(G,W ) induces a skew
pairing Ψ = Ψα of B over WG given by Ψ(x, y) = αx,yα

−1
y,x, for all x, y ∈ B, for any

cocycle α representing the given cohomology class.
In terms of skew pairings, Proposition 5.6 takes the following form.

Corollary 5.7. If Ψ is a skew pairing of B over WG then there is an α ∈ H2(G,W )
such that Ψ = Ψα.

Corollary 5.7 was obtained in [Jan3, Proposition 2.5] for pa 6= 2. The remaining
cases were considered in [Pen1, Corollary 1.3], where it is stated that for every skew
pairing Ψ of C overWG there is a factor set α ∈ Z2(G,W ) such that Ψ(x, y) = αx,yα

−1
y,x,

for all x, y ∈ C. However, this is false if ρ2 6= 1 and B has nontrivial elements of
order 2. Indeed, if Ψ is the skew pairing of B over WG given by the factor set α
then Ψ(x, ρ2) = 1 for each x ∈ C. To see this we introduce a new set of generators
of G, namely G = 〈c1, . . . , cn, cn+1, ρ, σ〉 with cn+1 = ρ2. Then condition (C3) of
Proposition 5.1, for i = ρ and j = i reads β(n+1)i = 1 which is equivalent to Ψ(ci, ρ2) = 1
for all 1 ≤ i ≤ n. Using this it is easy to give a counterexample to [Pen1, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in the next
section. The first one is elementary and so the proof has been omitted.
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Lemma 5.8. Let S be the set of skew pairings of B with values in WG. If B = B′×B′′

and b1, b2 ∈ B′ and b3 ∈ B′′ then

max{Ψ(b1 · b3, b2) : Ψ ∈ S} = max{Ψ(b1, b2) : Ψ ∈ S} ·max{Ψ(b3, b2) : Ψ ∈ S}.

Lemma 5.9. Let B̂ = B × 〈g〉 be an abelian group and let h ∈ B. If k = gcd{pa, |g|}
and t = |hBk| then t is the maximum possible value of Ψ(h, g) as Ψ runs over all skew
pairings of B̂ over 〈ζpa〉.

Proof. Since k divides pa, the hypothesis t = |hBk| implies that there is a group
homomorphism χ : B → 〈ζpa〉 such that χ(Bk) = 1 and χ(h) has order t. Let Ψ :
B̂ × B̂ → 〈ζpa〉 be given by Ψ(xgi, ygj) = χ(xjy−i) = χ(x)iχ(y)−j , for x, y ∈ B. If
gi = gi

′
, then i ≡ i′ mod |g| and hence i ≡ i′ mod k. Therefore, xiBk = xi

′
Bk, which

implies that χ(x)i = χ(x)i
′
. This shows that Ψ is well defined. Now it is easy to see

that Ψ is a skew pairing and Ψ(h, g) = χ(h) has order t.
Conversely, if Ψ is any skew pairing of B̂ over 〈ζpa〉 then Ψ(x, g)p

a
= 1 and

Ψ(x, g)|x| = Ψ(1, g) = 1 for all x ∈ B. This implies that Ψ(xk, g) = Ψ(x, g)k = 1
for all x ∈ B, so Ψ(Bk, g) = 1. Therefore Ψ(h, g)t = Ψ(ht, g) ∈ Ψ(Bk, g) = 1, so the
order of Ψ(h, g) divides t.

5.2 Local index computations

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our
goal is to find a global formula for β(r) = βp(r), the maximum nonnegative integer for
which pβ(r) is the r-local index of a Schur algebra over K.

We are going to abuse the notation and denote by Kr the completion of K at a
(any) prime of K dividing r. If E/K is a finite Galois extension, one may assume
that the prime of E dividing r, used to compute Er, divides the prime of K over r,
used to compute Kr. Since E/K is a finite Galois extension, e(E/K, r), f(E/K, r) and
mr(A) do not depend on the selection of the prime of K dividing r (Theorem 1.108).
Because |S(Kr)| divides r − 1 (Theorem 1.110), if either ζp 6∈ K or r 6≡ 1 mod p then
β(r) = 0 (see Theorem 1.108 and Theorem 1.109). So, to avoid trivialities, we assume
that ζp ∈ K and r ≡ 1 mod p.

Suppose K ⊆ F = Q(ζn) for some positive integer n and let n = rvr(n)n′. Then
Gal(F/Q) contains a canonical Frobenius automorphism at r, which is defined by
ψr(ζrvr(n)) = ζrvr(n) and ψr(ζn′) = ζrn′ . We can then define the canonical Frobenius
automorphism at r in Gal(F/K) as φr = ψ

f(F/K,r)
r . On the other hand, the inertia

subgroup at r in Gal(F/K) is by definition the subgroup of Gal(F/K) that acts as
Gal(Fr/Kr(ζn′)) in the completion at r. We use the following notation.
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Notation 5.10. First we define some positive integers:
m = minimum even positive integer with K ⊆ Q(ζm),
a = minimum positive integer with ζpa ∈ K,
s = vp(m) and

b =


s, if p is odd or ζ4 ∈ K,
s+ vp([K ∩Q(ζps) : Q]) + 2, if Gal(K(ζp2a+s)/K) is not cyclic, and
s+ 1, otherwise.

We also define

L = Q(ζm), ζ = ζpa+b , W = 〈ζ〉, F = L(ζ),

G = Gal(F/K), C = Gal(F/K(ζ)), and D = Gal(F/K(ζ + ζ−1)).

Since ζp ∈ K, the automorphism Υ : G → Aut(W ) induced by the Galois action
satisfies the conditions of the previous section and the notation is consistent. As in that
section we fix elements ρ and σ in G and a subgroup B = 〈c1〉 × · · · × 〈cn〉 of C such
that D = B × 〈ρ〉, C = B × 〈ρ2〉 and G/C = 〈ρC〉 × 〈σC〉. Furthermore, σ(ζ) = ζc for
some integer c chosen according to (5.4). Notice that by the choice of b, G 6= B.

We also fix an odd prime r and set

e = e(K(ζr)/K, r), f = f(K/Q, r) and ν(r) = max{0, a+ vp(e)− vp(rf − 1)}.

Let φ ∈ G be the canonical Frobenius automorphism at r in G, and write

φ = ρj
′
σjη, with η ∈ B, 0 ≤ j′ < |ρ| and 0 ≤ j < |σC|.

For any odd prime q not dividing m, let Gq = Gal(F (ζq)/K), Cq =
Gal(F (ζq)/K(ζ)) (note that by this notation we do not mean the q-part of groups G or
C) and let c0 denote a generator of Gal(F (ζq)/F ) . Finally we fix

θ = θq, a generator of the inertia group of r in Gq and
φq = cs00 φ = cs00 ηρ

j′σj = ηqρ
j′σj, the canonical Frobenius automorphism at r in Gq.

Observe that we are considering G as a subgroup of Gq by identifying G with the
group Gal(F (ζq)/K(ζq)). Again the Galois action induces a homomorphism Υq : Gq →
Aut(W ) and WGq = 〈ζpa〉. So this action satisfies the conditions of the previous section
and we adapt the notation by setting

Bq = 〈c0〉 ×B, Cq = Gal(F (ζq)/K(ζ)) = Ker(Υq), Dq = Gal(F (ζq)/K(ζ + ζ−1)).

Notice that Cq = 〈c0〉 × C = Bq × 〈ρ2〉 and Dq = D × 〈c0〉. Hence G/C ' Gq/Cq.
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If Ψ is a skew pairing of B over WG then Ψ has a unique extension to a skew pairing
Ψ of C over WG which satisfies Ψ(B, ρ2) = Ψ(ρ2, B) = 1. So we are going to apply
skew pairings of B to pairs of elements in C under the assumption that we are using
this extension.

Since p 6= r, θ ∈ Cq. Moreover, if r = q then θ is a generator of Gal(F (ζr)/F ) and
otherwise θ ∈ C. Notice also that if G/C is non-cyclic then pa = 2 and K ∩ Q(ζ2s) =
Q(ζ2d + ζ−1

2d
), where d = vp(c− 1), and so b = s+ d.

It follows from results of Janusz [Jan3, Proposition 3.2] and Pendergrass [Pen2,
Theorem 1] that pβ(r) always occurs as the r-local index of a cyclotomic algebra of the
form (L(ζq)/L, α), where q is either 4 or a prime not dividing m and α takes values in
W (L(ζq))p, with the possibility of q = 4 occurring only in the case when ps = 2. By
inflating the factor set α to F (ζq) (which will be equal to F when ps = 2), we have
that pβ(r) = mr(A), where

A = (F (ζq)/K,α) (we also write α for the inflation),
q is an odd prime not dividing m, and
α takes values in 〈ζp4〉 if ps = 2 and in 〈ζps〉 otherwise.

(5.8)

So it suffices to find a formula for the maximum r-local index of a Schur algebra over
K of this form.

Write A =
⊕

g∈Gq F (ζq)ug, with u−1
g xug = g(x) and uguh = αg,hugh, for each

x ∈ F (ζq) and g, h ∈ Gq. After a diagonal change of basis one may assume that if
g = cs00 c

s1
1 . . . csnn ρ

sρσsσ with 0 ≤ si < qi = |ci|, 0 ≤ sρ < |ρ| and 0 ≤ sσ < qσ = |σC|
then ug = us0c0u

s1
c1 . . . u

sn
cnu

sρ
ρ usσσ .

It is well known (see [Yam] and [Jan3, Theorem 1]) that

mr(A) = |ξ|, where ξ = ξα =
(
αθ,φq
αφq ,θ

)rvr(e)
u
rvr(e)(rf−1)
θ . (5.9)

This can be slightly simplified as follows. If r|e then 〈θ〉 has an element θk of order r.
Since θ fixes every root of unity of order coprime with r, necessarily r2 divides m and
the fixed field of θk in L is Q(ζm/r). Then K ⊆ Q(ζm/r), contradicting the minimality
of m. Thus r does not divide e and so

ξ =
αθ,φq
αφq ,θ

ur
f−1
θ =

αθ,φq
αφq ,θ

γ
rf−1
e

θ = [uθ, uφq ]γ
rf−1
e

θ , where γθ = ueθ. (5.10)

With our choice of the {ug : g ∈ Gq}, we have

[uθ, uφq ] = [uθ, uηqu
j′
ρ u

j
σ] = Ψ(θ, ηq)[uθ, uj

′
ρ u

j
σ],

where Ψ = Ψα is the skew pairing associated to α. Therefore,

ξ = ξ0Ψ(θ, ηq) with ξ0 = ξ0,α = [uθ, uj
′
ρ u

j
σ]γ

rf−1
e

θ .
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Let (β, γ) be the data associated to the factor set α (relative to the set of generators
c1, . . . , cn, ρ, σ).

Lemma 5.11. Let A = (F (ζq)/K,α) be a cyclotomic algebra satisfying the conditions
of (5.8) and use the above notation. Let θ = cs00 c

s1
1 · · · csnn ρ2sn+1, with 0 ≤ si < qi for

0 ≤ i ≤ n, and 0 ≤ sn+1 ≤ |ρ2|.

(1) If G/C is cyclic then ξp
ν(r)

0 = 1.

(2) Assume that G/C is non cyclic and let µi = β
1−c
2

iρ β−1
iσ . Then µi = ±1 and

ξp
ν(r)

0 =
∏n
i=0 µ

2ν(r)(j+j′)si
i .

Proof. For the sake of regularity we write cn+1 = ρ2. Since e = |θ|, we have that qi
divides esi for each i. Furthermore, vp(e) is the maximum of the vp

(
qi

gcd(qi,si)

)
for

i = 1, . . . , n. Then

vp(e)− vp(rf − 1) = max
{
vp

(
qi

gcd(qi, si)(rf − 1)

)
, i = 1, . . . , n

}
.

Hence

ν(r) = max{0, vp(e) + a− vp(rf − 1)}
= min

{
x ≥ 0 : pa divides px · si(r

f−1)
qi

, for each i = 1, . . . , n
}
.

(5.11)

Now we compute γθ in terms of the previous expression of θ. Set v = u
sn+1
cn+1 and

y = us0c0u
s1
c1 · · ·u

sn
cn . Then

uθ = yv = γvy, with γ = Ψ(csn+1

n+1 , c
s0
0 c

s1
1 . . . , csnn ).

Thus γe = Ψ(cesn+1

n+1 , cs00 c
s1
1 . . . , csnn ) = 1. Using that [y, γ] = 1, one easily proves by

induction on m that
(yv)m = γ(

m
2 )ymvm.

Hence

(yv)e = γ(
e
2)yeve = γ(

e
2)yeuesn+1

cn+1
= γ(

e
2)yeγ

esn+1
qn+1
ρ ,

and γ(
e
2) = ±1. (If p or e is odd then necessarily γ(

e
2) = 1.) Now an easy induction

argument shows

γθ = µγ
es0
q0

0 γ
es1
q1

1 · · · γ
esn
qn
n γ

esn+1
qn+1
ρ , for some µ = ±1.

Note that ν(r)+vp(rf−1)−vp(e) ≥ a ≥ 1, by (5.11). Then µp
ν(r) r

f−1
e = γ

pν(r) r
f−1
e

ρ =
1, because both µ and γρ are ±1, and they are 1 if p is odd (see (C3.e) and (C3.f)).
Thus

γ
pν(r) r

f−1
e

θ =
n∏
i=0

γ
pν(r)

(rf−1)si
qi

i (5.12)



5.2. LOCAL INDEX COMPUTATIONS 127

(1) Assume that G/C is cyclic. We have that ρ = 1 and vp(c − 1) = a. Note that
the β’s and γ’s are pb-th roots of unity by (5.8).

Let Y be an integer satisfying Y c−1
pa ≡ 1 mod pb. Since φq = σjηq with ηq ∈ Cq, we

have rf ≡ cj mod pa+b and so Y rf−1
pa = Y c−1

pa
cj−1
c−1 ≡ V (j) mod pb. Then β

Y rf−1
pa

iσ =

β
V (j)
iσ .

Using that pa divides pν(r) si(r
f−1)
qi

(see (5.11)) and Y (c−1)
pa ≡ 1 mod pb we obtain

γ
pν(r)

si(r
f−1)

qi
i = (γc−1

i )Y
pν(r)si(r

f−1)

paqi .

Combining this with (C3.b) we have

[usici , u
j
σ]p

ν(r)
γ
pν(r)

si(r
f−1)

qi
i = [uci , uσ]

siV (j)pν(r)(γc−1
i )Y

pν(r)si(r
f−1)

paqi

= [uci , uσ]
siV (j)pν(r)β

Y
pν(r)si(r

f−1)

pa

iσ

= ([uci , uσ]βiσ)
pν(r)siV (j) = 1,

(5.13)

because βiσ = [uσ, uci ] = [uci , uσ]
−1. Using (5.12) and (5.13) we have

ξp
ν(r)

0 = [uθ, ujσ]
pν(r)γ

pν(r) r
f−1
e

θ =
n∏
i=0

[usici , u
j
σ]
pν(r)γ

pν(r)
si(r

f−1)

qi
i = 1

and the lemma is proved in this case.
(2) Assume now that G/C is non-cyclic. Then pa = 2 and if d = v2(c − 1) then

d ≥ 2 and b = s+ d. The data for α lie in 〈ζ2s+1〉 ⊆ 〈ζ2b〉 ⊆ 〈ζ21+s+d〉 = W (F )2. (C2.b)
implies µi = ±1 and using (C3.b) and (C3.f) one has γc+1

i = βqiiσβ
−qi
iρ . Let X and Y be

integers satisfying X c−1
2d

≡ Y c+1
2 ≡ 1 mod 21+s+d and set Z = Y rf−1

2 .

Recall that 2a = 2 divides 2ν(r) si(r
f−1)
qi

, by (5.11). Therefore,

γ
2ν(r)

si(r
f−1)

qi
i =

(
γc+1
i

)Y 2ν(r)si(r
f−1)

2qi =
(
βsiiσβ

−si
iρ

)2ν(r)Z
. (5.14)

Let j′′ ≡ j′ mod 2 with j′′ ∈ {0, 1}. Then Υ(ρj
′′
) = Υ(ρj

′
) and N j′

ρ (w) = wj
′′
.

Therefore,

[uθ, u
j′
ρ u

j
σ] = [uθ, u

j′
ρ ]uj

′
ρ [uθ, u

j
σ]u

−j′
ρ =

∏n
i=0(β

−si
iρ )j

′′
(β−siiσ )V (j)(−1)j

′′

=
∏n
i=0(β

−si
iρ )j

′′
(β−siiσ )X

c−1

2d
V (j)(−1)j

′′

=
∏n
i=0(β

−si
iρ )j

′′
(β−siiσ )X

cj−1

2d
(−1)j

′′

.

(5.15)

Using (5.12), (5.14) and (5.15) we obtain

ξ2
ν(r)

0 = [uθ, u
j′
ρ u

j
σ]2

ν(r)
γ

2ν(r) r
f−1
e

θ

=
(∏n

i=0 β
−si
iρ

)2ν(r)(Z+j′′)
(
∏n
i=0 β

si
iσ)

2ν(r)
(
Z−X cj−1

2d
(−1)j

′′)
.

(5.16)
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We claim that Z + j′′ ≡ 0 mod 2d−1. On one hand Y ≡ 1 mod 2d−1. On the
other hand, φq = ρj

′
σjηq, with ηq ∈ Cq and so rf ≡ (−1)j

′
cj mod 21+s+d. Hence

rf ≡ (−1)j
′

= (−1)j
′′

mod 2d and therefore Z + j′′ = Y rf−1
2 + j′′ ≡ (−1)j

′′−1
2 + j′′

mod 2d−1. Considering the two possible values of j′′ ∈ {0, 1} we have (−1)j
′′−1

2 + j′′ = 0
and the claim follows.

From d = v2(c− 1) one has c ≡ 1 + 2d−1 mod 2d and hence Y ≡ 1 + 2d−1 mod 2d

and rf ≡ (−1)j
′
cj ≡ (−1)j

′
(1 + j2d) mod 21+s+d. Then

Z+j′′

2d−1 = Y (rf−1)+2j′′

2d
≡ Y ((−1)j

′′
(1+j2d)−1)+2j′′

2d
= Y (

(−1)j
′′
−1

2
+(−1)j

′′
j2d−1)+j′′

2d−1

≡ (1+2d−1)(−j′′+(−1)j
′′
j2d−1)+j′′

2d−1 = −j′′−j′′2d−1+(−1)j
′′
j2d−1+(−1)j

′′
j22(d−1)+j′′

2d−1

≡ −j′′ + (−1)j
′′
j ≡ j + j′′ ≡ j + j′ mod 2.

Using this, the equality β
1−c
2

iρ = µiβiσ and the fact that µi = ±1 we obtain

β
−(Z+j′′)
iρ = β

−X c−1

2d
(Z+j′′)

iρ = β
−X c−1

2
Z+j′′

2d−1

iρ = µ
X Z+j′′

2d−1

i β
X Z+j′′

2d−1

iσ = µj+j
′

i β
X Z+j′′

2d−1

iσ .

Combining this with (5.16) we have

ξ2
ν(r)

0 =
∏n
i=0 µ

2ν(r)(j+j′)si
i

∏n
i=0(β

si
iσ)

2ν(r)
[
Z−X cj−1

2d
(−1)j

′′
+
X(Z+j′′)

2d−1

]

=
∏n
i=0 µ

2ν(r)(j+j′)si
i

∏n
i=0(β

si
iσ)

2ν(r)
[

2dZ+X(cj−1)(−1)j
′′

+2X(Z+j′′)
2d

]
.

To finish the proof it is enough to show that the exponent of each βiσ in the previous
expression is a multiple of 21+s. Indeed, 2d ≡ X(c− 1) mod 21+s+d and so

2dZ +X(cj − 1)(−1)j
′′

+ 2X(Z + j′′)
≡ ZX(c− 1)−X(cj − 1)(−1)j

′′
+ 2X(Z + j′′)

= X(Y rf−1
2 (c+ 1) + (cj − 1)(−1)j

′′
+ 2j′′)

= X((rf − 1)Y c+1
2 − cj(−1)j

′′
+ (−1)j

′′
+ 2j′′)

≡ X(rf − 1− cj(−1)j
′′

+ 1) ≡ 0 mod 21+s+d

as required. This finishes the proof of the lemma in Case 2.

We need the following Proposition from [Jan3].

Proposition 5.12. For every odd prime q 6= r not dividing m let d(q) = min{a, vp(q−
1)}. Then

(1) |ckq0 C/Cp
d(q) | ≤ |θfqC/Cp

a |, and

(2) the equality holds if q ≡ 1 mod pa and r is not congruent with a p-th power
modulo q. There are infinitely many primes q satisfying these conditions.
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Proof. See Proposition 4.1 and Lemma 4.2 of [Jan3].

We are ready to prove the main result of the chapter.

Theorem 5.13. Let K be an abelian number field, p a prime, r an odd prime and
let pβp(r) be the maximum r-local index of a Schur algebra over K of index a power of
p. If either ζp 6∈ K or r 6≡ 1 mod p then βp(r) = 0. Assume otherwise that ζp ∈ K

and r ≡ 1 mod p, and use Notation 5.10 including the decomposition φ = ηρj
′
σj with

η ∈ B.

(1) Assume that r does not divide m.

(a) If G/C is non-cyclic and j 6≡ j′ mod 2 then βp(r) = 1.

(b) Otherwise βp(r) = max{ν(r), vp(|ηBpd(r) |)}, where

d(r) = min{a, vp(r − 1)}.

(2) Assume that r divides m and let q0 be an odd prime not dividing m such that
q0 ≡ 1 mod pa and r is not a p-th power modulo q0. Let θ = θq0 be a generator
of the inertia group of Gq0 at r.

(a) If G/C is non-cyclic, j 6≡ j′ mod 2 and θ is not a square in D then βp(r) =
1.

(b) Otherwise βp(r) = max{ν(r), h, vp(|θfCp
a |)}, where

h = maxΨ{vp(|Ψ(θ, η)|)} as Ψ runs over all skew pairings of B over 〈ζpa〉.

Proof. For simplicity we write β(r) = βp(r). We already explained why if either ζp 6∈ K
or r 6≡ 1 mod p then βp(r) = 0. So in the remainder of the proof we assume that ζp ∈ K
and r ≡ 1 mod p, and so K, p, and r satisfy the condition mentioned at the beginning
of the section. It was also pointed out earlier in this section that pβ(r) is the r-local
index of a crossed product algebra A of the form A = (F (ζq)/K,α) with q an odd
prime not dividing m and α taking values in 〈ζps〉 or in 〈ζ4〉. Moreover, since pν(r) is
the r-local index of the cyclic Schur algebra (K(ζr)/K, c0, ζpa) [Jan3], we always have
ν(r) ≤ β(r).

In case 1 one may assume that q = r, because (F (ζq)/K,α) has r-local index 1 for
every q 6= r. Since Gal(F (ζr)/F ) is the inertia group at r in Gr, in this case one may
assume that θ = θr = c0. On the contrary, in case 2, q 6= r, and θ = cs11 . . . csnn ρ

2sn+1 ,
for some s1, . . . , sn+1.

In cases (1.a) and (2.a), G/C is non-cyclic and hence pa = 2. Then β(r) ≤ 1, by
the Benard-Schacher Theorem, and hence if ν(r) = 1 then β(r) = 1. So assume that
ν(r) = 0. Furthermore, in case (2.a), si is odd for some i ≤ n, because θ 6∈ D2. Now
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we can use Corollary 5.5 to produce a cyclotomic algebra A′ = (F (ζq)/K,α′) so that
ξα = −ξα′ . Indeed, there is such an algebra such that all the data associated to α

are equal to the data for A, except for β0σ, in case (1.a), and βkσ, case (2.a). Using
Lemma 5.11 and the assumptions ν(r) = 0 and j 6≡ j′ mod 2, one has ξ0,α = −ξ0,α′
and Ψα = Ψα′ . Thus ξα = −ξα′ , as claimed. This shows that β(r) = 1 in cases (1.a)
and (2.a).

In case (1.b), ξ = ξ0Ψ(c0, η). By Lemma 5.11, ξ0 has order dividing pν(r) in this
case and, by Lemma 5.9, max{|Ψ(θ, η)| : Ψ ∈ S} = |ηBpd(r) |, where S is the set of
skew pairings of Br with values in 〈pa〉. Using this and ν(r) ≤ β(r) one deduces that
β(r) = max{ν(r), vp(|ηBpd(r) |)}.

The formula for case (2.b) is obtained in a similar way using the equality ξ =
ξ0Ψ(θ, η)Ψ(θ, cs00 ) and Lemmas 5.8 and 5.9.

Remark 5.14. In the previous proof we have cited [Jan3] to show that there is a cyclic
Schur algebra (K(ζr)/K, c0, ζpa) of r-local index pν(r). In fact, pν(r) is the maximum
index of a cyclic cyclotomic algebra over K in S(K)p. A proof of this result will be
given in the next chapter in Theorem 6.9.

5.3 Examples and applications

The main motivation for Theorem 5.13 is the study the gap between the Schur group
of an abelian number field K and its subgroup generated by classes containing cyclic
cyclotomic algebras over K, a problem which reduces to studying the gaps between the
integers νp(r) and βp(r) for all finite primes p and odd primes r (for details, see next
chapter). What Theorem 5.13 really allows one to do is to compute βp(r) in terms
of the number of p-th power roots of unity in K and the embedding of Gal(F/K) in
Gal(F/Q). In this section, we will provide some examples of abelian number fields K
to illustrate the computations involved in the various cases of Theorem 5.13. We use
the notation of the previous sections in all of these examples.

Example 5.15. Let K = Q(ζm), with m minimal. Let p be a prime for which ζp ∈ K,
and let r be an odd prime which is ≡ 1 mod p. Let a be the maximal integer for which
ζpa ∈ K, and let s = vp(m). If we are not in the case when b = s, then p = 2, s = 0,
and K(ζp2a+s) = K(ζ4), so we will be in the case where b = s + 1 = 1. Since K = L,
we have that F = K(ζpa+b), so C is trivial. Also, G = Gal(K(ζpa+b)/K) will be cyclic
for either case of b. Therefore, either case (1b) or (2b) of Theorem 5.13 applies, and it
is immediate from C = B = 1 that βp(r) = νp(r) for each choice of p and r.
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Example 5.16. Let p and r be odd primes with vp(r−1) = 2. Let K be the extension
of Q(ζp) with index p in L = Q(ζpr), and consider βp(r). We have a = s = b = 1, and
F = Q(ζp2r). We have that G = 〈θ〉 ×C is elementary abelian of order p2, so we are in
case (2b) of Theorem 5.13. Since Gal(F/Q) has an element ψ such that ψp generates
C, letting q0 and θ be as in Theorem 5.13(2), we find that vp(|ψG|) = 1. It follows that
pf = p, so νp(r) = 0 and vp(|θfCp

a |) = 1. Since φ generates C, we have that φ = η and
so h = 1 by Lemma 5.9. So βp(r) = 1 in this case.

Example 5.17. Let q be an odd prime greater than 5, and let K = Q(ζq,
√

2). Let
p = 2, and let r be any prime for which r2 ≡ 1 mod q and r ≡ 5 mod 26. In computing
β2(r), one sees that a = 1 and L = Q(ζ8q), so s = 3. Since Gal(K(ζ25)/K) is not cyclic,
we set b = 5 + v2([Q(

√
2) : Q]) = 6, so F = Q(ζ64q). Since Q(ζq) ⊂ K, we have

C = Gal(F/K(ζ64)) = 1. For our generators of Gal(F/K), we may choose ρ, σ such
that ρ(ζq) = ζq, ρ(ζ64) = ζ−1

64 , σ(ζq) = ζq, and σ(ζ64) = ζ9
64. By our choice of r, we

have that ψr 6∈ G, but 52 ≡ 93 mod 64 implies that ψ2
r = σ3. This means that we are

in case (1a) of Theorem 5.13 with νp(r) = 0 and j 6≡ j′ mod 2, so β2(r) = 1.

Example 5.18. Let r be an odd prime for which r ≡ 5 mod 64. Let K ′ be the
unique subfield of index 2 in Q(ζr), and let K = K ′(

√
2). Consider β2(r) for the field

K. As in the previous example, we have L = Q(ζ8r) and F = Q(ζ64r). As in the
previous example, choose ρ, σ ∈ G satisfying ρ(ζ64) = ζ−1

64 and σ(ζ64) = ζ9
64. Using

Proposition 5.12, choose an odd prime q0 for which r in not a square modulo q0. If ψr
is the Frobenius automorphism in Gal(F (ζq0)/Q), then ψr 6∈ Gq0 , and φr = ψ2

r sends
ζ64 to ζ52

64 = ζ93

64 . Therefore, φr = σ3η0, where ηq0 ∈ Cq0 fixes ζ64r. Since ζr 6∈ K, θ = θq0
generates a direct factor of Gq0 and so it cannot be a square in D. It follows that the
conditions of case (2a) of Theorem 5.13 hold, and so we can conclude β2(r) = 1.

Example 5.19. Let p be an odd prime and let q and r be primes for which vp(q−1) =
vp(r − 1) = 2, vq(rp − 1) = 0, and vq(rp

2 − 1) = 1. The existence of such primes q and
r for each odd prime p is a consequence of Dirichlet’s Theorem on primes in arithmetic
progression. Indeed, given p and q primes with vp(q − 1) = 2, there is an integer k,
coprime to q such that the order of k modulo q2 is p2. Choose a prime r for which
r ≡ k+q mod q2 and r ≡ 1+p2 mod p3. Then p, q and r satisfy the given conditions.

Let K be the compositum of K ′ and K ′′, the unique subextensions of index p

in Q(ζp2q)/Q(ζp2) and Q(ζp2r)/Q(ζp2) respectively. Then m = p2rq, a = 2 and
L = Q(ζm) = K(ζq) ⊗K K(ζr). Therefore, F = Q(ζp4qr), and G = Gal(F/K(ζqr)) ×
Gal(F/K(ζp4q)) ×Gal(F/K(ζp4r)). We may choose σ so that 〈σ〉 = Gal(F/K(ζqr)) ∼=
G/C has order p2. The inertia subgroup of r in G is Gal(F/K(ζp4q)), which is generated
by an element θ of order p.



132 CHAPTER 5. THE SCHUR GROUP OF AN ABELIAN NUMBER FIELD

Since K = K ′ ⊗Q(ζp2 ) K
′′ and K ′′/Q(ζp2) is totally ramified at r, we have that

K ′
r is the maximal unramified extension of Kr/Qr. It follows from vq(rp

2 − 1) = 1
and vq(rp − 1) = 0 that [Qr(ζq) : Qr] = p2, and so [K ′

r : Qr] = p = f(K/Q, r).
Therefore vp(|W (Kr)|) = vp(|W (Qr)|) + f(r) = vp(r − 1) + 1 = 3, and so we have
ν(r) = max{0, a+ vp(|θ|)− vp(|W (Kr)|)} = 0. Since |C| = p and θ has order p, we also
see that θf(r)Cp

2
is trivial, so vp(|θf(r)Cp

2 |) = 0.
Let ψr be the Frobenius automorphism of r in Gal(F/Q). Then ψpr = σpη, where

η ∈ B generates Gal(F/K(ζp4r)). Since 〈θ〉 ∩ 〈η〉 = 1, it follows from Lemma 5.9 that
h = vp(|θ|) = 1. So case (2b) of Theorem 5.13 applies to show that βp(r) = h = 1.

Notes on Chapter 5

The problem of the computation of the Schur group of a number field K heavily
depends upon the arithmetic structure of K in a way which sometimes defies the intu-
ition. The interested reader may find an exhaustive and technical account of various
results related to this topic in Yamada’s book [Yam].

The problem of computing βp(r) makes sense for an arbitrary number fieldK. As far
as we know, this has not been treated in the literature. If F is the maximum cyclotomic
subfield ofK, then the inclusion F → K induces a homomorphism S(F ) → S(K). Since
every element of S(F ) is splitted by a cyclotomic extension of F , the values of βp(r)
for F and K might be strongly related.



Chapter 6

Cyclic cyclotomic algebras

In this chapter we study some properties of cyclic cyclotomic algebras. These algebras
combine properties of both cyclic and cyclotomic algebras and have the advantage of
having a form that allows one to apply specific methods for both types of algebras.
Cyclic cyclotomic algebras arise naturally as simple components of semisimple group
algebras of finite metacyclic groups (see section 1.9).

In this chapter we are interested in two aspects of the cyclic cyclotomic algebras:
firstly the ring isomorphism between these algebras, and secondly the subgroup they
generate inside the Schur group of a field. In the first section, we show that the in-
variants that determine the ring isomorphism between cyclic cyclotomic algebras over
abelian number fields are essentially the local Schur indices at all rational primes and
we give one example showing that this is not the case for arbitrary Schur algebras. The
results of this section are collected in [HOdR1]. In the next section we give a character-
ization of when the subgroup of the Schur group generated by classes containing cyclic
cyclotomic algebras over an abelian number field K has finite index in S(K) in terms
of the relative position of K in the lattice of cyclotomic extensions of the rationals.
The results of this second section are established in [HOdR3].

6.1 Ring isomorphism of cyclic cyclotomic algebras

In this section we show that a ring isomorphism between cyclic cyclotomic algebras over
abelian number fields is essentially determined by the list of local Schur indices at all
rational primes. As a consequence, a ring isomorphism between simple components of
the rational group algebras of finite metacyclic groups is determined by the center, the
dimension over Q, and the list of local Schur indices at rational primes. An example is
given to show that this does not hold for finite groups in general.

133
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Let KG be a semisimple group algebra. The calculation of the automorphism group
of KG reduces to two problems, namely first to compute the Wedderburn decomposi-
tion of KG and then to decide which of the Wedderburn components of KG are ring
isomorphic (not necessarily isomorphic as algebras) (see [CJP], [Her3] and [OdRS2]).
Similarly, deciding whether two semisimple group algebras KG and KH are isomorphic
is equivalent to decide if there is a one-to-one correspondence among the Wedderburn
components of KG and KH which associate ring isomorphic components. This yields
the problem of looking for effective methods to decide whether two Schur algebras are
ring isomorphic.

If two Schur algebras A = A(χ,K) and B = A(ψ,K) are ring isomorphic, for χ and
ψ irreducible characters of some finite groups, then A and B have isomorphic centers
and the same degrees and indices. However, this information is not always enough, as
it can be seen in the next example.

Example 6.1. The dicyclic group G = C3oC4 of order 12 and the quaternion group Q8

of order 8 have rational valued characters of degree 2 for which the simple components
H(Q) and

(
−1,−3

Q

)
respectively, are division algebras of index 2 that are not ring

isomorphic. This is because the local indices of these characters do not agree at the
primes 2 and 3. Both algebras have index 2 at infinity and at finite primes the algebra
H(Q) has non-trivial Schur index only at 2, and

(
−1,−3

Q

)
has non-trivial index equal

at the prime 3.

Assume now that K is an abelian number field and χ and ψ are irreducible char-
acters of some finite groups. Ring isomorphism between A(χ,K) and A(ψ,K) forces
all local Schur indices mp(χ) and mp(ψ) to be equal for all rational primes p, including
the infinite prime. By the result of Benard (see Theorem 1.107), the local index of a
simple component of a rational group algebra is the same for all primes of its center
that lie over a fixed rational prime. Recall that, by definition, mp(χ) is the common
Schur index of the p-local algebra K(χ)p ⊗K(χ) A(χ,K) for any prime p of K(χ) lying
over the rational prime p.

The conditions that the centers, dimensions, and local indices of A(χ,K) and
A(ψ,K) are respectively equal are not enough to force the two simple components
to be ring isomorphic. We give an example of this situation in Example 6.3. Our goal
in this section is to give some conditions on the groups G and H which imply that the
above conditions are enough to force the two simple components to be ring isomorphic.
We will show in Corollary 6.7 that this is the case as long as both of the groups are
metacyclic. This is an immediate consequence of Theorem 6.6.

For division algebras whose Brauer classes lie in the Schur subgroup of an abelian
number field, a theorem of Spiegel and Trojan [ST] provides a necessary and sufficient
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condition for ring isomorphism, which we will apply several times in this section.

Theorem 6.2 (Spiegel-Trojan). Suppose D and ∆ are division algebras of exponent
m whose Brauer classes lie in the Schur subgroup of an abelian number field K. Then
D and ∆ are ring isomorphic if and only if there is an integer s coprime to m for which
[D]s = [∆] in Br(K).

We now give an example of two simple components of a rational group algebra
whose centers, dimensions, and local indices are respectively equal, but they are not
ring isomorphic.

Example 6.3. The non-abelian groups A = C11 o C25 and B = C31 o C25 both have
faithful irreducible characters φ ∈ Irr(A), θ ∈ Irr(B) with degree and Schur index 5.
The only nontrivial local indices of these characters are m11(φ) = 5 and m31(θ) = 5.
Let K = Q(φ, θ), D = K ⊗ A(φ,Q), and ∆ = K ⊗ A(θ,Q). Since [K : Q(φ)] and
[K : Q(θ)] are relatively prime to 5, D and ∆ are K-central division algebras of index
5.

Let G = A × A × B × B, where the groups A and B are defined as above. Note
that G is metabelian, but not metacyclic. Define χ, ψ ∈ Irr(G) by

χ = φ⊗ 1A ⊗ θ ⊗ θ, and ψ = φ⊗ φ⊗ 1B ⊗ θ,

where φ and θ are the characters defined above. Then the simple components Sχ and
Sψ of KG are central simple K-algebras of the same dimension, whose local indices are
equal to 5 at primes of K lying over 11 and 31, and whose local indices are trivial at
all other primes of K. However, the class of Sχ in the Brauer group Br(K) is the class
[D][∆]2, and the class of Sψ is [D]2[∆]. These classes are not powers of one another
in Br(K), so by Spiegel and Trojan’s Theorem, these two simple components are not
ring isomorphic.

Since a cyclic cyclotomic algebra over K is automatically a cyclotomic algebra over
K, the class in the Brauer group of K generated by a cyclic cyclotomic algebra over K
always lies in the Schur subgroup ofK by the Brauer-Witt Theorem. By Theorem 1.107,
this implies that the p-local index of A is the same value mp(A) for all primes p of K
lying over the same rational prime p.

Lemma 6.4. Let K be an abelian number field. Let A = (L/K, σ, ζ) and A′ =
(L/K, σ′, ζ ′) be cyclic algebras defined over the same cyclic extension L/K, with ζ

and ζ ′ roots of unity in K. If A and A′ have the same exponent in Br(K) then A is
ring isomorphic to A′.
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Proof. Since Gal(L/K) = 〈σ〉 = 〈σ′〉, there exists some integer r, coprime with [L : K],
such that σ′ = σr. If rs ≡ 1 mod [L : K], then A′ is isomorphic to (L/K, σ, ζ ′s) as an
algebra over K by Theorem 1.56. Thus one may assume without loss of generality that
σ = σ′.

Let ξ be a root of unity in K such that ζ = ξn and ζ ′ = ξn
′

for some positive
integers n and n′. Let B = (L/K, σ, ξ). Then [B]n = [A] and [B]n

′
= [A′]. Hence

[A] and [A′] are two elements of the same order in a cyclic group and therefore they
generate the same cyclic subgroup in Br(K). Thus A and A′ are isomorphic as rings
by Spiegel and Trojan’s Theorem.

Note that it is not necessary for L/Q to be an abelian extension in the above lemma
and so L/K may not be a cyclotomic extension.

Lemma 6.5. Let K be an abelian number field. Let D and D′ be two division algebras
with center K whose Brauer classes lie in the Schur subgroup of K. Suppose

[D] = [A1]⊗K · · · ⊗K [An] and [D′] = [A′1]⊗K · · · ⊗K [A′n] in Br(K),

with m(Ai) = m(A′i) = paii , for i = 1, . . . , n and p1, . . . , pn distinct rational primes.
If Ai and A′i are ring isomorphic for all i = 1, . . . , n, then D is ring isomorphic to

D′.

Proof. By Spiegel and Trojan’s Theorem, for each i = 1, . . . , n there is an integer ri
coprime to pi such that [Ai]ri = [A′i]. By the Chinese remainder theorem, there is an
integer r such that r ≡ ri mod paii for all i. Therefore,

[D]r =
n∏
i=1

[Ai]r =
n∏
i=1

[Ai]ri =
n∏
i=1

[A′i] = [D′].

So by Spiegel and Trojan’s Theorem again, D and D′ are ring isomorphic.

The main result of the section is the following theorem.

Theorem 6.6. Let A and A′ be two cyclic cyclotomic algebras over an abelian number
field K. Assume that [A] = [D] and [A′] = [D′] in Br(K), for division algebras D and
D′.

If A and A′ have the same local Schur indices at every rational prime p (including
∞), then D and D′ are ring isomorphic.

Proof. Let B = (K(ζn)/K, σ, ζ`) be a cyclic cyclotomic algebra overK. If ` = pa1
1 · · · patt

is the prime factorization of `, then in the Brauer group of K we have

[B] =
t∏
i=1

[(K(ζn)/K, σ, ζpaii )].
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It is clear that the index of each cyclic algebra Bi = (K(ζn)/K, σ, ζpaii ) divides paii for
each i. Therefore, for each rational prime q, the local index of each Bi at the prime q is
a power of pi, and so it follows that mq(B) = mq(B1) · · ·mq(Bt) for all rational primes
q.

Applying this to A and A′ and using Lemma 6.5, we may assume that
A = (K(ζn)/K, σ, α) and A′ = (K(ζn′)/K, σ′, α′) are cyclic cyclotomic algebras such
that the common index of A and A′, say m, is a power of a single prime p and α and α′

are powers of a pa-th root of unity ζpa ∈ K, where m divides pa. Since the local indices
determine elements of the Schur subgroup of K that are of exponent at most 2, we may
assume m > 2. By Theorem 1.109, the fact that both A and A′ lie in the Schur sub-
group of K implies that there is an odd prime r for which m = mr(A) = mr(A′) > 2.
Since ζm ∈ K, it follows that [K(ζpb) : K] is a power of p, for every positive integer b.

For every subextension E of K(ζn)/K, let Ep denote the maximal subextension of
E/K of degree a power of p. Let E and E′ be two subextensions of K(ζn)/K. We
claim that (EE′)p = EpE

′
p. The inclusion EpE′p ⊆ (EE′)p is clear because

[EpE′p : K] = [EpE′p : Ep][Ep : K] = [Ep : Ep ∩ E′p][Ep : K]

and [Ep : Ep ∩E′p] divides [Ep : K]. On the other hand, [EpE′ : EpE′p] divides [E′ : E′p]
and so [EpE′ : EpE′p] is coprime to p. Similarly, [EE′p : EpE′p] is coprime to p. Therefore

[EE′ : EpE′p] = [(EE′p)(EpE
′) : EpE′p]

is coprime to p. Thus (EE′)p ⊆ EpE
′
p and the claim follows.

Furthermore, either Ep ⊆ E′p or E′p ⊆ Ep, since K(ζn)/K is cyclic. In particular, if
k and k′ are two coprime divisors of n, then K(ζkk′)p equals either K(ζk)p or K(ζk′)p.
Therefore, there exists a prime q and a power d = qh of q that divides n for which
K(ζn)p = K(ζd)p. Moreover, if q 6= p then K(ζd)p = K(ζq)p, so in this case one may
assume that d = q.

It follows from Theorem 1.60 that there exists an integer w coprime to p such that

[A] = [(K(ζn)/K, σ, α)] = [(K(ζd)/K, σ, αw)].

So one may assume that n = d. In a similar fashion, for the algebra A′ one may assume
that n′ = d′ = q′h

′
for some prime q′ and, if q′ 6= p then h′ = 1. If K(ζd) = K(ζd′) then

it is immediate from Lemma 6.4 that D and D′ are ring isomorphic.
Suppose K(ζd) 6= K(ζd′). Let r be a rational prime for which mr(A) = mr(A′) > 2.

The facts pointed out in Theorem 1.109 imply that r must be an odd prime which is
not equal to p. By Theorem 1.76 and Theorem 1.56, both of the extensions K(ζd)/K
and K(ζd′)/K must ramify at any prime of K lying above r. However, the only finite
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rational prime that ramifies in the extension Q(ζqh)/Q is q. By Lemma 1.11, it follows
that r = q. In a similar manner, we can show that r = q′. But then d = d′, a
contradiction.

Corollary 6.7. Let K be an abelian number field, G, H finite metacyclic groups and
χ ∈ Irr(G), ψ ∈ Irr(H). Suppose

(1) K(χ) = K(ψ),

(2) χ(1) = ψ(1) and

(3) mp(A(χ,K)) = mp(A(ψ,K)) for all rational primes p (including ∞).

Then A(χ,K) and A(ψ,K) are ring isomorphic.

Proof. Let K := K(χ) = K(ψ). Since χ(1) = ψ(1), A(χ,K) and A(ψ,K) have the same
dimension over K, so it suffices to show that their division algebra parts Dχ and Dψ

are ring isomorphic. Since G is metacyclic, the character χ is induced from a maximal
abelian normal subgroup A/ker(χ) of G/ker(χ), and G/A is cyclic. Suppose that a
maximal cyclic subgroup of A/ker(χ) has order n and that there is an element g ∈ G
of order ` for which |〈gA〉| = |G/A|. Then K ⊆ K(ζn) and A(χ,K) can be naturally
identified with the cyclic cyclotomic algebra (K(ζn)/K, σ, ζ`) (see Proposition 2.3). In a
similar fashion, we can show that A(ψ,K) can also be expressed as a cyclic cyclotomic
algebra. The corollary then follows because Theorem 6.6 can be applied.

6.2 The subgroup CC(K) of the Schur group S(K) gener-

ated by cyclic cyclotomic algebras

Throughout this section K is an abelian number field. It is well known that every
element of Br(K) is represented by a cyclic algebra over K and every element of S(K)
is represented by a cyclotomic algebra over K by the Brauer–Witt Theorem. However,
in general, not every element of S(K) is represented by a cyclic cyclotomic algebra.
In fact, as we will see in this section, in general, S(K) is not generated by classes
represented by cyclic cyclotomic algebras.

Let CC(K) denote the subgroup of S(K) generated by classes containing cyclic
cyclotomic algebras. In other words CC(K) is formed by elements of S(K) represented
by tensor products of cyclic cyclotomic algebras. The aim of this section is to study
the gap between S(K) and CC(K). More precisely, we give a characterization of when
CC(K) has finite index in S(K) in terms of the relative position of K in the lattice of
cyclotomic extensions of the rationals.
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By Benard-Schacher Theorem (Theorem 1.108), S(K) =
⊕

p S(K)p, where p runs
over the primes such that ζp ∈ K and S(K)p denotes the p-primary part of S(K). Thus
CC(K) has finite index in S(K) if and only if CC(K)p = CC(K) ∩ S(K)p has finite
index in S(K)p for every prime p with ζp ∈ K. Therefore, we are going to fix a prime
p such that ζp ∈ K and our main result gives necessary and sufficient conditions for
[S(K)p : CC(K)p] < ∞, in terms of the Galois group of a certain cyclotomic field F

that we are going to introduce next.
Let L = Q(ζm) be a minimal cyclotomic field containing K, a the minimum positive

integer such that ζpa ∈ K, s the minimum positive integer such that ζps ∈ L and

b =


s, if p is odd or ζ4 ∈ K,
s+ vp([K ∩Q(ζps) : Q]) + 2, if Gal(K(ζp2a+s)/K) is not cyclic,
s+ 1, otherwise,

where vp : Q → Z denotes the p-adic valuation. Then we let ζ = ζpa+b and define
F = L(ζ).

The Galois groups of F mentioned above are

Γ = Gal(F/Q), G = Gal(F/K), C = Gal(F/K(ζ)) and D = Gal(F/K(ζ + ζ−1)).

Notice that D 6= G by the definition of b, and if C 6= D then pa = 2 and ρ(ζ) = ζ−1

for every ρ ∈ D \ C.
As in Chapter 5, we fix elements ρ, σ of G, with G = 〈ρ, σ, C〉, such that D = B×〈ρ〉

and C = B × 〈ρ2〉 for some subgroup B of C and G/C = 〈ρC〉 × 〈σC〉. Furthermore,
if G/C is cyclic (equivalently C = D) then we select ρ = 1 and otherwise σ is selected
so that σ(ζ4) = ζ4. The existence of such ρ and σ in G has been proved in Chapter 5
(see Lemma 5.3).

Finally, to every ψ ∈ Γ we associate two non-negative integers,

d(ψ) = min{a,max{h ≥ 0 : ψ(ζph) = ζph}} and ν(ψ) = max{0, a− vp(|ψG|)},

and a subgroup of C:

T (ψ) = {η ∈ B : ηp
ν(ψ) ∈ Bpd(ψ)}.

Now we are ready to state the main result of this section.

Theorem 6.8. Let K be an abelian extension of the rationals, p a prime integer and
use the above notation.

If G/C is cyclic then the following are equivalent:

(1) CC(K)p has finite index in S(K)p.
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(2) For every ψ ∈ Γp one has ψ|ψG| ∈
|σC|−1⋃
i=0

σiT (ψ).

(3) For every ψ ∈ Γp satisfying ν(ψ) < min{vp(expB), d(ψ)}, one has ψ|ψG| ∈
|σC|−1⋃
i=0

σiT (ψ).

If G/C is non-cyclic (and in particular p = 2) then the following are equivalent:

(1) CC(K)2 has finite index in S(K)2.

(2) For every ψ ∈ Γ2 \G, if d = v2([K ∩Q(ζ) : Q]) + 2 then

ψ|ψG| ∈ Gal(F/Q(ζ2d+1))
⋂|σC|−1⋃

i=0

σi〈ρ, T (ψ)〉

 .

Notice that conditions (2) and (3) in Theorem 6.8 can be verified by elementary
computations in the Galois group Γ.

The subgroup of S(K) generated by cyclic cyclotomic algebras

Now we provide some information on the structure of CC(K)p. We start by introducing
some notation and recalling some known facts about local information concerning S(K).

Let P = {r ∈ N : r is prime} ∪ {∞}. Given r ∈ P, we are going to abuse the
notation and denote by Kr the completion of K at a (any) prime of K dividing r. If
E/K is a finite Galois extension, one may assume that the prime of E dividing r, used
to compute Er, divides the prime of K over r, used to compute Kr.

We also use the following notation, for π ⊆ P and r ∈ P:

S(K,π) = {[A] ∈ S(K) : mr(A) = 1, for each r ∈ P \ π},
S(K, r) = S(K, {r}),

CC(K,π) = CC(K) ∩ S(K,π),
CC(K, r) = CC(K) ∩ S(K, r),

Pp =
{
r ∈ P \ {∞} : CC(K, {r,∞})p = CC(K, r)p

⊕
CC(K,∞)p

}
.

If p is odd or ζ4 ∈ K then m∞(A) = 1 for each Schur algebra A and so Pp = P\{∞}.
Finally, if r is odd then we set

ν(r) = max{0, a+ vp(e(K(ζr)/K, r))− vp(|W (Kr)|)}.

Notice that the notation for ν(r) coincides with the one given in Notation 5.10. This
is a consequence of the structure of unramified extensions of Qr (see Theorem 1.77).

The following theorem provides information on the structure of CC(K)p.
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Theorem 6.9. For every prime p we have

CC(K)p =

⊕
r∈Pp

CC(K, r)p

⊕ ⊕
r∈P\Pp

CC(K, {r,∞})p

 .

Let Xr denote the direct summand labelled by r (of either the first or the second kind)
in the previous decomposition.

(1) If r is odd then Xr is cyclic of order pν(r) and is generated by the class of
(K(ζr)/K, ζpa).

(2) X2 has order 1 or 2 and if it has order 2 then pa = 2 and X2 is generated by the
class of (K(ζ4)/K,−1).

(3) If X∞ 6= 1, then p = 2, K ⊆ R, and X∞ has exponent 2.

Proof. Let A = (E/K, ξ) be a cyclic cyclotomic algebra with [A] ∈ S(K)p. One may
assume without loss of generality that ξ ∈ W (K)p. As in the proof of Lemma 6.4,
there is a prime power rk such that ` = [E : K(ζrk)] is coprime to p. Then
[A⊗`] = [(E/K, ξ`)] = [(K(ζrk)/K, ξ)] and mq(A) = mq(A⊗`) = mq(K(ζrk)/K, ξ),
for every q ∈ P. If q 6∈ {r,∞} then K(ζrk)/K is unramified at q and there-
fore mq(A) = 1 by Lemma 1.11. Thus [A] ∈ CC(K, {r,∞}). This shows that
CC(K)p =

∑
r∈P\{∞}CC(K, {r,∞})p.

If P \ {∞} = Pp then this implies that

CC(K)p =
⊕
r∈P

CC(K, r) =

⊕
r∈Pp

CC(K, r)

⊕CC(K,∞)

as wanted. Assume otherwise that P \ {∞} 6= Pp. If 1 6= [A] ∈ CC(K,∞) then
for every r ∈ P and [B] ∈ CC(K, {r,∞}) \ CC(K,∞) one has [B] = [A ⊗ B] · [A]
and [A⊗B] ∈ CC(K, r). This implies that CC(K, {r,∞}) = CC(K, r)

⊕
CC(K,∞),

contradicting the hypothesis. Hence CC(K,∞) = 1 and then

CC(K)p =

⊕
r∈Pp

CC(K, r)p

⊕ ⊕
r∈P\Pp

CC(K, {r,∞})p

 ,

as desired.
(1) Let r ∈ P. The map Kr ⊗K − : Xr → S(Kr) is an injective group homomor-

phism. If r is odd then S(Kr) is cyclic of order e(K(ζr)/K, r) and it is generated by
the cyclic algebra (Kr(ζr)/Kr, ζn), where n = |W (Kr)| (see e.g. Theorem 1.110 and
[Yam]). Therefore Xr is cyclic and hence it is generated by a class containing a cyclic
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cyclotomic algebra A. As above we may assume that A = (K(ζrk)/K, ζ`pa) for some
k, ` ≥ 1. Since [A] = [(K(ζrk)/K, ζpa)]`, one may assume that ` = 1. Then

|Xr| = mr(A) = mr((K(ζrk)′/K, ζpa)) = mr((K(ζr)/K, ζpa)) =
m((Kr(ζr)/Kr, ζpa)) = m((Kr(ζr)/Kr, ζpa+a(r))

⊗a(r)) = pν(r), where a + a(r) = vp(n).
This proves (1).

(2) and (3) follow by similar arguments.

Remark 6.10. Notice that the proof of Theorem 6.9 shows that if A is a cyclic cyclo-
tomic algebra of index a power of p, then [A] ∈ S(K, {r,∞}) for some prime r ∈ P\{∞},
and if p is odd or ζ4 ∈ K, then [A] ∈ S(K, r).

By Theorem 6.9, if r is odd then ν(r) = max{vp(mr(A)) : [A] ∈ CC(K)p}. We
can extend the definition of ν(r) by setting ν(2) = max{vp(m2(A)) : [A] ∈ CC(K)p}.
Notice that ν(2) ≤ 1 and ν(2) = 1 if and only if pa = 2 and (K(ζ4)/K,−1) is non-split.
We will need to compare ν(r) to β(r) = max{vp(mr(A)) : [A] ∈ S(K)p}.

Proposition 6.11. Let r ∈ P. Then

(1) CC(K)p = S(K)p if and only if ν(r) = β(r) for each r ∈ P \ {∞}.

(2) CC(K)p has finite index in S(K)p if and only if ν(r) = β(r) for all but finitely
many primes r.

Proof. We prove (2) and let the reader to adapt the proof to show (1).
Assume that CC(K)p has finite index in S(K) and let [A1], . . . , [An] be a com-

plete set of representatives of cosets modulo CC(K)p. Then π = {r ∈ P :
mr(Ai) 6= 1 for some i} is finite and ν(r) = β(r) for every r ∈ P \ π. Conversely,
assume that ν(r) = β(r) for every r ∈ P \ π, with π a finite subset of P contain-
ing ∞. Then S(K,π)p is finite and we claim that S(K)p = S(K,π)p + CC(K)p.
Let [B] ∈ S(K)p. We prove that [B] ∈ S(K,π)p + CC(K)p by induction on
h(B) =

∏
r∈P\πmr(B). If h(B) = 1 then [B] ∈ S(K,π)p and the claim follows.

Assume that h(B) > 1 and the induction hypothesis. Then there is a cyclic cyclo-
tomic algebra A and r ∈ P \ π such that mr(B) = mr(A) > 1. Since S(Kr) is cyclic,
there is a positive integer ` coprime to mr(B) such that (A⊗`) ⊗K Kr

∼= B ⊗K Kr

as Kr-algebras. Let C = (Aop)⊗` ⊗ B. Since A⊗` ∈ CC(K, {r,∞})p, it follows that
h(C) = h(B)

mr(A) < h(B), and hence [C] ∈ S(K,π)p + CC(K)p, by the induction hypoth-
esis. Therefore, [B] = [A]`[C] ∈ S(K,π)p + CC(K)p, as required.

Notice that for p odd Proposition 6.11 is a straightforward consequence of the de-
composition of CC(K)p given in Theorem 6.9 and the Janusz Decomposition Theorem
[Jan3].
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Examples

Now we present several examples comparing S(K) and CC(K) for various fields.

Example 6.12. K = Q.
It follows from the Hasse–Brauer–Noether–Albert Theorem (see Remark 1.95 (ii))

that S(Q, r) is trivial for all primes r and hence so is CC(Q, r). The cyclic cyclo-
tomic algebra H2,∞ = H(Q) = (Q(ζ4)/Q,−1) is a rational quaternion algebra which
lies in CC(Q, {2,∞}). When r is odd, the cyclic algebra Hr,∞ = (Q(ζr)/Q,−1) has
real completion R ⊗Q Hr,∞ ' Mn(H(R)), for n = r−1

2 , so m∞(Hr,∞) = 2. The exten-
sion Qr(ζr)/Qr is unramified at primes other than r, so [Hr,∞] ∈ CC(Q, {r,∞}) (and
mr(Hr,∞) must be 2). If r and q are distinct finite primes, then [Hr,∞][Hq,∞] is an
element of CC(Q, {r, q}), and it follows from Remark 6.10 that this element cannot be
represented by a cyclic cyclotomic algebra. Nevertheless, it is easy to see at this point
that S(Q) = CC(Q).

The smallest example of an algebra representing an element in CC(Q, {2, 3}) is the
generalized quaternion algebra

(
−3,2

Q

)
. The algebra of 2 × 2 matrices over

(
−3,2

Q

)
is

isomorphic to a simple component of the rational group algebra of the group of order
48 that has the following presentation 〈x, y, z : x12 = y2 = z2 = 1, xy = x5, xz =
x7, [y, z] = x9〉.

Example 6.13. CC(K,∞) 6= 1.
It is also possible that CC(K,∞) is non-trivial. For example, the quaternion algebra

H(Q(
√

2)) = (Q(ζ8)/Q(
√

2),−1) is homomorphic to a simple component of the rational
group algebra of the generalized quaternion group of order 16. It has real completion
isomorphic to H(R) at both infinite primes of Q(

√
2), so m∞(H(Q(

√
2))) = 2. If r is

an odd prime then mr(H(Q(
√

2))) = 1. Since Q2(
√

2)/Q2 is ramified and the sum of
the local invariants at infinite primes is an integer, we deduce that m2(H(Q(

√
2))) = 1,

so it follows that [H(Q(
√

2))] ∈ CC(Q(
√

2),∞).

Example 6.14. Cyclotomic fields.
Suppose K = Q(ζm) for some positive integer m > 2. Assume that either m is odd

or 4 divides m. The main theorem of [Jan2] shows that if p is a prime dividing m and
m = pnm0 with m0 coprime to p, then

S(Q(ζm))p = {[A⊗Q(ζpn ) Q(ζm)] : [A] ∈ S(Q(ζpn))p}.

When pn > 2, we know by [BeS, Theorem 3] that S(Q(ζpn))p is generated by the
Brauer classes of characters of certain metacyclic groups, which, in their most natural
crossed product presentation, take the form of cyclic cyclotomic algebras. Therefore,
S(Q(ζpn))p = CC(Q(ζpn))p. Since it is easy to see that when K is an extension of a field
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E, {[A⊗EK] : [A] ∈ CC(E)} ⊆ CC(K), we can conclude that S(Q(ζm)) = CC(Q(ζm))
for all positive integers m.

Combining Proposition 6.11 with the results of [Jan3] one can obtain examples with
S(K)p 6= CC(K)p.

Example 6.15. CC(K)p 6= S(K)p, p odd.
By Theorem 6.9, if CC(K)p = S(K)p then S(K)p =

⊕
r∈P S(K, r)p. However,

Proposition 6.2 of [Jan3] shows that for every odd prime p there are infinitely many
abelian extensions K of Q such that S(K)p 6=

⊕
r∈P S(K, r)p. Thus for such fields K

one has S(K)p 6= CC(K)p.

Example 6.16. CC(K)2 6= S(K)2 with ζ4 ∈ K.
Let q be a prime of the form 1+5 · 29t with (t, 10) = 1. In the last section of [Jan3]

one constructs a subfield K of Q(ζ29·5·q) such that max{mq(A) : [A] ∈ S(K)2} = 4 (in
particular ζ4 ∈ K), and for every [A] ∈ S(K)2 with mq(A) = 4, one has mr(A) 6= 1,
for some prime r not dividing 10q. In the notation of Proposition 6.11 this means
that v2(|S(K, q)|) < β(q) = 4 (for p = 2). Then S(K)2 6=

⊕
r∈P S(K, r)2 and, as in

Example 6.15, this implies that CC(K)2 6= S(K)2.

Example 6.17. CC(K)2 6= S(K)2 with ζ4 6∈ K.
An example with S(K)2 6= CC(K)2 and ζ4 6∈ K can be obtained using Theorem 5

of [Jan1]. This result gives necessary and sufficient conditions for S(k) to have order 2
when k is a cyclotomic extension of Q2. This is the maximal 2-local index for a Schur
algebra. If |S(k)| = 2 then ζ4 6∈ k. If, moreover, H = (k(ζ4)/k,−1) is not split then
CC(k)2 = S(k)2, because H is a cyclic cyclotomic algebra. However, there are some
fields k for which |S(k)| = 2 and H is split. In that case S(k) is generated by the class
of a cyclotomic algebra A and we are going to show that CC(k) 6= S(k). Then for any
algebraic number field with K2 = k we will also have CC(K)2 6= S(K)2.

Indeed, if CC(k) = S(k) then A is equivalent to a cyclic cyclotomic algebra
(k(ζm)/k, ζ). One may assume that ζ ∈W (k)2\{1} and hence ζ = −1, because ζ4 6∈ k.
Write m = 2v2(m)m′, with m′ odd. Since k(ζm)/k must be ramified, v2(m) ≥ 2. If
k(ζm′)/k has even degree then this would contradict the fact that k(ζm)/k is cyclic. So
k(ζm′)/k has odd degree and therefore (k(ζm)/k,−1) is equivalent to (k(ζ2vp(m))/k,−1)
by Theorem 1.60. Then A is equivalent to (k(ζ4)/k,−1) by [Jan1, Theorem 1], yielding
a contradiction.

Finiteness of S(K)p/CC(K)p

The main idea of the proof of Theorem 6.8 is to compare ν(r) and β(r) for odd primes
r not dividing m. We will use the notation introduced at the beginning of the section
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including the Galois groups Γ, G, C, D, and B, the elements ρ, σ ∈ G, and the
decompositions D = 〈ρ〉 ×B and C = 〈ρ2〉 ×B.

We also use the following numerical notation for every odd prime r not dividing m:

a+ a(r) = vp(|W (Kr)|),
d(r) = min{a, vp(r − 1)},
fr = f(K/Q, r),

f(r) = vp(fr),

and introduce ψr ∈ Γ and φr ∈ G as follows:

ψr(ε) = εr for every root of unity ε ∈ F, and φr = ψfrr .

The order of ψr modulo G is fr, and ψr and φr are Frobenius automorphisms at r
in Γ and G respectively. By the uniqueness of an unramified extension of a local field
of given degree, one has vp(|W (Kr)|) = vp(|W (Qr)|)+f(r) = vp(e(K(ζr)/K, r))+f(r).
Thus

ν(r) = max{0, a− f(r)}. (6.1)

This gives ν(r) in terms of the numerical information associated to r. The value of
β(r) was computed in Theorem 5.13. We will need the following lemma.

Lemma 6.18. ν(r) and β(r) depend only on d(r) and the element ψr ∈ Γ.

Proof. ν(r) is determined by f(r) (see (6.1)), and f(r) by fr = |ψrG|. So ν(r) is
determined by ψr. On the other hand, ψr = ρj

′
σjη for uniquely determined integers

0 ≤ j′ < |ρ|, 0 ≤ j < |σC| and η ∈ B. Therefore, ψr determines whether or not j ≡ j′

mod 2, and also the element η required in Theorem 5.13. So knowing ψr and d(r) will
allow one to compute β(r).

We can now give a necessary and sufficient condition, in local terms, for CC(K)p
to have finite index in S(K)p.

Theorem 6.19. CC(K)p has finite index in S(K)p if and only if ν(r) = β(r) for all
odd primes r not dividing m.

Proof. The sufficiency is a consequence of Proposition 6.11.
Suppose that there is an odd prime r not dividing m for which ν(r) < β(r). By

Dirichlet’s Theorem on primes in arithmetic progression there are infinitely many
primes r′ such that r′ ≡ r mod lcm(m, pa+b, pvp(r−1)+1). For such an r′ one has
ψr′ = ψr and vp(r′−1) = vp(r−1). Then β(r′) = β(r) > ν(r) = ν(r′) for infinitely many
primes r′, by Lemma 6.18, and hence [S(K)p : CC(K)p] = ∞, by Proposition 6.11.
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When p is odd, this result can be interpreted in terms of the local subgroups of
S(K)p and CC(K)p.

Theorem 6.20. Let K be a subfield of Q(ζn), p an odd prime and n a positive integer.
Then the following conditions are equivalent:

(1) CC(K)p has finite index in S(K)p.

(2) CC(K, r)p = S(K, r)p, for almost all r ∈ P.

(3) CC(K, r)p = S(K, r)p, for every prime r not dividing n.

Proof. By the Janusz Decomposition Theorem [Jan3], we have

S(K)p = S(K,π)p
⊕⊕

r 6∈π
S(K, r)p

 ,

where π is the set of prime divisors of m, the smallest integer for which K ⊆ Q(ζm).
This shows that β(r) = vp(|S(K, r)|p), whenever r is a prime that does not divide m
and hence, for such primes ν(r) = β(r) if and only if CC(K, r)p = S(K, r)p. Now the
results follow from Proposition 6.11 and Theorem 6.19.

An obvious consequence of Theorem 6.20 is the following:

Corollary 6.21. If K is a subfield of Q(ζn) and p is an odd prime then the order of
the group

⊕
r∈P,r-n S(K, r)p/CC(K, r)p is either 1 or infinity.

We now proceed with the proof of the main theorem of the section.

Proof of Theorem 6.8. For each ψ ∈ Γ we put h(ψ) = max{0 ≤ h ≤ a + b :
ψ(ζph) = ζph}. Clearly d(ψ) = min{a, h(ψ)}. By Dirichlet’s Theorem on primes in
arithmetic progression, for every ψ ∈ Γ there exists an odd prime r not dividing m

such that ψ = ψr. For such a prime one has h(ψ) = min{a + b, vp(r − 1)}. This
prime r can be selected so that h(ψ) = vp(r − 1), because otherwise we would have
h(ψ) = a + b < vp(r − 1), and we could replace r by a prime r′ satisfying r′ ≡ r

mod m and r′ ≡ 1 + pa+b mod pa+b+1. For such an r′, one has d(r) = d(r′), and thus
ν(r) = ν(r′) and β(r) = β(r′) by Lemma 6.18.

Let q = |σC|. We now consider the case when G/C is cyclic. Then D = C = B

and ρ = 1. We set t = vp(exp(B)). If t = 0, then T (ψ) = B for every ψ ∈ Γp, so that
(2) and (3) obviously hold. Furthermore |ηBpd(r) | = 1 and so ν(r) = β(r) for all odd
primes r not dividing m, by Theorem 5.13. So (1) holds by Theorem 6.19. So to avoid
trivialities we assume that t > 0.
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(1) implies (2). Suppose K does not satisfy condition (2) and let ψ ∈ Γp with
ψ|ψG| 6∈

⋃q−1
j=0 σ

iT (ψ). Let r be an odd prime not dividing m for which ψ = ψr and
h(ψ) = vp(r − 1). Then d(r) = d(ψ) and pf(r) = fr = |ψG|, so ν(r) = ν(ψ). The
assumption ψ|ψG| 6∈

⋃q−1
j=0 σ

iT (ψ), means that when we express ψ|ψG| as σjη with 0 ≤
j < q and η ∈ B, the order of ηBpd(ψ)

in B/Bpd(ψ)
is strictly greater than pν(ψ) = pν(r).

By Theorem 5.13, we have β(r) > ν(r) for this odd prime r not dividing m, and so
Theorem 6.19 implies that (1) fails.

(2) implies (3) is obvious.

(3) implies (1). Assume that (1) fails. Then, by Theorem 6.19, there exists a prime
r not dividing m for which β(r) > ν(r). As above, we may select such an r so that
vp(r − 1) ≤ a+ b.

Let ψ = ψr. Our choice of r implies that d(ψ) = d(r). We claim that one can
assume ψ ∈ Γp. If ψ 6∈ Γp, then let ` be the least positive integer such that ψ` lies in
Γp. Let r′ be a prime integer such that r′ ≡ r` mod lcm(m, pa+b). Since ` is coprime to
p, we have vp(r′−1) = vp(r`−1) = vp(r−1) and therefore d(ψ`) = d(r′) = d(r) = d(ψ).
Since ψr′ = ψ`r and ` is coprime to p, we also have f(r′) = f(r) = f(ψ). It follows from
Lemma 6.18 that β(r) = β(r′) and ν(r) = ν(r′). So by replacing r by r′ if necessary,
one may assume that ψ ∈ Γp and d(ψ) = d(r).

For this prime r and element ψ = ψr ∈ Γp, the assumption β(r) > ν(r) and
Theorem 5.13 imply that, when we write φr = ψfr = σjη, with 0 ≤ j < q and η ∈ B,
the order of ηBpd(r) in B/Bpd(r) is precisely pβ(r). Then ηp

ν(r) 6∈ Bpd(r) , equivalently
η 6∈ T (ψ) and hence ψ|ψG| 6∈

⋃q−1
j=0 σ

iT (ψ).

Since the exponent of B/Bpd(r) is precisely pk, where k = min{t, d(r)}, this can only
be possible if ν(ψ) = ν(r) < k = min{t, d(ψ)}. This shows that if condition (1) fails,
then condition (3) also fails. This completes the proof in the case that G/C is cyclic.

Now suppose G/C is non-cyclic. In particular, pa = 2 and σ(ζ4) = ζ4. Let d =
v2([K ∩Q(ζ) : Q]) + 2 and let c be an integer such that σ(ζ) = ζc. Then vp(c− 1) = d

and d(ψ) = 1 for all ψ ∈ Γ2.

(1) implies (2). Suppose (2) fails. Then there exists a ψ ∈ Γ2 \G such that either
ψ|ψG| 6∈ Gal(F/Q(ζ2d+1)) or ψ|ψG| 6∈

⋃q−1
i=0 σ

i〈ρ, T (ψ)〉.
As above, there exists an odd prime r not dividing m such that ψ = ψr, |ψG| = fr,

and ν(ψ) = ν(r). Since ψ 6∈ G we have f(r) > 0 and so ν(r) = 0, by (6.1). Also from
f(r) > 0 one deduces that φr = ψfr fixes ζ4 and so when we write φr = ρj

′
σjη with

0 ≤ j′ < |ρ|, 0 ≤ j ≤ q, η ∈ B, we have that j′ is even.

If φr 6∈ Gal(F/Q(ζ2d+1)), then j is odd, and we are in the case of Theorem 5.13, part
(1), with ν(r) = 0 and β(r) = 1. Otherwise, j is even and ψ|ψG| 6∈

⋃q−1
i=0 σ

i〈ρ, T (ψ)〉.
Then η 6∈ T (ψ), or equivalently, ν(r) < v2(|ηB2|) (observe that d(r) = 1). By Theo-
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rem 5.13, we have β(r) = v2(|ηB2|) > ν(r). Therefore, in all cases in which (2) fails,
we have ν(r) < β(r). So (1) fails by Theorem 6.19.

(2) implies (1). Suppose (1) fails. By Theorem 6.19, there exists an odd prime r
not dividing m such that 0 = ν(r) < β(r) = 1. Since ν(r) = 0, we must have f(r) > 0,
so ψ = ψr 6∈ G. As above, we may adjust ψr by an odd power and make a different
choice of r without changing ν(r) or β(r) in order to arrange that ψ ∈ Γ2. Write
φr = ψfr = ψ|ψG| = ρj

′
σjη, with 0 ≤ j′ < |ρ|, 0 ≤ j < q and η ∈ B. As above, j′

is even because f(r) > 0. If j is odd, then ψ|ψG| 6∈ Gal(F/Q(ζ2d+1)) and so (2) fails.
Suppose now that j is even, so we have ψ|ψG| ∈ Gal(F/Q(ζ2d+1)). Then the fact that
β(r) = 1 implies by Theorem 5.13 that |ηB2d(r) | = 2. Since d(r) ≤ a = 1, we have
d(ψ) = d(r) = 2 and so η 6∈ B2 and η 6∈ T (ψ). Then ψ|ψG| 6∈

∏q−1
i=0 σ

i〈ρ, T (ψ)〉 and so
(2) fails. �

Some obvious consequences of Theorem 6.8 are the following.

Corollary 6.22. If ψ|ψG| 6∈ 〈σ, ρ, T (ψ)〉, for some ψ ∈ Γp, then CC(K)p does not have
finite index in S(K)p.

Corollary 6.23. If G/C is cyclic and ν(ψ) ≥ min{vp(expB), d(ψ)} for all ψ ∈ Γp,
then CC(K)p has finite index in S(K)p.

Corollary 6.24. If G/C is cyclic and vp(expB) + vp(exp(Gal(K/Q))) ≤ a then
CC(K)p has finite index in S(K)p.

Proof. If ψ ∈ Γp then vp(|ψG|) ≤ vp(exp(Gal(K/Q))) ≤ a− vp(expB), by assumption.
Therefore ν(ψ) = max{0, a− vp(|ψG|)} ≥ vp(expB) and Corollary 6.23 applies.

Example 6.25. A simple example with [S(K)p : CC(K)p] = ∞.
Let p and q be odd primes with vp(q − 1) = 2. Let K be the subextension of

L = Q(ζpq)/Q(ζp) with index p in Q(ζpq). Then F = Q(ζp2q), G ∼= 〈θ〉×C is elementary
abelian of order p2, and Γp has an element ψ such that ψp generates C. Then a =
vp(|ψG|) = 1 and so ν(ψ) = 0 and d(ψ) = 1. Therefore, T (ψ) = 1 and hence 〈σ, T (ψ)〉 =
〈σ〉. However, 〈σ〉 ∩ C = 1 and hence ψ|ψG| = ψp 6∈ 〈σ, T (ψ)〉. So it follows from
Corollary 6.22 that CC(K)p has infinite index in S(K)p.

The reader may check using Theorem 6.8 that [S(K)p : CC(K)p] = ∞ for the fields
K constructed by Janusz that were mentioned in Example 6.15. The same holds for the
field of Example 6.16. This can be verified using the arguments in the proofs of Lemmas
4.2 and 6.4 and Proposition 6.5 in [Jan3], where it is proved that 0 = vp(|S(K, q)|) <
β(q) for all the primes q such that q ≡ 1 mod 16 and r is not a square modulo q.

In all the examples shown so far, the index of CC(K)p in S(K)p is either 1 or
infinity. This, together with Corollary 4.5, may lead one to believe that the quotient
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group S(K)p/CC(K)p is either trivial or infinite for every field K and every prime p.
By Corollary 2.3 and Theorem 4.3, S(K)p/CC(K)p is both finite and non-trivial if and
only if ν(r) = β(r) for every odd prime not dividing m and ν(r) 6= β(r) for r either
2 or an odd prime dividing m. In the following example we show that for every odd
prime p there exists a field K satisfying these conditions.

Example 6.26. An example with CC(K)p 6= S(K)p and [S(K)p : CC(K)p] <∞.
Let p be an arbitrary odd prime and let q and r be primes for which vp(q − 1) =

vp(r − 1) = 2, vq(rp − 1) = 0, and vq(rp
2 − 1) = 1. The existence of such primes q and

r for each odd prime p is a consequence of Dirichlet’s Theorem on primes in arithmetic
progression. Indeed, given p and q primes with vp(q − 1) = 2, there is an integer k,
coprime to q such that the order of k modulo q2 is p2. Choose a prime r for which
r ≡ k+q mod q2 and r ≡ 1+p2 mod p3. Then p, q and r satisfy the given conditions.

Let K be the compositum of K ′ and K ′′, the unique subextensions of index p

in Q(ζp2q)/Q(ζp2) and Q(ζp2r)/Q(ζp2) respectively. Then m = p2rq, a = 2 and
L = Q(ζm) = K(ζq) ⊗K K(ζr). Therefore, F = Q(ζp4qr), and G = Gal(F/K(ζqr)) ×
Gal(F/K(ζp4q)) ×Gal(F/K(ζp4r)). We may choose σ so that 〈σ〉 = Gal(F/K(ζqr)) ∼=
G/C has order p2. The inertia subgroup of r in G is Gal(F/K(ζp4q)), which is generated
by an element θ of order p. Note that B = C and vp(exp(Gal(K/Q))) = vp(expB) =
1 < a = 2. Hence K satisfies the conditions of Corollary 6.24 and so CC(K)p has finite
index in S(K)p.

Since K = K ′ ⊗Q(ζp2 ) K
′′ and K ′′/Q(ζp2) is totally ramified at r, we have that

K ′
r is the maximal unramified extension of Kr/Qr. It follows from vq(rp

2 − 1) = 1
and vq(rp − 1) = 0 that [Qr(ζq) : Qr] = p2, and so [K ′

r : Qr] = p = f(K/Q, r).
Therefore vp(|W (Kr)|) = vp(|W (Qr)|) + f(r) = vp(r − 1) + 1 = 3, and so we have
ν(r) = max{0, a+ vp(|θ|)− vp(|W (Kr)|)} = 0.

Let ψr be the Frobenius automorphism of r in Gal(F/Q). Then ψpr = σpη, where
η ∈ B generates Gal(F/K(ζp4r)). Since 〈θ〉 ∩ 〈η〉 = 1, there exists a skew pairing
Ψ : B × B → W (K)p such that Ψ(θ, η) has order p. By Theorem 5.13, it follows that
β(r) ≥ 1, and so S(K)p 6= CC(K)p.

We finish with an example which shows that, when G/C is noncyclic, it is possible
for CC(K)2 to have infinite index in S(K)2 even when t = v2(expB) = 0. It also is a
counterexample to [Pen1, Theorem 2.2].

Example 6.27. An example with [S(K)2 : CC(K)2] = ∞ and C = 1.
Let q be an odd prime greater than 5 and set K = Q(ζq,

√
2). We compute [S(K)2 :

CC(K)2]. In the notation of this section, we have a = 2, m = 8q, so s = 3 and
a + b = 1 + 3 + v2([K ∩ Q(ζ23) : Q]) + 2 = 6. Hence F = Q(ζ64q). Since Q(ζq) ⊂ K,
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we have C = Gal(F/K(ζ64)) = 1. For our generators of Gal(F/K), we may choose ρ, σ
such that ρ(ζq) = ζq, ρ(ζ64) = ζ−1

64 , σ(ζq) = ζq, and σ(ζ64) = ζ9
64. Let r be any prime for

which r2 ≡ 1 mod q and r ≡ 5 mod 26. Then ψr 6∈ G, but 52 ≡ 93 mod 64 implies
that ψ2

r = σ3. This means that we are in the case of Theorem 5.13, where ν(r) = 0
and j is odd, so β(r) = 1. So [S(K)2 : CC(K)2] is infinite.

Notes on Chapter 6

Even if the problem of the computation of the automorphism group of group al-
gebras and the Isomorphism Problem for group algebras of metacyclic groups do not
appear explicitly as a studied topic, we gathered the main ingredients, namely the com-
putation of the Wedderburn components of group algebras and a criterion to decide
which components are isomorphic as rings. Note that the Wedderburn decomposition
of a rational group algebra of a metacyclic group has been computed in [OdRS2], so the
first part of the problem has been solved for metacyclic groups. The second problem,
that of deciding which simple components are ring isomorphic, can be attacked using
the results of the first section.

The computation of the index [S(K) : CC(K)] when this is finite is more compli-
cated than the computation of β(r) and ν(r) and depend on a more detailed analysis
of the position of K among the cyclotomic fields.



Conclusions and perspectives

The present book was mainly concerned with the computational aspect of the Wed-
derburn decomposition of group algebras and some of its applications, with the aim of
giving explicit presentations of the Wedderburn components.

The main idea in our approach was the use of the Brauer-Witt Theorem, that gives
a presentation of the simple components seen as Schur algebras over their centers as
cyclotomic algebras, up to Brauer equivalence. This method led us to the necessity of
finding a constructive proof of the Brauer-Witt Theorem and an algorithm to describe
the Wedderburn components using it, which was studied in Chapter 2.

This theoretical algorithm allowed us to elaborate a “working” algorithm which
made possible its implementation in a package called wedderga for the computer system
GAP. This is an improvement with respect to a previous version of wedderga, which
was only capable to compute the Wedderburn decomposition of some rational group
algebras. Some aspects of the implementation were presented in Chapter 3. The
numerical description of some Wedderburn components, given by the outputs of some
functions of the wedderga package, has some limitations when identifying the simple
algebras as matrices over precise division algebras. This was illustrated by examples
when presenting the functionality of wedderga.

The main motivation for our search for an explicit computation of the Wedderburn
components of group algebras was given by its applications, mainly to the study of units
of group rings and automorphisms of algebras. The second part of the book presented
some applications to the classification of group algebras of Kleinian type with further
applications to groups of units, the characterization of ring automorphisms of simple
components of rational group algebras and the study of a special subgroup of the Schur
group of an abelian number field.

In Chapter 4 we presented an application of a good knowledge and description of
the Wedderburn components of group algebras of finite groups over number fields. A
classification of the group algebras of Kleinian type over a number field was given,
continuing the work from [JPdRRZ]. Moreover, we characterized the group rings RG,
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with R an order in a number field and G a finite group, such that the group of units of
RG is virtually a direct product of free-by-free groups.

The information provided by our description of the Wedderburn components can
be completed with extra data given by the Schur index and the Hasse invariants of the
simple algebras. This requires computation of local Schur indices, a research direction
followed in Chapter 5, where we characterized the maximum p-local index of a Schur
algebra over an abelian number field, for p an arbitrary prime number.

In Chapter 6 we defined the notion of cyclic cyclotomic algebra, a type of algebra
which was useful for our purposes. These algebras arise naturally as simple compo-
nents of rational group algebras of metacyclic groups. Moreover, another reason that
suggested us the study of the algebras having this cyclic and cyclotomic presentation
was the fact that methods for the computation of the local Schur indices and the Hasse
invariants are classically presented for cyclic algebras. The first section of this chapter
was dedicated to the study of these algebras and their applications to the study of
the ring isomorphism between them. In the second section we presented the subgroup
generated by the cyclic cyclotomic algebras inside the Schur group and we gave a char-
acterization of when CC(K) has finite index in S(K) in terms of the relative position
of K in the lattice of cyclotomic extensions of the rationals.

Some further developments of this topic can be done in different directions. As we
have already mentioned above, the limitations of our description of the Wedderburn
components can be surpassed by a detailed study of the (local) Schur indices and the
Hasse invariants. Thus, as we have already started in Chapter 5, an option for future
study on this topic is to add local information obtained by local methods and which
completes the previous data. New methods using G-algebras can also be used in order
to compute Schur indices.

Recently, a projective version of the Brauer-Witt Theorem was given in [AdR].
More precisely, it was proved that any projective Schur algebra over a field is Brauer
equivalent to a radical algebra. This can provide useful information that can be used
to study a similar problem in the case of twisting group algebras, that is to describe
its simple components given by projective characters of the group as radical algebras
in the projective Schur group.

Another possible interesting idea to be studied is the generalization of some results
from Chapter 4 to semigroup algebras, since it seems that it can be reduced to the
knowledge of the Wedderburn components of some group algebras. There are also
other interesting problems that rely on the description of the Wedderburn components
of group algebras, such as the Isomorphism Problem or the study of error correcting
codes (when the group algebra is over a finite field).
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