THE SCHUR GROUP OF AN ABELIAN NUMBER FIELD

ALLEN HERMAN, GABRIELA OLTEANU, AND ÁNGEL DEL RÍO

Abstract. We characterize the maximum r-local index of a Schur algebra over an abelian number field K in terms of global information determined by the field K, for r an arbitrary rational prime. This completes and unifies previous results of Janusz in [Jan] and Pendergrass in [Pen1].

1. Introduction and Preliminaries

Let K be a field. A Schur algebra over K is a central simple K-algebra which is generated over K by a finite group of units. The Schur group of K is the subgroup $S(K)$ of the Brauer group of K formed by classes containing a Schur algebra. By the Brauer-Witt Theorem (see e.g. [Yam]), each class in $S(K)$ can be represented by a cyclotomic algebra, i.e. a crossed product of the form $(L / K, \alpha)$ in which L / K is a cyclotomic extension and the factor set α takes values in the group of roots of unity $W(L)$ of L.

In the case when K is an abelian number field; i.e. K is contained in a finite cyclotomic extension of \mathbb{Q}, Benard-Schacher theory $[\mathrm{BS}]$ gives a partial characterization of the elements of $S(K)$. According to this theory, if n is the Schur index of a Schur algebra over K, then $W(K)$ contains an element of order n. This is known as the Benard-Schacher Theorem. Furthermore, if $\frac{t}{n}$ (in lowest terms) is the local invariant of A at a prime \mathcal{R} of K that lies over a rational prime r, then each of the fractions $\frac{c}{n}$ with $1 \leq c \leq n$ and c coprime to n will occur equally often among the local invariants corresponding to the primes of K lying above r. In particular, these local invariants all have the same denominator n for all the primes of K lying above r, which we call the r-local index $m_{r}(A)$ of A. Only finitely many of the $m_{r}(A)$ are greater than 1 , and the Schur index of A is the least common multiple of the $m_{r}(A)$ as r runs over all rational primes.

The goal of this article is to characterize the maximum r-local index of a Schur algebra over an abelian number field K in terms of global information determined by K. The existence of this maximum is a consequence of the Benard-Schacher Theorem. Since $S(K)$ is a torsion abelian group, it is enough to compute the maximum of the r-local indices of Schur algebras over K with index a power of p for every prime p dividing the order of $W(K)$. We will refer to this number as $p^{\beta_{p}(r)}$. In [Jan], Janusz gave a formula for $p^{\beta_{p}(r)}$ when either p is odd or K contains a primitive 4 -th root of unity. The remaining cases were considered by Pendergrass in [Pen1]. However, some of the calculations involving factor sets in [Pen1] are not correct, and as a consequence the formulas for $2^{\beta_{2}(r)}$ for odd primes r that appear there are inaccurate. This article was motivated in part to find a correct formula for $p^{\beta_{p}(r)}$ in this remaining case, and also

[^0]because of the need to apply the formula in an upcoming work of the authors in [HOR], where the gap between the Schur subgroup of an abelian number field and its subgroup generated by classes containing cyclic cyclotomic algebras is studied. Since the local index at ∞ will be 2 when K is real and will be 1 otherwise, the only remaining case is that of $r=2$. In this case, p must be equal to 2 and we must have $\zeta_{4} \notin K$. The characterization of fields K for which $S\left(K_{2}\right)$ is of order 2 is given in [Pen1, Corollary 3.3].
The main result of the paper (Theorem 13) characterizes $p^{\beta_{p}(r)}$ in terms of the position of K relative to an overlying cyclotomic extension F that is determined by K and p. The formulas for $p^{\beta_{p}(r)}$ are stated in terms of elements of certain Galois groups in this setting. The main difference between our approach and that of Janusz and Pendergrass is that the field F that we use is slightly larger, which allows us to present some of the somewhat artificial-looking calculations in [Jan] in a more conceptual fashion. Another highlight of our approach is the treatment of calculations involving factor sets. In Section 2 we generalize a result from [AS] which describes the factor sets for a given action of an abelian group G on another abelian group W in terms of some data. In particular, we give necessary and sufficient conditions that the data must satisfy in order to be induced by a factor set. Because of the applications we have in mind, extra attention is paid to the case when W is a cyclic p-group.

2. Factor set calculations

In this section W and G are two abelian groups and $\Upsilon: G \rightarrow \operatorname{Aut}(W)$ is a group homomorphism. A group epimorphism $\pi: \bar{G} \rightarrow G$ with kernel W is said to induce Υ if, given $u_{g} \in \bar{G}$ such that $\pi\left(u_{g}\right)=g$, one has $u_{g} w u_{g}^{-1}=\Upsilon(g)(w)$ for each $w \in W$. If $g \mapsto u_{g}$ is a crossed section of π (i.e. $\pi\left(u_{g}\right)=g$ for each $g \in G$) then the map $\alpha: G \times G \rightarrow W$ defined by $u_{g} u_{h}=\alpha_{g, h} u_{g h}$ is a factor set (or 2 -cocycle) $\alpha \in Z^{2}(G, W)$. We always assume that the crossed sections are normalized, i.e. $u_{1}=1$ and hence $\alpha_{g, 1}=\alpha_{1, g}=1$. Since a different choice of crossed section for π would be a map $g \mapsto w_{g} u_{g}$ where $w: G \rightarrow W, \pi$ determines a unique cohomology class in $H^{2}(G, W)$, namely the one represented by α.

Given a list g_{1}, \ldots, g_{n} of generating elements of G, a group epimorphism $\pi: \bar{G} \rightarrow G$ inducing Υ, and a crossed section $g \mapsto u_{g}$ of π, we associate the elements $\beta_{i j}$ and γ_{i} of W, for $i, j \leq n$, by the equalities:

$$
\begin{align*}
u_{g_{j}} u_{g_{i}} & =\beta_{i j} u_{g_{i}} u_{g_{j}}, \text {, and } \\
u_{g_{i}}^{q_{i}} & =\gamma_{i} u_{g_{1}}^{t_{1}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}, \tag{1}
\end{align*}
$$

where the integers q_{i} and $t_{j}^{(i)}$ for $1 \leq i \leq n$ and $0 \leq j<i$ are determined by

$$
\begin{equation*}
q_{i}=\text { order of } g_{i} \text { modulo }\left\langle g_{1}, \ldots, g_{i-1}\right\rangle, \quad g_{i}^{q_{i}}=g_{1}^{t_{1}^{(i)}} \cdots g_{i-1}^{t_{i-1}^{(i)}}, \quad \text { and } \quad 0 \leq t_{j}^{(i)}<q_{j} . \tag{2}
\end{equation*}
$$

If α is the factor set associated to π and the crossed section $g \mapsto u_{g}$, then we say that α induces the data $\left(\beta_{i j}, \gamma_{i}\right)$. The following proposition gives necessary and sufficient conditions for a list $\left(\beta_{i j}, \gamma_{i}\right)$ of elements of W to be induced by a factor set.

The order of an element g of a group is denoted by $|g|$.

Proposition 1. Let W and $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be abelian groups and let $\Upsilon: G \rightarrow \operatorname{Aut}(W)$ be an action of G on W. For every $1 \leq i, j \leq n$, let q_{i} and $t_{j}^{(i)}$ be the integers determined by (2). For every $w \in W$ and $1 \leq i \leq n$, let

$$
\Upsilon_{i}=\Upsilon\left(g_{i}\right), \quad N_{i}^{t}(w)=w \Upsilon_{i}(w) \Upsilon_{i}^{2}(w) \cdots \Upsilon_{i}^{t-1}(w), \quad \text { and } \quad N_{i}=N_{i}^{q_{i}}
$$

For every $1 \leq i, j \leq n$, let $\beta_{i j}$ and γ_{i} be elements of W. Then the following conditions are equivalent:
(1) There is a factor set $\alpha \in Z^{2}(G, W)$ inducing the data $\left(\beta_{i j}, \gamma_{i}\right)$.
(2) The following equalities hold for every $1 \leq i, j, k \leq n$:
(C1) $\beta_{i i}=\beta_{i j} \beta_{j i}=1$.
$(\mathrm{C} 2) \beta_{i j} \beta_{j k} \beta_{k i}=\Upsilon_{k}\left(\beta_{i j}\right) \Upsilon_{i}\left(\beta_{j k}\right) \Upsilon_{j}\left(\beta_{k i}\right)$.
(C3) $N_{i}\left(\beta_{i j}\right) \gamma_{i}=\Upsilon_{j}\left(\gamma_{i}\right) N_{1}^{t_{1}^{(i)}}\left(\beta_{1 j}\right) \Upsilon_{1}^{t_{1}^{(i)}}\left(N_{2}^{t_{2}^{(i)}}\left(\beta_{2 j}\right)\right) \cdots \Upsilon_{1}^{t_{1}^{(i)}} \Upsilon_{2}^{t_{2}^{(i)}} \ldots \Upsilon_{i-2}^{t_{i-2}^{(i)}}\left(N_{i-1}^{t_{i-1}^{(i)}}\left(\beta_{(i-1) j}\right)\right)$.
Proof. (1) implies (2). Assume that there is a factor set $\alpha \in Z^{2}(G, W)$ inducing the data $\left(\beta_{i j}, \gamma_{i}\right)$. Then there is a surjective homomorphism $\pi: \bar{G} \rightarrow G$ and a crossed section $g \mapsto u_{g}$ of π such that the $\beta_{i j}$ and γ_{i} satisfy (1). Condition (C1) is clear. Conjugating by $u_{g_{k}}$ in $u_{g_{j}} u_{g_{i}}=\beta_{i j} u_{g_{i}} u_{g_{j}}$ yields

$$
\begin{gathered}
\beta_{j k} \Upsilon_{j}\left(\beta_{i k}\right) \beta_{i j} u_{g_{i}} u_{g_{j}}=\beta_{j k} \Upsilon_{j}\left(\beta_{i k}\right) u_{g_{j}} u_{g_{i}}=\beta_{j k} u_{g_{j}} \beta_{i k} u_{g_{i}}=u_{g_{k}} u_{g_{j}} u_{g_{i}} u_{g_{k}}^{-1}= \\
u_{g_{k}} \beta_{i j} u_{g_{i}} u_{g_{j}} u_{g_{k}}^{-1}=\Upsilon_{k}\left(\beta_{i j}\right) \beta_{i k} u_{g_{i}} \beta_{j k} u_{g_{j}}=\Upsilon_{k}\left(\beta_{i j}\right) \beta_{i k} \Upsilon_{i}\left(\beta_{j k}\right) u_{g_{i}} u_{g_{j}} .
\end{gathered}
$$

Therefore, we have $\beta_{j k} \Upsilon_{j}\left(\beta_{i k}\right) \beta_{i j}=\Upsilon_{k}\left(\beta_{i j}\right) \beta_{i k} \Upsilon_{i}\left(\beta_{j k}\right)$ and so (C2) follows from (C1).
To prove (C3), we use the obvious relation $\left(w u_{g_{i}}\right)^{t}=N_{i}^{t}(w) u_{g_{i}}^{t}$. Conjugating by $u_{g_{j}}$ in $u_{g_{i}}^{q_{i}}=\gamma_{i} u_{g_{1}}^{t_{1}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}$ results in

$$
\begin{aligned}
& N_{i}\left(\beta_{i j}\right) \gamma_{i} u_{g_{1}}^{t_{1}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}=N_{i}^{q_{i}}\left(\beta_{i j}\right) u_{g_{i}}^{q_{i}}=\left(\beta_{i j} u_{g_{i}}\right)^{q_{i}}=u_{g_{j}} u_{g_{i}}^{q_{i}} u_{g_{j}}^{-1}=u_{g_{j}} \gamma_{i} u_{g_{1}}^{t_{i}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}} u_{g_{j}}^{-1}= \\
& \Upsilon_{j}\left(\gamma_{i}\right)\left(\beta_{1 j} u_{g_{1}}^{t_{1}^{(i)}} \cdots\left(\beta_{(i-1) j} u_{g_{i-1}}\right)^{t_{i-1}^{(i)}}=\Upsilon_{j}\left(\gamma_{i}\right) N_{1}^{t_{1}^{(i)}}\left(\beta_{1 j}\right) u_{g_{1}^{(i)}}^{t_{1}^{(i)}} \cdots N_{i-1}^{t_{i-1}^{(i)}}\left(\beta_{(i-1) j}\right) u_{g_{i-1}^{t_{i-1}^{(i)}}=}^{=}\right. \\
& \Upsilon_{j}\left(\gamma_{i}\right) N_{1}^{t_{1}^{(i)}}\left(\beta_{1 j}\right) \Upsilon_{1}^{t_{1}^{(i)}}\left(N_{2}^{t_{2}^{(i)}}\left(\beta_{2 j}\right)\right) \cdots \Upsilon_{1}^{t_{1}^{(i)}} \Upsilon_{2}^{t_{2}^{(i)}} \cdots \Upsilon_{i-2}^{t_{i-2}^{(i)}}\left(N_{i-1}^{t_{i-1}^{(i)}}\left(\beta_{(i-1) j}\right)\right) u_{g_{1}^{\prime}}^{t_{i}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}} .
\end{aligned}
$$

Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).
Before proving (2) implies (1), we show that if $\pi: \bar{G} \rightarrow G$ is a group homomorphism with kernel W inducing $\Upsilon, g \mapsto u_{g}$ is a crossed section of π and $\beta_{i j}$ and γ_{i} are given by (1), then \bar{G} is isomorphic to the group \widehat{G} given by the following presentation: the set of generators of \widehat{G} is $\left\{\widehat{w}, \widehat{g}_{i}: w \in W, i=1, \ldots, n\right\}$, and the relations are

$$
\begin{equation*}
\widehat{w_{1} w_{2}}=\widehat{w_{1}} \widehat{w_{2}}, \quad \Upsilon_{i}(w)=\widehat{g}_{i} \widehat{w} \widehat{g}_{i}^{-1}, \quad \widehat{g}_{j} \widehat{g}_{i}=\widehat{\beta}_{i j} \widehat{g}_{i} \widehat{g}_{j} \quad \text { and } \quad \widehat{g}_{i}^{q_{i}}=\widehat{\gamma}_{i} \stackrel{t}{1}_{1}^{t_{1}^{(i)}} \cdots \widehat{g}_{i-1}^{t_{i-1}^{(i)}} \tag{3}
\end{equation*}
$$

for each $1 \leq i, j \leq n$ and $w, w_{1}, w_{2} \in W$. Since the relations obtained by replacing \widehat{w} by w and \widehat{g}_{i} by $u_{g_{i}}$ in equation (3) for each $x \in W$ and each $1 \leq i \leq n$, hold in \bar{G}, there is a surjective group homomorphism $\phi: \widehat{G} \rightarrow \bar{G}$, which associates \widehat{w} with w, for every $w \in W$, and \widehat{g}_{i} with $u_{g_{i}}$, for every $i=1, \ldots, n$. Moreover, ϕ restricts to an isomorphism $\widehat{W} \rightarrow W$ and $\left|\widehat{g}_{i}\left\langle\widehat{W}, \widehat{g}_{1}, \ldots, \widehat{g}_{i-1}\right\rangle\right|=q_{i}$. Hence $\left[\widehat{G}: \widehat{W} \mid=q_{1} \cdots q_{n}=[\bar{G}: W]\right.$ and so $|\widehat{G}|=|\bar{G}|$. We conclude that ϕ is an isomorphism.
(2) implies (1). Assume that the $\beta_{i j}$'s and γ_{i} 's satisfy conditions (C1), (C2) and (C3). We will recursively construct groups $\bar{G}_{0}, \bar{G}_{1}, \ldots, \bar{G}_{n}$. Start with $\bar{G}_{0}=W$. Assume that $\bar{G}_{k-1}=$ $\left\langle W, u_{g_{1}}, \ldots, u_{g_{k-1}}\right\rangle$ has been constructed with $u_{g_{1}}, \ldots, u_{g_{k-1}}$ satisfying the last three relations of (3), for $1 \leq i, j<k$, and that these relations, together with the relations in W, form a complete list of relations for \bar{G}_{k-1}. To define \bar{G}_{k} we first construct a semidirect product $H_{k}=\bar{G}_{k-1} \rtimes_{c_{k}}\left\langle x_{k}\right\rangle$, where c_{k} acts on \bar{G}_{k-1} by

$$
c_{k}(w)=\Upsilon_{k}(w), \quad(w \in W), \quad c_{k}\left(u_{g_{i}}\right)=\beta_{i k} u_{g_{i}} .
$$

In order to check that this defines an automorphism of \bar{G}_{k-1} we need to check that c_{k} respects the defining relations of \bar{G}_{k-1}. This follows from the commutativity of G and conditions (C1), (C2) and (C3) by straightforward calculations which we leave to the reader.

Notice that the defining relations of H_{k} are the defining relations of \bar{G}_{k-1} and the relations $x_{k} w=\Upsilon_{k}(w) x_{k}$ and $x_{k} u_{g_{i}}=\beta_{i k} u_{g_{i}} x_{k}$. Using (C3) one deduces $u_{g_{i}} x_{k}^{q_{k}} u_{g_{i}}^{-1}=u_{g_{i}} \gamma_{k} u_{g_{1}}^{t_{1}^{(k)}} \cdots u_{g_{k-1}}^{t_{k-1}^{(k)}} u_{g_{i}}^{-1}$, for each $i \leq k-1$. This shows that $y_{k}=x_{k}^{-q_{k}} \gamma_{k} u_{g_{1}}^{t_{1}^{(k)}} \cdots u_{g_{k-1}}^{t_{k-1}^{(k)}}$ belongs to the center of H_{k}. Let $\bar{G}_{k}=H_{k} /\left\langle y_{k}\right\rangle$ and $u_{g_{k}}=x_{k}\left\langle y_{k}\right\rangle$. Now it is easy to see that the defining relations of G_{k} are the relations of W and the last three relations in (3), for $0 \leq i, j \leq k$.

It is clear now that the assignment $w \mapsto 1$ and $u_{g_{i}} \mapsto g_{i}$ for each $i=1, \ldots, n$ defines a group homomorphism $\pi: \bar{G}=\bar{G}_{n} \rightarrow G$ with kernel W and inducing Υ. If α is the factor set associated to π and the crossed section $g \mapsto u_{g}$, then $\left(\beta_{i j}, \gamma_{i}\right)$ is the list of data induced by α.

Note that the group generated by the values of the factor set α coincides with the group generated by the data $\left(\beta_{i j}, \gamma_{i}\right)$. This observation will be used in the next section.

In the case $G=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{n}\right\rangle$ we obtain the following corollary that one should compare with Theorem 1.3 of [AS].

Corollary 2. If $G=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{n}\right\rangle$ then a list $D=\left(\beta_{i j}, \gamma_{i}\right)_{1 \leq i, j \leq n}$ of elements of W is the list of data associated to a factor set in $Z^{2}(G, W)$ if and only if the elements of D satisfy (C1), (C2) and $N_{i}\left(\beta_{i j}\right) \gamma_{i}=\Upsilon_{j}\left(\gamma_{i}\right)$, for every $1 \leq i, j \leq n$.

In the remainder of this section we assume that $W=\langle\zeta\rangle$ is a cyclic p-group, for p a prime integer. Let p^{a} and p^{a+b} denote the orders of $W^{G}=\{x \in W: \Upsilon(g)(x)=x$ for each $g \in G\}$ and W respectively. We assume that $0<a, b$. We also set

$$
C=\operatorname{Ker}(\Upsilon) \quad \text { and } \quad D=\left\{g \in G: \Upsilon(g)(\zeta)=\zeta \text { or } \Upsilon(g)(\zeta)=\zeta^{-1}\right\} .
$$

Note that D is subgroup of G containing $C, G / D$ is cyclic, and $[D: C] \leq 2$. Furthermore, the assumption $a>0$ implies that if $C \neq D$ then $p^{a}=2$.

Lemma 3. There exists a $\rho \in D$ and a subgroup B of C such that $D=\langle\rho\rangle \times B$ and $C=\left\langle\rho^{2}\right\rangle \times B$.
Proof. The lemma is obvious if $C=D$ (just take $\rho=1$). So assume that $C \neq D$ and temporarily take ρ to be any element of $D \backslash C$. Since $[D: C]=2$, one may assume without loss of generality that $|\rho|$ is a power of 2 . Write $C=C_{2} \times C_{2^{\prime}}$, where C_{2} and $C_{2^{\prime}}$ denote the 2-primary and 2^{\prime}-primary parts of C, and choose a decomposition $C_{2}=\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle$ of C_{2}. By reordering
the c_{i} 's if needed, one may assume that $\rho^{2}=c_{1}^{a_{1}} \ldots c_{k}^{a_{k}} c_{k+1}^{2 c_{k+1}} \ldots c_{n}^{2 a_{n}}$ with a_{1}, \ldots, a_{k} odd. Then replacing ρ by $\rho c_{k+1}^{-a_{k+1}} \ldots c_{n}^{-a_{n}}$ one may assume that $\rho^{2}=c_{1}^{a_{1}} \ldots c_{k}^{a_{k}}$, with a_{1}, \ldots, a_{k} odd. Let $H=\left\langle\rho, c_{1}, \ldots, c_{k}\right\rangle$. Then $|\rho| / 2=\left|\rho^{2}\right|=\exp (H \cap C)$, the exponent of $H \cap C$, and so ρ is an element of maximal order in H. This implies that $H=\langle\rho\rangle \times H_{1}$ for some $H_{1} \leq H$. Moreover, if $h \in H_{1} \backslash C$ then $1 \neq \rho^{|\rho| / 2}=h^{|\rho| / 2} \in\langle\rho\rangle \cap H_{1}$, a contradiction. This shows that $H_{1} \subseteq C$. Thus $C_{2}=\left(H \cap C_{2}\right) \times\left\langle c_{k+1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle=\left\langle\rho^{2}\right\rangle \times H_{1} \times\left\langle c_{k+1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle$. Then ρ and $B=H_{1} \times\left\langle c_{k+1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle \times C_{2^{\prime}}$ satisfy the required conditions.

By Lemma 3, there is a decomposition $D=B \times\langle\rho\rangle$ with $C=B \times\left\langle\rho^{2}\right\rangle$, which will be fixed for the remainder of this section. Moreover, if $C=D$ then we assume $\rho=1$. Since G / D is cyclic, $G / C=\langle\rho C\rangle \times\langle\sigma C\rangle$ for some $\sigma \in G$. It is easy to see that σ can be selected so that if $D=G$ then $\sigma=1$, and $\sigma(\zeta)=\zeta^{c}$ for some integer c satisfying
(4) $v_{p}\left(c^{q_{\sigma}}-1\right)=a+b$, and $v_{p}(c-1)=\left\{\begin{array}{cl}a & \text { if } G / C \text { is cyclic and } G \neq D, \\ a+b & \text { if } G / C \text { is cyclic and } G=D, \text { and } \\ d \geq 2 & \text { for some integer } d, \text { if } G / C \text { is not cyclic },\end{array}\right.$
where $q_{\sigma}=|\sigma C|$ and the map $v_{p}: \mathbb{Q} \rightarrow \mathbb{Z}$ is the classical p-adic valuation. In particular, if G / C is non-cyclic (equivalently $C \neq D \neq G$) then $p^{a}=2, b \geq 2, \rho(\zeta)=\zeta^{-1}$ and $\sigma\left(\zeta^{2^{b-1}}\right)=\zeta^{2^{b-1}}$.

For every positive integer t we set

$$
V(t)=1+c+c^{2}+\cdots+c^{t-1}=\frac{c^{t}-1}{c-1}
$$

Now we choose a decomposition $B=\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle$ and adapt the notation of Proposition 1 for a group epimorphism $f: \bar{G} \rightarrow G$ with kernel W inducing Υ and elements $u_{c_{1}}, \ldots, u_{c_{n}}, u_{\sigma}, u_{\rho} \in$ \bar{G} with $f\left(u_{c_{i}}\right)=c_{i}, f\left(u_{\rho}\right)=\rho$ and $f\left(u_{\sigma}\right)=\sigma$, by setting

$$
\beta_{i j}=\left[u_{c_{j}}, u_{c_{i}}\right], \quad \beta_{i \rho}=\beta_{\rho i}^{-1}=\left[u_{\rho}, u_{c_{i}}\right], \quad \beta_{i \sigma}=\beta_{\sigma i}^{-1}=\left[u_{\sigma}, u_{c_{i}}\right], \text { and } \beta_{\sigma \rho}=\beta_{\rho \sigma}^{-1}=\left[\beta_{\rho}, \beta_{\sigma}\right]
$$

We also set

$$
\begin{gather*}
q_{i}=\left|c_{i}\right|, \quad q_{\rho}=|\rho|, \quad \text { and } \quad \sigma^{q_{\sigma}}=c_{1}^{t_{1}} \ldots c_{n}^{t_{n}} \rho^{2 t_{\rho}} \\
\text { where } 0 \leq t_{i}<q_{i} \text { and } 0 \leq t_{\rho}<\left|\rho^{2}\right| \tag{5}
\end{gather*}
$$

With a slightly different notation than in Proposition 1, we have, for each $1 \leq i \leq n, t_{j}^{(i)}=0$ for each $0 \leq j<i, t_{i}^{(\rho)}=0, t_{i}^{(\sigma)}=t_{i}$, and $t_{\rho}^{(\sigma)}=2 t_{\rho}$. Furthermore, $q_{\rho}=1$ if $C=D$ and q_{ρ} is even if $C \neq D$. Continuing with the adaptation of the notation of Proposition 1 we set

$$
\gamma_{i}=u_{c_{i}}^{q_{i}}, \quad \gamma_{\rho}=u_{\rho}^{q_{\rho}}, \text { and } \gamma_{\sigma}=u_{\sigma}^{q_{\sigma}} u_{c_{1}}^{-t_{1}} \ldots u_{c_{n}}^{-t_{n}} u_{\rho}^{2 t_{\rho}}
$$

We refer to the list $\left\{\beta_{i j}, \beta_{i \sigma}, \beta_{i \rho}, \beta_{\sigma \rho}, \gamma_{i}, \gamma_{\rho}, \gamma_{\sigma}: 0 \leq i<j \leq n\right\}$, which we abbreviate as (β, γ), as the data associated to the group epimorphism $f: \bar{G} \rightarrow G$ and choice of crossed section $u_{c_{1}}, \ldots, u_{c_{n}}, u_{\sigma}, u_{\rho}$, or as the data induced by the corresponding factor set in $Z^{2}(G, W)$.

Furthermore, for every $w \in W, 1 \leq i \leq n$ and $t \geq 0$ one has

$$
N_{i}^{t}(w)=w^{t}, \quad N_{\sigma}^{t}(w)=w^{V(t)} \quad \text { and } \quad N_{\rho}^{t}(w)= \begin{cases}w^{t}, & \text { if } \rho=1 \\ 1, & \text { if } \rho \neq 1 \text { and } t \text { is even } \\ w, & \text { if } \rho \neq 1 \text { and } t \text { is odd }\end{cases}
$$

In particular, for every $w \in W$ one has

$$
N_{i}(w)=w^{q_{i}}, \quad N_{\sigma}(w)=w^{V\left(q_{\sigma}\right)}, \quad \text { and } \quad N_{\rho}(w)=1
$$

Rewriting Proposition 1 for this case we obtain the following.
Corollary 4. Let W be a finite cyclic p-group and let G be an abelian group acting on W with $G=\left\langle c_{1}, \ldots, c_{n}, \sigma, \rho\right\rangle, B=\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle, D=B \times\langle\rho\rangle$ and $C=B \times\left\langle\rho^{2}\right\rangle$ as above. Let $q_{i}, q_{\rho}, q_{\sigma}$ and the t_{i} 's be given by (5). Let $\beta_{\sigma \rho}, \gamma_{\rho}, \gamma_{\sigma} \in W$ and for every $1 \leq i, j \leq n$ let $\beta_{i j}, \beta_{i \sigma}, \beta_{i \rho}$ and γ_{i} be elements of W. Then the following conditions are equivalent:
(1) The given collection $(\beta, \gamma)=\left\{\beta_{i j}, \gamma_{i}, \beta_{i \sigma}, \gamma_{\sigma}, \gamma_{\rho}, \beta_{\sigma \rho}\right\}$ is the list of data induced by some factor set in $Z^{2}(G, W)$.
(2) The following equalities hold for every $1 \leq i, j \leq n$:
(C1) $\beta_{i i}=\beta_{i j} \beta_{j i}=1$.
(C2) (a) $\beta_{i j} \in W^{G}$.
(b) If $\rho \neq 1$ then $\beta_{i \sigma}^{2}=\beta_{i \rho}^{1-c}$.
(C3) (a) $\beta_{i j}^{q_{i}}=1$.
(b) $\beta_{i \sigma}^{q_{i}}=\gamma_{i}^{c-1}$.
(c) $\beta_{i \sigma}^{-V\left(q_{\sigma}\right)}=\beta_{1 i}^{t_{1}} \ldots \beta_{n i}^{t_{n}}$.
(d) $\gamma_{\sigma}^{c-1} \beta_{1 \sigma}^{t_{1}} \ldots \beta_{n \sigma}^{t_{n}}=1$.
(e) If $\rho=1$ then $\beta_{i \rho}=\beta_{\sigma \rho}=\gamma_{\rho}=1$.
(f) If $\rho \neq 1$ then $\beta_{i \rho}^{q_{i}} \gamma_{i}^{2}=1, \beta_{\sigma \rho}^{V\left(q_{\sigma}\right)} \gamma_{\sigma}^{2}=\beta_{1 \rho}^{t_{1}} \ldots \beta_{n \rho}^{t_{n}}$ and $\gamma_{\rho} \in W^{G}$.

Proof. By completing the data with $\beta_{\sigma i}=\beta_{i \sigma}^{-1}, \beta_{\rho i}=\beta_{i \rho}^{-1}$ and $\beta_{\sigma \sigma}=\beta_{\rho \rho}=1$ we have that (C 1) is a rewriting of condition (C1) from Proposition 1.
$(\mathrm{C} 2)$ is the rewriting of condition (C 2) from Proposition 1 because this condition vanishes when $1 \leq i, j, k \leq n$ and when two of the elements i, j, k are equal. Furthermore, permuting i, j, k in (C2) yields equivalent conditions. So we only have to consider three cases: substituting $i=i, j=j$, and $k=\sigma ; i=i, j=j$, and $k=\rho$; and $i=i, j=\rho$, and $k=\sigma$. In the first two cases one obtains $\sigma\left(\beta_{i j}\right)=\rho\left(\beta_{i j}\right)=\beta_{i j}$, or equivalently $\beta_{i j} \in W^{G}$. For $\rho=1$ the last case vanishes, and for $\rho \neq 1(\mathrm{C} 2)$ yields $\beta_{i \sigma}^{2}=\beta_{i \rho}^{1-c}$.

Rewriting (C3) from Proposition 1 we obtain: (a) for $i=i, j=j$; (b) for $i=i$ and $j=\sigma$; (c) for $i=\sigma$ and $j=i$; and (d) for $i=\sigma$ and $j=\sigma$.

We consider separately the cases $\rho=1$ and $\rho \neq 1$ for the remaining cases for rewriting (C3). Assume first that $\rho=1$. When i is replaced by ρ and j replaced by i (respectively, by σ) we obtain $\beta_{i \rho}=1$ (respectively $\beta_{\sigma \rho}=1$). On the other hand the requirement of only using normalized crossed sections implies $\gamma_{\rho}=1$ in this case. When $j=\rho$ the conditions obtained are trivial.

Now assume that $\rho \neq 1$. For $i=i$ and $j=\rho$ one obtains $\beta_{i \rho}^{q_{i}} \gamma_{i}^{2}=1$. For $i=\rho$ and $j=i$ one obtains a trivial condition because $N_{\rho}(x)=1$. For $i=\sigma$ and $j=\rho$, we obtain $\beta_{\sigma \rho}^{V\left(q_{\sigma}\right)} \gamma_{\sigma}^{2}=\beta_{1 \rho}^{t_{1}} \ldots \beta_{n \rho}^{t_{n}}$. For $i=\rho$ and $j=\sigma$ one has $\sigma\left(\gamma_{\rho}\right)=\gamma_{\rho}$, and for $i=\rho$ and $j=\rho$ one obtains $\rho\left(\gamma_{\rho}\right)=\gamma_{\rho}$. The last two equalities are equivalent to $\gamma_{\rho} \in W^{G}$.

Corollary 5. With the notation of Corollary 4, assume that G / C is non-cyclic and q_{k} and t_{k} are even for some $k \leq n$. Let (β, γ) be the list of data induced by a factor set in $Z^{2}(G, W)$. Then the list obtained by replacing $\beta_{k \sigma}$ by $-\beta_{k \sigma}$ and keeping the remaining data fixed is also induced by a factor set in $Z^{2}(G, W)$.

Proof. It is enough to show that $\beta_{k \sigma}$ appears in all the conditions of Corollary 4 with an even exponent. Indeed, it only appears in (C2.b) with exponent 2; in (C3.b) with exponent q_{k}; in (C3.c) with exponent $-V\left(q_{\sigma}\right)$; and in (C3.d) and (C3.f) with exponent t_{k}. By the assumption it only remains to show that $V\left(q_{\sigma}\right)$ is even. Indeed, $v_{2}\left(V\left(q_{\sigma}\right)\right)=v_{2}\left(c^{q_{\sigma}}-1\right)-v_{2}(c-1)=$ $1+b-v_{2}(c-1) \geq 1$ because $c \not \equiv 1 \bmod 2^{1+b}$.

The data (β, γ) induced by a factor set are not cohomologically invariant because they depend on the selection of π and of the $u_{c_{i}}$'s, u_{σ} and u_{ρ}. However, at least the $\beta_{i j}$ are cohomologically invariant. For every $\alpha \in H^{2}(G, W)$ we associate a matrix $\beta_{\alpha}=\left(\beta_{i j}\right)_{1 \leq i, j \leq n}$ of elements of W^{G} as follows: First select a group epimorphism $\pi: \bar{G} \rightarrow G$ realizing α and $u_{c_{1}}, \ldots, u_{c_{n}} \in \bar{G}$ such that $\pi\left(u_{c_{i}}\right)=c_{i}$, and then set $\beta_{i j}=\left[u_{c_{j}}, u_{c_{i}}\right]$. The definition of β_{α} does not depend on the choice of π and the $u_{c_{i}}$'s because if $w_{1}, w_{2} \in W$ and $u_{1}, u_{2} \in \bar{G}$ then $\left[w_{1} u_{1}, w_{2} u_{2}\right]=\left[u_{1}, u_{2}\right]$.

Proposition 6. Let $\beta=\left(\beta_{i j}\right)_{1 \leq i, j \leq n}$ be a matrix of elements of W^{G} and for every $1 \leq i, j \leq n$ let $a_{i i}=0$ and $a_{i j}=\min \left(a, v_{p}\left(q_{i}\right), v_{p}\left(q_{j}\right)\right)$, if $i \neq j$.

Then there is an $\alpha \in H^{2}(G, W)$ such that $\beta=\beta_{\alpha}$ if and only if the following conditions hold for every $1 \leq i, j \leq n$:

$$
\begin{equation*}
\beta_{i j} \beta_{j i}=\beta_{i j}^{p^{a_{i j}}}=1 \tag{6}
\end{equation*}
$$

Proof. Assume first that $\beta=\beta_{\alpha}$ for some $\alpha \in Z^{2}(G, W)$. Then (6) is a consequence of conditions (C1), (C2.a) and (C3.a) of Corollary 4.

Conversely, assume that β satisfies (6). The idea of the proof is that one can enlarge β to a list of data (β, γ) that satisfies conditions $(\mathrm{C} 1)-(\mathrm{C} 3)$ of Corollary 4. Hence the desired conclusion follows from the corollary.

Condition (C1) follows automatically from (6). If $i, j \leq n$ then $\beta_{i j} \in W^{G}$ follows from the fact that $a \geq a_{i j}$ and so (6) implies that $\beta_{i j}^{p^{a}}=1$. Hence (C2.a) holds. Also (C3.a) holds automatically from (6) because $p^{a_{i j}}$ divides q_{i}. Hence, we have to select the $\beta_{i \sigma}{ }^{\prime}$, $\beta_{i \rho}$'s, γ_{i} 's, $\beta_{\sigma \rho}, \gamma_{\sigma}$, and γ_{ρ} for (C2.b) and (C3.b)-(C3.f) to hold.

Assume first that $D=G$. In this case we just take $\beta_{i \sigma}=\beta_{i \rho}=\beta_{\sigma \rho}=\gamma_{i}=\gamma_{\sigma}=\gamma_{\rho}=1$ for every i. Then (C2.b), (C3.b), (C3.d) and (C3.f) hold trivially by our selection. Moreover, in this case $\sigma=1$ and so $t_{i}=0$ for each $i=1, \ldots, n$, hence (C3.c) also holds.

In the remainder of the proof we assume that $D \neq G$. First we show how one can assign values to $\beta_{\sigma i}$ and γ_{i}, for $i \leq n$ for (C3.b)-(C3.d) to hold. Let $d=v_{p}(c-1)$ and $e=v_{p}\left(V\left(q_{\sigma}\right)\right)=a+b-d$. (see (4)). Note that $d=a$ if $C=D$ and $a=1 \leq 2 \leq d \leq b$ if $C \neq D$ (because we are assuming that $D \neq G)$. Let X_{1}, X_{2}, Y_{1} and Y_{2} be integers such that $c-1=p^{d} X_{1}, V\left(q_{\sigma}\right)=p^{e} X_{2}$, and $X_{1} Y_{1} \equiv X_{2} Y_{2} \equiv 1 \bmod p^{a+b}$. By $(6), \beta_{i j}^{p_{i j}}=1$ and so $\beta_{i j} \in W^{p^{a+b-a_{i j}}}$. Therefore there are integers $b_{i j}$, for $1 \leq i, j \leq n$ such that $b_{i i}=b_{i j}+b_{i j}=0$ and $\beta_{i j}=\zeta^{b_{i j} p^{a+b-a_{i j}} \text {. For every } i \leq n}$
set

$$
x_{i}=Y_{2} \sum_{j=1}^{n} t_{j} b_{j i} p^{a-a_{j i}}, \quad \beta_{\sigma i}=\zeta^{x_{i} p^{d-a}} \quad y_{i}=Y_{1} Y_{2} \sum_{j=1}^{n} t_{j} b_{j i} \frac{q_{i}}{p^{a_{i j}}}, \quad \text { and } \quad \gamma_{i}=\zeta^{y_{i}} .
$$

Then $V\left(q_{\sigma}\right) p^{d-a} x_{i}=p^{e} X_{2} Y_{2} \sum_{j=1}^{n} t_{j} b_{j i} p^{d-a_{j i}} \equiv \sum_{j=1}^{n} t_{j} b_{j i} p^{a+b-a_{j i}} \bmod p^{a+b}$ and therefore

$$
\beta_{\sigma i}^{V\left(q_{\sigma}\right)}=\zeta^{\sum_{j=1}^{n} t_{j} b_{j i} p^{a+b-a_{j i}}}=\prod_{i=1}^{n} \beta_{j i}^{t_{j}}
$$

that is (C3.c) holds. Moreover $q_{i} p^{d-a} x_{i}=p^{d} Y_{2} \sum_{j=1}^{n} t_{j} b_{j i} \frac{q_{i}}{p^{a_{i j}}} \equiv p^{d} X_{1} y_{i}=(c-1) y_{i}$ and therefore $\beta_{i \sigma}^{q_{i}}=\gamma_{i}^{c-1}$, that is (C3.b) holds.

We now compute
(7) $\sum_{i=1}^{n} t_{i} x_{i}=Y_{2} \sum_{1 \leq i, j \leq n} t_{i} t_{j} b_{i j} p^{a-a_{i j}}=Y_{2} \sum_{i=1}^{n+1} t_{i}^{2} b_{i i} p^{a-a_{i i}}+Y_{2} \sum_{1 \leq i<j \leq n} t_{i} t_{j}\left(b_{i j}+b_{j i}\right) p^{a-a_{i j}}=0$.

Then setting $\gamma_{\sigma}=1$, one has

$$
\gamma_{\sigma}^{c-1} \prod_{i=1}^{n} \beta_{i \sigma}^{t_{i}}=\prod_{i=1}^{n} \zeta^{-t_{i} x_{i} p^{d-a}}=\zeta^{-p^{d-a}} \sum_{i=1}^{n} t_{i} x_{i}=1
$$

and (C3.d) holds. This finishes the assignments of $\beta_{i \sigma}$ and γ_{i} for $i \leq n$ and of γ_{σ}.
If $C=D$ then a quick end is obtained assigning $\beta_{i \rho}=\beta_{\sigma \rho}=\gamma_{\rho}=1$.
So it only remains to assign values to $\beta_{i \rho}, \beta_{\sigma \rho}$ and γ_{ρ} under the assumption that $C \neq D$. Set $\beta_{i \rho}=\zeta^{-Y_{1} x_{i}}$. In this case $p^{a}=2$ and therefore $2 p^{d-a} x_{i}=p^{d} x_{i} \equiv(c-1) Y_{1} x_{i}$ and $q_{i} Y_{1} x_{i}=2 y_{i}$. Thus $\beta_{i \sigma}^{2} \beta_{i \rho}^{c-1}=\zeta^{2 p^{d-a} x_{i}} \zeta^{(1-c) Y_{1} x_{i}}=1$, hence (C2.b) holds, and $\beta_{i \rho}^{q_{i}} \gamma_{i}^{2}=\zeta^{-q_{i} Y_{1} x_{i}+2 y_{i}}=1$, hence the first relation of (C3.f) follows.

Finally, using (7) one has

$$
\beta_{1 \rho}^{t_{1}} \ldots \beta_{n \rho}^{t_{n}}=\left(\beta_{1 \sigma}^{t_{1}} \ldots \beta_{n \sigma}^{t_{n}}\right)^{-Y_{1}}=1=\gamma_{\sigma}^{2}
$$

and the last two relations of (C3.f) hold when $\beta_{\sigma \rho}=\gamma_{\rho}=1$.
Let $\beta=\left(\beta_{i j}\right)$ be an $n \times n$ matrix of elements of W^{G} satisfying (6). Then the map $\Psi: B \times B \rightarrow$ W^{G} given by

$$
\Psi\left(\left(c_{1}^{x_{1}} \ldots c_{n}^{x_{n}}, c_{1}^{y_{1}} \ldots c_{n}^{y_{n}}\right)\right)=\prod_{1 \leq i, j \leq n} \beta_{i j}^{x_{i} y_{j}}
$$

is a skew pairing of B over W^{G} in the sense of [Jan]; that is, it satisfies the following conditions for every $x, y, z \in B$:

$$
\text { (} \Psi 1) \quad \Psi(x, x)=\Psi(x, y) \Psi(y, x)=1, \quad(\Psi 2) \quad \Psi(x, y z)=\Psi(x, y) \Psi(x, z) .
$$

Conversely, every skew pairing of B over W^{G} is given by a matrix $\beta=\left(\beta_{i j}=\Psi\left(c_{i}, c_{j}\right)\right)_{1 \leq i, j \leq n}$ satisfying (6). In particular, every class in $H^{2}(G, W)$ induces a skew pairing $\Psi=\Psi_{\alpha}$ of B over W^{G} given by $\Psi(x, y)=\alpha_{x, y} \alpha_{y, x}^{-1}$, for all $x, y \in B$, for any cocycle α representing the given cohomology class.

In terms of skew pairings, Proposition 6 takes the following form.

Corollary 7. If Ψ is a skew pairing of B over W^{G} then there is an $\alpha \in H^{2}(G, W)$ such that $\Psi=\Psi_{\alpha}$.

Corollary 7 was obtained in [Jan, Proposition 2.5] for $p^{a} \neq 2$. The remaining cases were considered in [Pen1, Corollary 1.3], where it is stated that for every skew pairing Ψ of C over W^{G} there is a factor set $\alpha \in Z^{2}(G, W)$ such that $\Psi(x, y)=\alpha_{x, y} \alpha_{y, x}^{-1}$, for all $x, y \in C$. However, this is false if $\rho^{2} \neq 1$ and B has nontrivial elements of order 2 . Indeed, if Ψ is the skew pairing of B over W^{G} given by the factor set α then $\Psi\left(x, \rho^{2}\right)=1$ for each $x \in C$. To see this we introduce a new set of generators of G, namely $G=\left\langle c_{1}, \ldots, c_{n}, c_{n+1}, \rho, \sigma\right\rangle$ with $c_{n+1}=\rho^{2}$. Then condition (C3) of Proposition 1, for $i=\rho$ and $j=i$ reads $\beta_{(n+1) i}=1$ which is equivalent to $\Psi\left(c_{i}, \rho^{2}\right)=1$ for all $1 \leq i \leq n$. Using this it is easy to give a counterexample to [Pen1, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in next section. The first is elementary and so the proof has been omitted.

Lemma 8. Let S be the set of skew pairings of B with values in W^{G}. If $B=B^{\prime} \times B^{\prime \prime}$ and $b_{1}, b_{2} \in B^{\prime}$ and $b_{3} \in B^{\prime \prime}$ then

$$
\max \left\{\Psi\left(b_{1} \cdot b_{3}, b_{2}\right): \Psi \in S\right\}=\max \left\{\Psi\left(b_{1}, b_{2}\right): \Psi \in S\right\} \cdot \max \left\{\Psi\left(b_{3}, b_{2}\right): \Psi \in S\right\}
$$

Lemma 9. Let $\widehat{B}=B \times\langle g\rangle$ be an abelian group and let $h \in B$. If $k=\operatorname{gcd}\left\{p^{a},|g|\right\}$ and $t=\left|h B^{k}\right|$ then t is the maximum possible value of $\Psi(h, g)$ as Ψ runs over all skew pairings of \widehat{B} over $\left\langle\zeta_{p^{a}}\right\rangle$.

Proof. Since k divides p^{a}, the hypothesis $t=\left|h B^{k}\right|$ implies that there is a group homomorphism $\chi: B \rightarrow\left\langle\zeta_{p^{a}}\right\rangle$ such that $\chi\left(B^{k}\right)=1$ and $\chi(h)$ has order t. Let $\Psi: \widehat{B} \times \widehat{B} \rightarrow\left\langle\zeta_{p^{a}}\right\rangle$ be given by $\Psi\left(x g^{i}, y g^{j}\right)=\chi\left(x^{j} y^{-i}\right)=\chi(x)^{i} \chi(y)^{-j}$, for $x, y \in B$. If $g^{i}=g^{i^{\prime}}$, then $i \equiv i^{\prime} \bmod |g|$ and hence $i \equiv i^{\prime} \bmod k$. Therefore, $x^{i} B^{k}=x^{i^{\prime}} B^{k}$, which implies that $\chi(x)^{i}=\chi(x)^{i^{\prime}}$. This shows that Ψ is well defined. Now it is easy to see that Ψ is a skew pairing and $\Psi(h, g)=\chi(h)$ has order t.

Conversely, if Ψ is any skew pairing of \widehat{B} over $\left\langle\zeta_{p^{a}}\right\rangle$, then $\Psi(x, g)^{p^{a}}=1$ and $\Psi(x, g)^{|x|}=$ $\Psi(1, g)=1$ for all $x \in B$. This implies that $\Psi\left(x^{k}, g\right)=\Psi(x, g)^{k}=1$ for all $x \in B$, and so $\Psi\left(B^{k}, g\right)=1$. Therefore $\Psi(h, g)^{t}=\Psi\left(h^{t}, g\right) \in \Psi\left(B^{k}, g\right)=1$, so the order of $\Psi(h, g)$ divides t.

3. Local index computations

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our goal is to find a global formula for $\beta(r)=\beta_{p}(r)$, the maximum nonnegative integer for which $p^{\beta(r)}$ is the r-local index of a Schur algebra over K.

We are going to abuse the notation and denote by K_{r} the completion of K at a (any) prime of K dividing r. If E / K is a finite Galois extension, one may assume that the prime of E dividing r, used to compute E_{r}, divides the prime of K over r, used to compute K_{r}. We use the classical notation:

$$
\begin{aligned}
e(E / K, r) & =e\left(E_{r} / K_{r}\right)=\text { ramification index of } E_{r} / K_{r} \\
f(E / K, r) & =f\left(E_{r} / K_{r}\right)=\text { residue degree of } E_{r} / K_{r} \\
m_{r}(A) & =\text { Index of } K_{r} \otimes_{K} A, \text { for a Schur algebra } A \text { over } K .
\end{aligned}
$$

By Benard-Schacher Theory and because E / K is a finite Galois extension, $e(E / K, r), f(E / K, r)$ and $m_{r}(A)$ do not depend on the selection of the prime of K dividing r (see [Ser] and [BS]). By the Benard-Schacher Theorem and because $\left|S\left(K_{r}\right)\right|$ divides $r-1$ [Yam], if either $\zeta_{p} \notin K$ or $r \not \equiv 1 \bmod p$ then $\beta(r)=0$. So to avoid trivialities we assume that $\zeta_{p} \in K$ and $r \equiv 1 \bmod p$.

Suppose $K \subseteq F=\mathbb{Q}\left(\zeta_{n}\right)$ for some positive integer n and let $n=r^{v_{r}(n)} n^{\prime}$. Then $\operatorname{Gal}(F / \mathbb{Q})$ contains a canonical Frobenius automorphism at r which is defined by $\psi_{r}\left(\zeta_{r v_{r}(n)}\right)=\zeta_{r v_{r}(n)}$ and $\psi_{r}\left(\zeta_{n^{\prime}}\right)=\zeta_{n^{\prime}}^{r}$. We can then define the canonical Frobenius automorphism at r in $\operatorname{Gal}(F / K)$ as $\phi_{r}=\psi_{r}^{f(K / \mathbb{Q}, r)}$. On the other hand, the inertia subgroup at r in $\operatorname{Gal}(F / K)$ is by definition the subgroup of $\operatorname{Gal}(F / K)$ that acts as $\operatorname{Gal}\left(F_{r} / K_{r}\left(\zeta_{n^{\prime}}\right)\right)$ in the completion at r.

We use the following notation.
Notation 10. First we define some positive integers:
$m=$ minimum even positive integer with $K \subseteq \mathbb{Q}\left(\zeta_{m}\right)$,
$a=$ minimum positive integer with $\zeta_{p^{a}} \in K$,
$s=v_{p}(m)$ and

$$
b= \begin{cases}s, & \text { if } p \text { is odd or } \zeta_{4} \in K \\ s+v_{p}\left(\left[K \cap \mathbb{Q}\left(\zeta_{p^{s}}\right): \mathbb{Q}\right]\right)+2, & \text { if } \operatorname{Gal}\left(K\left(\zeta_{p^{2 a+s}}\right) / K\right) \text { is not cyclic, and } \\ s+1, & \text { otherwise }\end{cases}
$$

We also define

$$
\begin{gathered}
L=\mathbb{Q}\left(\zeta_{m}\right), \quad \zeta=\zeta_{p^{a+b}}, \quad W=\langle\zeta\rangle, \quad F=L(\zeta) \\
G=\operatorname{Gal}(F / K), \quad C=\operatorname{Gal}(F / K(\zeta)), \quad \text { and } \quad D=\operatorname{Gal}\left(F / K\left(\zeta+\zeta^{-1}\right)\right)
\end{gathered}
$$

Since $\zeta_{p} \in K$, the automorphism $\Upsilon: G \rightarrow \operatorname{Aut}(W)$ induced by the Galois action satisfies the conditions of Section 2 and the notation is consistent. As in that section we fix elements ρ and σ in G and a subgroup $B=\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle$ of C such that $D=B \times\langle\rho\rangle, C=B \times\left\langle\rho^{2}\right\rangle$ and $G / C=\langle\rho C\rangle \times\langle\sigma C\rangle$. Furthermore, $\sigma(\zeta)=\zeta^{c}$ for some integer c chosen according to (4). Notice that by the choice of $b, G \neq B$.

We also fix an odd prime r and set

$$
e=e\left(K\left(\zeta_{r}\right) / K, r\right), \quad f=f(K / \mathbb{Q}, r) \quad \text { and } \quad \nu(r)=\max \left\{0, a+v_{p}(e)-v_{p}\left(r^{f}-1\right)\right\}
$$

Let $\phi \in G$ be the canonical Frobenius automorphism at r in G, and write

$$
\phi=\rho^{j^{\prime}} \sigma^{j} \eta, \quad \text { with } \eta \in B, \quad 0 \leq j^{\prime}<|\rho| \quad \text { and } \quad 0 \leq j<|\sigma C|
$$

Let q be an odd prime not dividing m. Let $G_{q}=\operatorname{Gal}\left(F\left(\zeta_{q}\right) / K\right), C_{q}=\operatorname{Gal}\left(F\left(\zeta_{q}\right) / K(\zeta)\right)$ and let c_{0} denote a generator of $\operatorname{Gal}\left(F\left(\zeta_{q}\right) / F\right)$. Finally we fix
$\theta=\theta_{q}$, a generator of the inertia group of r in G_{q} and
$\phi_{q}=c_{0}^{s_{0}} \phi=c_{0}^{s_{0}} \eta \rho^{j^{\prime}} \sigma^{j}=\eta_{q} \rho^{j^{\prime}} \sigma^{j}$, the canonical Frobenius automorphism at r in G_{q}.
Observe that we are considering G as a subgroup of G_{q} by identifying G with $\operatorname{Gal}\left(F\left(\zeta_{q}\right) / K\left(\zeta_{q}\right)\right)$. Again the Galois action induces a homomorphism $\Upsilon_{q}: G_{q} \rightarrow \operatorname{Aut}(W)$ and $W^{G_{q}}=\left\langle\zeta_{p^{a}}\right\rangle$. So this action satisfies the conditions of Section 2 and we adapt the notation by settting

$$
B_{q}=\left\langle c_{0}\right\rangle \times B, \quad C_{q}=\operatorname{Gal}\left(F\left(\zeta_{q}\right) / K(\zeta)\right)=\operatorname{Ker}\left(\Upsilon_{q}\right) \quad \text { and } \quad D_{q}=\operatorname{Gal}\left(F\left(\zeta_{q}\right) / K\left(\zeta+\zeta^{-1}\right)\right)
$$

Notice that $C_{q}=\left\langle c_{0}\right\rangle \times C=B_{q} \times\left\langle\rho^{2}\right\rangle$ and $D_{q}=D \times\left\langle c_{0}\right\rangle$. Hence $G / C \simeq G_{q} / C_{q}$.
If Ψ is a skew pairing of B over W^{G} then Ψ has a unique extension to a skew pairing Ψ of C over W^{G} which satisfies $\Psi\left(B, \rho^{2}\right)=\Psi\left(\rho^{2}, B\right)=1$. So we are going to apply skew pairings of B to pairs of elements in C under the assumption that we are using this extension.

Since $p \neq r, \theta \in C_{q}$. Moreover, if $r=q$ then θ is a generator of $\operatorname{Gal}\left(F\left(\zeta_{r}\right) / F\right)$ and otherwise $\theta \in C$. Notice also that if G / C is non-cyclic then $p^{a}=2$ and $K \cap \mathbb{Q}\left(\zeta_{2^{s}}\right)=\mathbb{Q}\left(\zeta_{2^{d}}+\zeta_{2^{d}}^{-1}\right)$, where $d=v_{p}(c-1)$, and so $b=s+d$.

It follows from results of Janusz [Jan, Proposition 3.2] and Pendergrass [Pen2, Theorem 1] that $p^{\beta(r)}$ always occurs as the r-local index of a cyclotomic algebra of the form $\left(L\left(\zeta_{q}\right) / L, \alpha\right)$ where q is either 4 or a prime not dividing m and α takes values in $W\left(L\left(\zeta_{q}\right)\right)_{p}$, with the possibility of $q=4$ occurring only in the case when $p^{s}=2$. By inflating the factor set α to $F\left(\zeta_{q}\right)$ (which will be equal to F when $p^{s}=2$), we have that $p^{\beta(r)}=m_{r}(A)$, where

$$
\begin{align*}
& A=\left(F\left(\zeta_{q}\right) / K, \alpha\right) \text { (we also write } \alpha \text { for the inflation), } \\
& q \text { is an odd prime not dividing } m \text {, and } \tag{8}\\
& \alpha \text { takes values in }\left\langle\zeta_{p^{4}}\right\rangle \text { if } p^{s}=2 \text { and in }\left\langle\zeta_{p^{s}}\right\rangle \text { otherwise. }
\end{align*}
$$

So it suffices to find a formula for the maximum r-local index of a Schur algebra over K of this form.

Write $A=\bigoplus_{g \in G_{q}} F\left(\zeta_{q}\right) u_{g}$, with $u_{g}^{-1} x u_{g}=g(x)$ and $u_{g} u_{h}=\alpha_{g, h} u_{g h}$, for each $x \in F\left(\zeta_{q}\right)$ and $g, h \in G_{q}$. After a diagonal change of basis one may assume that if $g=c_{0}^{s_{0}} c_{1}^{s_{1}} \ldots c_{n}^{s_{n}} \rho^{s_{\rho}} \sigma^{s_{\sigma}}$ with $0 \leq s_{i}<q_{i}=\left|c_{i}\right|, 0 \leq s_{\rho}<|\rho|$ and $0 \leq s_{\sigma}<q_{\sigma}=|\sigma C|$ then $u_{g}=u_{c_{0}}^{s_{0}} u_{c_{1}}^{s_{1}} \ldots u_{c_{n}}^{s_{n}} u_{\rho}^{s_{\rho}} u_{\sigma}^{s_{\sigma}}$.

It is well known (see [Yam] and [Jan, Theorem 1]) that

$$
\begin{equation*}
m_{r}(A)=|\xi|, \quad \text { where } \quad \xi=\xi_{\alpha}=\left(\frac{\alpha_{\theta, \phi_{q}}}{\alpha_{\phi_{q}, \theta}}\right)^{r^{v_{r}(e)}} u_{\theta}^{r^{v_{r}(e)}\left(r^{f}-1\right)} \tag{9}
\end{equation*}
$$

This can be slightly simplified as follows. If $r \mid e$ then $\langle\theta\rangle$ has an element θ^{k} of order r. Since θ fixes every root of unity of order coprime with r, necessarily r^{2} divides m and the fixed field of θ^{k} in L is $\mathbb{Q}\left(\zeta_{m / r}\right)$. Then $K \subseteq \mathbb{Q}\left(\zeta_{m / r}\right)$, contradicting the minimality of m. Thus $r \nmid e$ and so

$$
\begin{equation*}
\xi=\frac{\alpha_{\theta, \phi_{q}}}{\alpha_{\phi_{q}, \theta}} u_{\theta}^{r^{f}-1}=\frac{\alpha_{\theta, \phi_{q}}}{\alpha_{\phi_{q}, \theta}} \gamma_{\theta}^{\frac{r^{f}-1}{e}}=\left[u_{\theta}, u_{\phi_{q}}\right] \gamma_{\theta}^{\frac{r^{f}-1}{e}}, \text { where } \gamma_{\theta}=u_{\theta}^{e} \tag{10}
\end{equation*}
$$

With our choice of the $\left\{u_{g}: g \in G_{q}\right\}$, we have

$$
\left[u_{\theta}, u_{\phi_{q}}\right]=\left[u_{\theta}, u_{\eta_{q}} u_{\rho}^{j^{\prime}} u_{\sigma}^{j}\right]=\Psi\left(\theta, \eta_{q}\right)\left[u_{\theta}, u_{\rho}^{j^{\prime}} u_{\sigma}^{j}\right]
$$

where $\Psi=\Psi_{\alpha}$ is the skew pairing associated to α. Therefore,

$$
\xi=\xi_{0} \Psi\left(\theta, \eta_{q}\right) \quad \text { with } \quad \xi_{0}=\xi_{0, \alpha}=\left[u_{\theta}, u_{\rho}^{j^{\prime}} u_{\sigma}^{j}\right] \gamma_{\theta}^{\frac{r^{f}-1}{e}}
$$

Let (β, γ) be the data associated to the factor set α (relative to the set of generators $c_{1}, \ldots, c_{n}, \rho, \sigma$).
Lemma 11. Let $A=\left(F\left(\zeta_{q}\right) / K, \alpha\right)$ be a cyclotomic algebra satisfying the conditions of (8) and use the above notation. Let $\theta=c_{0}^{s_{0}} c_{1}^{s_{1}} \cdots c_{n}^{s_{n}} \rho^{2 s_{n+1}}$, with $0 \leq s_{i}<q_{i}$ for $0 \leq i \leq n$, and $0 \leq s_{n+1} \leq\left|\rho^{2}\right|$.
(1) If G / C is cyclic then $\xi_{0}^{p^{\nu(r)}}=1$.
(2) Assume that G / C is non cyclic and let $\mu_{i}=\beta_{i \rho}^{\frac{1-c}{2}} \beta_{i \sigma}^{-1}$. Then $\mu_{i}= \pm 1$ and $\xi_{0}^{p^{\nu(r)}}=$ $\prod_{i=0}^{n} \mu_{i}^{2^{\nu(r)}\left(j+j^{\prime}\right) s_{i}}$.

Proof. For the sake of regularity we write $c_{n+1}=\rho^{2}$. Since $e=|\theta|$, we have that q_{i} divides es s_{i} for each i. Furthermore, $v_{p}(e)$ is the maximum of the $v_{p}\left(\frac{q_{i}}{\operatorname{gcd}\left(q_{i}, s_{i}\right)}\right)$ for $i=1, \ldots, n$. Then

$$
v_{p}(e)-v_{p}\left(r^{f}-1\right)=\max \left\{v_{p}\left(\frac{q_{i}}{\operatorname{gcd}\left(q_{i}, s_{i}\right)\left(r^{f}-1\right)}\right), i=1, \ldots, n\right\}
$$

Hence

$$
\begin{align*}
\nu(r) & =\max \left\{0, v_{p}(e)+a-v_{p}\left(r^{f}-1\right)\right\} \\
& =\min \left\{x \geq 0: p^{a} \text { divides } p^{x} \cdot \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}, \text { for each } i=1, \ldots, n\right\} . \tag{11}
\end{align*}
$$

Now we compute γ_{θ} in terms of the previous expression of θ. Set $v=u_{c_{n+1}}^{s_{n+1}}$ and $y=$ $u_{c_{0}}^{s_{0}} u_{c_{1}}^{s_{1}} \cdots u_{c_{n}}^{s_{n}}$. Then

$$
u_{\theta}=y v=\gamma v y, \quad \text { with } \quad \gamma=\Psi\left(c_{n+1}^{s_{n+1}}, c_{0}^{s_{0}} c_{1}^{s_{1}} \ldots, c_{n}^{s_{n}}\right)
$$

Thus $\gamma^{e}=\Psi\left(c_{n+1}^{e s_{n+1}}, c_{0}^{s_{0}} c_{1}^{s_{1}} \ldots, c_{n}^{s_{n}}\right)=1$. Using that $[y, \gamma]=1$, one easily proves by induction on m that

$$
(y v)^{m}=\gamma^{\binom{m}{2}} y^{m} v^{m}
$$

Hence

$$
(y v)^{e}=\gamma^{\binom{e}{2}} y^{e} v^{e}=\gamma^{\binom{e}{2}} y^{e} u_{c_{n+1}}^{e s_{n+1}}=\gamma^{\binom{e}{2}} y^{e} \gamma_{\rho}^{\frac{e s_{n+1}}{q_{n+1}}}
$$

and $\gamma^{\binom{e}{2}}= \pm 1$. (If p or e is odd then necessarily $\gamma^{\binom{e}{2}}=1$.) Now an easy induction argument shows

$$
\gamma_{\theta}=\mu \gamma_{0}^{\frac{e s_{0}}{q_{0}}} \gamma_{1}^{\frac{e s_{1}}{q_{1}}} \cdots \gamma_{n}^{\frac{e s_{n}}{q_{n}}} \gamma_{\rho}^{\frac{e s_{n+1}}{q_{n+1}}}, \quad \text { for some } \mu= \pm 1
$$

 because both μ and γ_{ρ} are ± 1, and they are 1 if p is odd (see (C3.e) and (C3.f)). Thus

$$
\begin{equation*}
\gamma_{\theta}^{p^{\nu(r)} \frac{r^{f}-1}{e}}=\prod_{i=0}^{n} \gamma_{i}^{p^{\nu(r) \frac{\left(r^{f}-1\right) s_{i}}{q_{i}}}} \tag{12}
\end{equation*}
$$

(1). Assume that G / C is cyclic. We have that $\rho=1$ and $v_{p}(c-1)=a$. Note that the β 's and γ 's are p^{b}-th roots of unity by (8).

Let Y be an integer satisfying $Y \frac{c-1}{p^{a}} \equiv 1 \bmod p^{b}$. Since $\phi_{q}=\sigma^{j} \eta_{q}$ with $\eta_{q} \in C_{q}$, we have $r^{f} \equiv c^{j} \bmod p^{a+b}$ and so $Y \frac{r^{f}-1}{p^{a}}=Y \frac{c-1}{p^{a}} \frac{c^{j}-1}{c-1} \equiv V(j) \bmod p^{b}$. Then $\beta_{i \sigma}^{Y^{\frac{r^{f}-1}{p^{a}}}}=\beta_{i \sigma}^{V(j)}$.

Using that p^{a} divides $p^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}(\operatorname{see}(11))$ and $Y \frac{(c-1)}{p^{a}} \equiv 1 \bmod p^{b}$ we obtain

$$
\gamma_{i}^{p^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}}=\left(\gamma_{i}^{c-1}\right)^{Y \frac{p^{\nu(r)} s_{i}\left(r^{f}-1\right)}{p^{a} q_{i}}}
$$

Combining this with (C3.b) we have

$$
\begin{align*}
{\left[u_{c_{i}}^{s_{i}}, u_{\sigma}^{j}\right]^{p^{\nu(r)}} \gamma_{i}^{p^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}} } & =\left[u_{c_{i}}, u_{\sigma}\right]^{s_{i} V(j) p^{\nu(r)}}\left(\gamma_{i}^{c-1}\right)^{Y \frac{p^{\nu(r)}}{p_{i}\left(r^{f}-1\right)}} \\
& =\left[u_{c_{i}}, u_{\sigma}\right]^{s_{i} V(j) p_{i}} \tag{13}\\
& \left.=\left(\left[u_{c_{i}}, u_{\sigma}\right] \beta_{i \sigma}\right)^{p^{\nu(r)}} \beta_{i \sigma} V \frac{p^{\nu(r)}}{s_{i}(j)} p^{p^{a}}-1\right)
\end{align*}
$$

because $\beta_{i \sigma}=\left[u_{\sigma}, u_{c_{i}}\right]=\left[u_{c_{i}}, u_{\sigma}\right]^{-1}$. Using (12) and (13) we have

$$
\xi_{0}^{p^{\nu(r)}}=\left[u_{\theta}, u_{\sigma}^{j}\right]^{p^{\nu(r)}} \gamma_{\theta}^{p^{\nu(r)} \frac{r^{f}-1}{e}}=\prod_{i=0}^{n}\left[u_{c_{i}}^{s_{i}}, u_{\sigma}^{j}\right]^{p^{\nu(r)}} \gamma_{i}^{p^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}}=1
$$

and the lemma is proved in this case.
(2). Assume now that G / C is non-cyclic. Then $p^{a}=2$ and if $d=v_{2}(c-1)$ then $d \geq 2$ and $b=s+d$. The data for α lie in $\left\langle\zeta_{2^{s+1}}\right\rangle \subseteq\left\langle\zeta_{2^{b}}\right\rangle \subseteq\left\langle\zeta_{2^{1+s+d}}\right\rangle=W(F)_{2}$. (C2.b) implies $\mu_{i}= \pm 1$ and using (C3.b) and (C3.f) one has $\gamma_{i}^{c+1}=\beta_{i \sigma}^{q_{i}} \beta_{i \rho}^{-q_{i}}$. Let X and Y be integers satisfying $X \frac{c-1}{2^{d}} \equiv Y \frac{c+1}{2} \equiv 1 \bmod 2^{1+s+d}$ and set $Z=Y \frac{r^{f}-1}{2}$.

Recall that $2^{a}=2$ divides $2^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}$, by (11). Therefore,

$$
\begin{equation*}
\gamma_{i}^{2^{\nu(r)} \frac{s_{i}\left(r^{f}-1\right)}{q_{i}}}=\left(\gamma_{i}^{c+1}\right)^{Y \frac{2^{\nu(r)} s_{i}\left(r^{f}-1\right)}{2 q_{i}}}=\left(\beta_{i \sigma}^{s_{i}} \beta_{i \rho}^{-s_{i}}\right)^{2^{\nu(r)} Z} . \tag{14}
\end{equation*}
$$

Let $j^{\prime \prime} \equiv j^{\prime} \bmod 2$ with $j^{\prime \prime} \in\{0,1\}$. Then $\Upsilon\left(\rho^{j^{\prime \prime}}\right)=\Upsilon\left(\rho^{j^{\prime}}\right)$ and $N_{\rho}^{j^{\prime}}(w)=w^{j^{\prime \prime}}$. Therefore,

$$
\begin{align*}
{\left[u_{\theta}, u_{\rho}^{j^{\prime}} u_{\sigma}^{j}\right] } & =\left[u_{\theta}, u_{\rho}^{j^{\prime}}\right] u_{\rho}^{j^{\prime}}\left[u_{\theta}, u_{\sigma}^{j}\right] u_{\rho}^{-j^{\prime}}=\prod_{i=0}^{n}\left(\beta_{i \rho}^{-s_{i}}\right)^{j^{\prime \prime}}\left(\beta_{i \sigma}^{-s_{i}}\right)^{V(j)(-1)^{j^{\prime \prime}}} \\
& =\prod_{i=0}^{n}\left(\beta_{i \rho}^{-s_{i}}\right)^{j^{\prime \prime}}\left(\beta_{i \sigma}^{-s_{i}}\right)^{X \frac{c-1}{2^{d}} V(j)(-1)^{j^{\prime \prime}}}=\prod_{i=0}^{n}\left(\beta_{i \rho}^{-s_{i}}\right)^{j^{\prime \prime}}\left(\beta_{i \sigma}^{-s_{i}}\right)^{X \frac{c^{j}-1}{2^{d}}(-1)^{j^{\prime \prime}}} \tag{15}
\end{align*}
$$

Using (12), (14) and (15) we obtain

We claim that $Z+j^{\prime \prime} \equiv 0 \bmod 2^{d-1}$. On the one hand $Y \equiv 1 \bmod 2^{d-1}$. On the other hand, $\phi_{q}=\rho^{j^{\prime}} \sigma^{j} \eta_{q}$, with $\eta_{q} \in C_{q}$ and so $r^{f} \equiv(-1)^{j^{\prime}} c^{j} \bmod 2^{1+s+d}$. Hence $r^{f} \equiv(-1)^{j^{\prime}}=(-1)^{j^{\prime \prime}}$ $\bmod 2^{d}$ and therefore $Z+j^{\prime \prime}=Y \frac{r^{f}-1}{2}+j^{\prime \prime} \equiv \frac{(-1)^{j^{\prime \prime}}-1}{2}+j^{\prime \prime} \bmod 2^{d-1}$. Considering the two possible values of $j^{\prime \prime} \in\{0,1\}$ we have $\frac{(-1)^{j^{\prime \prime}}-1}{2}+j^{\prime \prime}=0$ and the claim follows.

From $d=v_{2}(c-1)$ one has $c \equiv 1+2^{d-1} \bmod 2^{d}$ and hence $Y \equiv 1+2^{d-1} \bmod 2^{d}$ and $r^{f} \equiv(-1)^{j^{\prime}} c^{j} \equiv(-1)^{j^{\prime}}\left(1+j 2^{d}\right) \bmod 2^{1+s+d}$. Then

$$
\begin{aligned}
\frac{Z+j^{\prime \prime}}{2^{d-1}} & =\frac{Y\left(r^{f}-1\right)+2 j^{\prime \prime}}{2^{d}} \equiv \frac{Y\left((-1)^{j^{\prime \prime}}\left(1+j 2^{d}\right)-1\right)+2 j^{\prime \prime}}{2^{d}}=\frac{Y\left(\frac{(-1)^{j^{\prime \prime}}-1}{2}+(-1)^{j^{\prime \prime}} j 2^{d-1}\right)+j^{\prime \prime}}{2^{d-1}} \\
& \equiv \frac{\left(1+2^{d-1}\right)\left(-j^{\prime \prime}+(-1)^{j^{\prime \prime}} j 2^{d-1}\right)+j^{\prime \prime}}{2^{d-1}}=\frac{-j^{\prime \prime}-j^{\prime \prime} 2^{d-1}+(-1)^{j^{\prime \prime}} j 2^{d-1}+(-1)^{j^{\prime \prime}} j 2^{2(d-1)}+j^{\prime \prime}}{2^{d-1}} \\
& \equiv-j^{\prime \prime}+(-1)^{j^{\prime \prime}} j \equiv j+j^{\prime \prime} \equiv j+j^{\prime} \bmod 2
\end{aligned}
$$

Using this, the equality $\beta_{i \rho}^{\frac{1-c}{2}}=\mu_{i} \beta_{i \sigma}$ and the fact that $\mu_{i}= \pm 1$ we obtain

$$
\beta_{i \rho}^{-\left(Z+j^{\prime \prime}\right)}=\beta_{i \rho}^{-X \frac{c-1}{2^{d}}\left(Z+j^{\prime \prime}\right)}=\beta_{i \rho}^{-X \frac{c-1}{2} \frac{Z+j^{\prime \prime}}{2^{d-1}}}=\mu_{i}^{X \frac{Z+j^{\prime \prime}}{2^{d-1}}} \beta_{i \sigma}^{X \frac{Z+j^{\prime \prime}}{2^{d-1}}}=\mu_{i}^{j+j^{\prime}} \beta_{i \sigma}^{X \frac{Z+j^{\prime \prime}}{2^{d-1}}}
$$

Combining this with (16) we have

$$
\begin{aligned}
\xi_{0}^{2^{\nu(r)}} & =\prod_{i=0}^{n} \mu_{i}^{2^{\nu(r)}\left(j+j^{\prime}\right) s_{i}} \prod_{i=0}^{n}\left(\beta_{i \sigma}^{s_{i}}\right)^{\left.2^{(r)}\right)}\left[Z-X \frac{c^{j}-1}{2^{d}}(-1)^{j^{\prime \prime}}+\frac{X\left(Z+j^{\prime \prime}\right)}{2^{d-1}}\right] \\
& =\prod_{i=0}^{n} \mu_{i}^{2^{\nu(r)}\left(j+j^{\prime}\right) s_{i}} \prod_{i=0}^{n}\left(\beta_{i \sigma}^{s_{i}}\right)^{2^{(r)}[}\left[\frac{2^{d} Z+X\left(c^{j}-1\right)(-1) j^{j^{\prime \prime}}+2 X\left(Z+j^{\prime \prime}\right)}{2^{d}}\right] .
\end{aligned}
$$

To finish the proof it is enough to show that the exponent of each $\beta_{i \sigma}$ in the previous expression is a multiple of 2^{1+s}. Indeed, $2^{d} \equiv X(c-1) \bmod 2^{1+s+d}$ and so

$$
\begin{aligned}
& 2^{d} Z+X\left(c^{j}-1\right)(-1)^{j^{\prime \prime}}+2 X\left(Z+j^{\prime \prime}\right) \equiv Z X(c-1)-X\left(c^{j}-1\right)(-1)^{j^{\prime \prime}}+2 X\left(Z+j^{\prime \prime}\right)= \\
& X\left(Y^{r^{f}-1} 2(c+1)+\left(c^{j}-1\right)(-1)^{j^{\prime \prime}}+2 j^{\prime \prime}\right)=X\left(\left(r^{f}-1\right) Y \frac{c+1}{2}-c^{j}(-1)^{j^{\prime \prime}}+(-1)^{j^{\prime \prime}}+2 j^{\prime \prime}\right) \equiv \\
& X\left(r^{f}-1-c^{j}(-1)^{j^{\prime \prime}}+1\right) \equiv 0 \quad \bmod 2^{1+s+d}
\end{aligned}
$$

as required. This finishes the proof of the lemma in Case 2.
We need the following Proposition from [Jan].
Proposition 12. For every odd prime $q \neq r$ not dividing m let $d(q)=\min \left\{a, v_{p}(q-1)\right\}$. Then
(1) $\left|c_{0}^{k_{q}} C / C^{p^{d(q)}}\right| \leq\left|\theta_{q}^{f} C / C^{p^{a}}\right|$, and
(2) the equality holds if $q \equiv 1 \bmod p^{a}$ and r is not congruent with a p-th power modulo q. There are infinitely many primes q satisfying these conditions.

Proof. See Proposition 4.1 and Lemma 4.2 of [Jan].
We are ready to prove the main result of the paper.
Theorem 13. Let K be an abelian number field, p a prime and r an odd prime. If either $\zeta_{p} \notin K$ or $r \not \equiv 1 \bmod p$ then $\beta_{p}(r)=0$. Assume otherwise that $\zeta_{p} \in K$ and $r \equiv 1 \bmod p$, and use Notation 10 including the decomposition $\phi=\eta \rho^{j^{\prime}} \sigma^{j}$ with $\eta \in B$.
(1) Assume that r does not divide m.
(a) If G / C is non-cyclic and $j \not \equiv j^{\prime} \bmod 2$ then $\beta_{p}(r)=1$.
(b) Otherwise $\beta_{p}(r)=\max \left\{\nu(r), v_{p}\left(\left|\eta B^{p^{d(r)}}\right|\right)\right\}$, where $d(r)=\min \left\{a, v_{p}(r-1)\right\}$.
(2) Assume that r divides m and let q_{0} be an odd prime not dividing m such that $q_{0} \equiv 1$ $\bmod p^{a}$ and r is not a p-th power modulo q_{0}. Let $\theta=\theta_{q_{0}}$ be a generator of the inertia group of $G_{q_{0}}$ at r.
(a) If G / C is non-cyclic, $j \not \equiv j^{\prime} \bmod 2$ and θ is not a square in D then $\beta_{p}(r)=1$.
(b) Otherwise $\beta_{p}(r)=\max \left\{\nu(r), h, v_{p}\left(\left|\theta^{f} C^{p^{a}}\right|\right)\right\}$, where $h=\max _{\Psi}\left\{v_{p}(|\Psi(\theta, \eta)|)\right\}$ as Ψ runs over all skew pairings of B over $\left\langle\zeta_{p^{a}}\right\rangle$.

Proof. For simplicity we write $\beta(r)=\beta_{p}(r)$. We already explained why if either $\zeta_{p} \notin K$ or $r \not \equiv 1$ $\bmod p$ then $\beta_{p}(r)=0$. So in the remainder of the proof we assume that $\zeta_{p} \in K$ and $r \equiv 1$ $\bmod p$, and so K, p, and r satisfy the condition mentioned at the beginning of the section. It was also pointed out earlier in this section that $p^{\beta(r)}$ is the r-local index of a crossed product algebra A of the form $A=\left(F\left(\zeta_{q}\right) / K, \alpha\right)$ with q and α taking values in $\left\langle\zeta_{p^{s}}\right\rangle$ or in $\left\langle\zeta_{4}\right\rangle$. Moreover, since $p^{\nu(r)}$ is the r-local index of the cyclic Schur algebra $\left(K\left(\zeta_{r}\right) / K, c_{0}, \zeta_{p^{a}}\right)$ [Jan], we always have $\nu(r) \leq \beta(r)$.

In case 1 one may assume that $q=r$, because $\left(F\left(\zeta_{q}\right) / K, \alpha\right)$ has r-local index 1 for every $q \neq r$. Since $\operatorname{Gal}\left(F\left(\zeta_{r}\right) / F\right)$ is the inertia group at r in G_{r}, in this case one may assume that $\theta=\theta_{r}=c_{0}$. On the contrary, in case $2, q \neq r$, and $\theta=c_{1}^{s_{1}} \ldots c_{n}^{s_{n}} \rho^{2 s_{n+1}}$, for some s_{1}, \ldots, s_{n+1}.

In cases (1.a) and (2.a), G / C is non-cyclic and hence $p^{a}=2$. Then $\beta(r) \leq 1$, by the BenardSchacher Theorem, and hence if $\nu(r)=1$ then $\beta(r)=1$. So assume that $\nu(r)=0$. Furthermore, in case (2.a), s_{i} is odd for some $i \leq n$, because $\theta \notin D^{2}$. Now we can use Corollary 5 to produce a cyclotomic algebra $A^{\prime}=\left(F\left(\zeta_{q}\right) / K, \alpha^{\prime}\right)$ so that $\xi_{\alpha}=-\xi_{\alpha^{\prime}}$. Indeed, there is such an algebra such that all the data associated to α are equal to the data for A, except for $\beta_{0 \sigma}$, in case (1.a), and $\beta_{k \sigma}$, case (2.a). Using Lemma 11 and the assumptions $\nu(r)=0$ and $j \not \equiv j^{\prime} \bmod 2$, one has $\xi_{0, \alpha}=-\xi_{0, \alpha^{\prime}}$ and $\Psi_{\alpha}=\Psi_{\alpha^{\prime}}$. Thus $\xi_{\alpha}=-\xi_{\alpha^{\prime}}$, as claimed. This shows that $\beta(r)=1$ in cases (1.a) and (2.a).

In case (1.b), $\xi=\xi_{0} \Psi\left(c_{0}, \eta\right)$. By Lemma 11, ξ_{0} has order dividing $p^{\nu(r)}$ in this case and, by Lemma $9, \max \{|\Psi(\theta, \eta)|: \Psi \in S\}=\left|\eta B^{p^{d(r)}}\right|$, where S is the set of skew pairings of B_{r} with values in $\left\langle p^{a}\right\rangle$. Using this and $\nu(r) \leq \beta(r)$ one deduces that $\beta(r)=\max \left\{\nu(r), v_{p}\left(\left|\eta B^{p^{d(r)}}\right|\right)\right\}$.

The formula for case (2.b) is obtained in a similar way using the equality $\xi=\xi_{0} \Psi(\theta, \eta) \Psi\left(\theta, c_{0}^{s_{0}}\right)$ and Lemmas 8 and 9.

4. Examples

As we indicated in the introduction, the authors' main motivation for Theorem 13 is the study the gap between the Schur group of an abelian number field K and its subgroup generated by classes containing cyclic cyclotomic algebras over K, a problem which reduces to studying the gaps between the integers $\nu_{p}(r)$ and $\beta_{p}(r)$ for all finite primes p and odd primes r. (For details, see [HOR].) What Theorem 13 really allows one to do is to compute $\beta_{p}(r)$ in terms of the number of p-th power roots of unity in K and the embedding of $\operatorname{Gal}(F / K)$ in $\operatorname{Gal}(F / \mathbb{Q})$. In this section, we will provide some examples of abelian number fields K to illustrate the computations involved in the various cases of Theorem 13. We use the notation of the previous sections in all of these examples.

Example 14. Let $K=\mathbb{Q}\left(\zeta_{m}\right)$, with m minimal. Let p be a prime for which $\zeta_{p} \in K$, and let r be an odd prime which is $\equiv 1 \bmod p$. Let a be the maximal integer for which $\zeta_{p^{a}} \in K$, and let $s=v_{p}(m)$. If we are not in the case when $b=s$, then $p=2, s=0$, and $K\left(\zeta_{p^{2 a+s}}\right)=K\left(\zeta_{4}\right)$, so we will be in the case where $b=s+1=1$. Since $K=L$, we have that $F=K\left(\zeta_{p^{a+b}}\right)$, so C is trivial. Also, $G=\operatorname{Gal}\left(K\left(\zeta_{p^{a+b}}\right) / K\right)$ will be cyclic for either case of b. Therefore, either case (1b) or (2b) of Theorem 13 applies, and it is immediate from $C=B=1$ that $\beta_{p}(r)=\nu_{p}(r)$ for each choice of p and r.

Example 15. Let p and r be odd primes with $v_{p}(r-1)=2$. Let K be the extension of $\mathbb{Q}\left(\zeta_{p}\right)$ with index p in $L=\mathbb{Q}\left(\zeta_{p r}\right)$, and consider $\beta_{p}(r)$. We have $a=s=b=1$, and $F=\mathbb{Q}\left(\zeta_{p^{2} r}\right)$. We have that $G=\langle\theta\rangle \times C$ is elementary abelian of order p^{2}, so we are in case (2b) of Theorem 13. Since $\operatorname{Gal}(F / \mathbb{Q})$ has an element ψ such that ψ^{p} generates C, letting q_{0} and θ be as in Theorem $13(2)$, we find that $v_{p}(|\psi G|)=1$. It follows that $p^{f}=p$, so $\nu_{p}(r)=0$ and $v_{p}\left(\left|\theta^{f} C^{p^{a}}\right|\right)=1$. Since ϕ generates C, we have that $\phi=\eta$ and so $h=1$ by Lemma 9 . So $\beta_{p}(r)=1$ in this case.

Example 16. Let q be a prime greater than 5 , and let $K=\mathbb{Q}\left(\zeta_{q}, \sqrt{2}\right)$. Let $p=2$, and let r be any prime for which $r^{2} \equiv 1 \bmod q$ and $r \equiv 5 \bmod 2^{6}$. In computing $\beta_{2}(r)$, one sees that $a=1$ and $L=\mathbb{Q}\left(\zeta_{8 q}\right)$, so $s=3$. Since $\operatorname{Gal}\left(K\left(\zeta_{2^{5}}\right) / K\right)$ is not cyclic, we set $b=5+v_{2}([\mathbb{Q}(\sqrt{2}): \mathbb{Q}])=6$, so $F=\mathbb{Q}\left(\zeta_{64 q}\right)$. Since $\mathbb{Q}\left(\zeta_{q}\right) \subset K$, we have $C=\operatorname{Gal}\left(F / K\left(\zeta_{64}\right)\right)=1$. For our generators of $\operatorname{Gal}(F / K)$, we may choose ρ, σ such that $\rho\left(\zeta_{q}\right)=\zeta_{q}, \rho\left(\zeta_{64}\right)=\zeta_{64}^{-1}, \sigma\left(\zeta_{q}\right)=\zeta_{q}$, and $\sigma\left(\zeta_{64}\right)=\zeta_{64}^{9}$. By our choice of r, we have that $\psi_{r} \notin G$, but $5^{2} \equiv 9^{3} \bmod 64$ implies that $\psi_{r}^{2}=\sigma^{3}$. This means that we are in case (1a) of Theorem 13 with $\nu_{p}(r)=0$ and $j \not \equiv j^{\prime} \bmod 2$, so $\beta_{2}(r)=1$.

Example 17. Let r be a prime for which $r \equiv 5 \bmod 64$. Let K^{\prime} be the unique subfield of index 2 in $\mathbb{Q}\left(\zeta_{r}\right)$, and let $K=K^{\prime}(\sqrt{2})$. Consider $\beta_{2}(r)$ for the field K. As in the previous example, we have $L=\mathbb{Q}\left(\zeta_{8 r}\right), F=\mathbb{Q}\left(\zeta_{64 r}\right)$ and we choose $\rho, \sigma \in G$ satisfying $\rho\left(\zeta_{64}\right)=\zeta_{64}^{-1}$ and $\sigma\left(\zeta_{64}\right)=\zeta_{64}^{9}$. Using Proposition 12, choose an odd prime q_{0} for which r in not a square modulo q_{0}. If ψ_{r} is the Frobenius automorphism in $\operatorname{Gal}\left(F\left(\zeta_{q_{0}}\right) / \mathbb{Q}\right)$, then $\psi_{r} \notin G_{q_{0}}$, and $\phi_{r}=\psi_{r}^{2}$ sends ζ_{64} to $\zeta_{64}^{5^{2}}=\zeta_{64}^{9^{3}}$. Therefore, $\phi_{r}=\sigma^{3} \eta_{q_{0}}$, where $\eta_{q_{0}} \in C_{q_{0}}$ fixes $\zeta_{64 r}$. Since $\zeta_{r} \notin K, \theta=\theta_{q_{0}}$ generates a direct factor of $G_{q_{0}}$ and so it cannot be a square in D. It follows that the conditions of case (2a) of Theorem 13 hold, and so we can conclude $\beta_{2}(r)=1$.

Example 18. Let p be an odd prime and let q and r be primes for which $v_{p}(q-1)=v_{p}(r-1)=2$, $v_{q}\left(r^{p}-1\right)=0$, and $v_{q}\left(r^{p^{2}}-1\right)=1$. The existence of such primes q and r for each odd prime p is a consequence of Dirichlet's Theorem on primes in arithmetic progression. Indeed, given p and q primes with $v_{p}(q-1)=2$, there is an integer k, coprime to q such that the order of k modulo q^{2} is p^{2}. Choose a prime r for which $r \equiv k+q \bmod q^{2}$ and $r \equiv 1+p^{2} \bmod p^{3}$. Then p, q and r satisfy the given conditions.

Let K be the compositum of K^{\prime} and $K^{\prime \prime}$, the unique subextensions of index p in $\mathbb{Q}\left(\zeta_{p^{2} q}\right) / \mathbb{Q}\left(\zeta_{p^{2}}\right)$ and $\mathbb{Q}\left(\zeta_{p^{2} r}\right) / \mathbb{Q}\left(\zeta_{p^{2}}\right)$ respectively. Then $m=p^{2} r q, a=2$ and $L=\mathbb{Q}\left(\zeta_{m}\right)=K\left(\zeta_{q}\right) \otimes_{K} K\left(\zeta_{r}\right)$. Therefore, $F=\mathbb{Q}\left(\zeta_{p^{4} q r}\right)$, and $G=\operatorname{Gal}\left(F / K\left(\zeta_{q r}\right)\right) \times \operatorname{Gal}\left(F / K\left(\zeta_{p^{4} q}\right)\right) \times \operatorname{Gal}\left(F / K\left(\zeta_{p^{4} r}\right)\right)$. We may choose σ so that $\langle\sigma\rangle=\operatorname{Gal}\left(F / K\left(\zeta_{q r}\right)\right) \cong G / C$ has order p^{2}. The inertia subgroup of r in G is $\operatorname{Gal}\left(F / K\left(\zeta_{p^{4} q}\right)\right)$, which is generated by an element θ of order p.

Since $K=K^{\prime} \otimes_{\mathbb{Q}\left(\zeta_{p^{2}}\right)} K^{\prime \prime}$ and $K^{\prime \prime} / \mathbb{Q}\left(\zeta_{p^{2}}\right)$ is totally ramified at r, we have that K_{r}^{\prime} is the maximal unramified extension of K_{r} / \mathbb{Q}_{r}. It follows from $v_{q}\left(r^{p^{2}}-1\right)=1$ and $v_{q}\left(r^{p}-1\right)=0$ that $\left[\mathbb{Q}_{r}\left(\zeta_{q}\right): \mathbb{Q}_{r}\right]=p^{2}$, and so $\left[K_{r}^{\prime}: \mathbb{Q}_{r}\right]=p=f(K / \mathbb{Q}, r)$. Therefore $v_{p}\left(\left|W\left(K_{r}\right)\right|\right)=v_{p}\left(\left|W\left(\mathbb{Q}_{r}\right)\right|\right)+$ $f(r)=v_{p}(r-1)+1=3$, and so we have $\nu(r)=\max \left\{0, a+v_{p}(|\theta|)-v_{p}\left(\left|W\left(K_{r}\right)\right|\right)\right\}=0$. Since $|C|=p$ and θ has order p, we also see that $\theta^{f(r)} C^{p^{2}}$ is trivial, so $v_{p}\left(\left|\theta^{f(r)} C^{p^{2}}\right|\right)=0$.

Let ψ_{r} be the Frobenius automorphism of r in $\operatorname{Gal}(F / \mathbb{Q})$. Then $\psi_{r}^{p}=\sigma^{p} \eta$, where $\eta \in B$ generates $\operatorname{Gal}\left(F / K\left(\zeta_{p^{4} r}\right)\right)$. Since $\langle\theta\rangle \cap\langle\eta\rangle=1$, it follows from Lemma 9 that $h=v_{p}(|\theta|)=1$. So case (2b) of Theorem 13 applies to show that $\beta_{p}(r)=h=1$.

References

[AS] S.A. Amitsur and D. Saltman, Generic abelian crossed products and p-algebras, J. Algebra 51 (1978), 76-87.
[BS] M. Benard and M. Schacher, The Schur subgroup II, J. Algebra 22 (1972), 378-385.
[Jan] G.J. Janusz, The Schur group of an algebraic number field, Ann. of Math. (2) 103 (1976), 253-281.
[HOR] A. Herman, G. Olteanu, Á. del Río, The gap between the Schur group and the subgroup generated by cyclic cyclotomic algebras, preprint.
[Pen1] J.W. Pendergrass, The 2-part of the Schur group, J. Algebra 41 (1976), 422-438.
[Pen2] J.W. Pendergrass, The Schur subgroup of the Brauer group, Pacific J. Math. 69 (1977), 477-499.
[Rob] D.K.S. Robinson, A course in the theory of groups, Springer 1982.
[Ser] J.-P. Serre, Local fields, Springer 1979
[Yam] T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics 397, Springer-Verlag, 1974.

Department of Mathematics, University of Regina, Regina, Canada
E-mail address: aherman@math.uregina.ca
Department of Mathematics and Computer Science, North University of Baia Mare, Victoriei 76, 430122 Baia Mare, Romania and Faculty of Mathematics and Computer Science, Babes-Bolyai University, M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania.

E-mail address: olteanu@math.ubbcluj.ro, golteanu@um.es
Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, España
E-mail address: adelrio@um.es

[^0]: Research supported by the National Science and Engineering Research Council of Canada, UEFISCSU project ID 532, contract no. 29/28.09.2007, D.G.I. of Spain and Fundación Séneca of Murcia.

