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Abstract. Let K be an abelian extension of the rationals. Let S(K) be the Schur group of

K and let CC(K) be the subgroup of S(K) generated by classes containing cyclic cyclotomic

algebras. We characterize when CC(K) has finite index in S(K) in terms of the relative position

of K in the lattice of cyclotomic extensions of the rationals.

1. Introduction

Throughout this article, K is an abelian extension of the rationals, Br(K) denotes the Brauer
group of K and S(K) the Schur subgroup of K. Recall that a cyclotomic algebra over K is a
crossed product (E/K,α), where E/K is a finite cyclotomic extension and α is a factor set taking
values in the group of roots of unity of E. If (E/K,α) is a cyclotomic algebra and the extension
E/K is cyclic then we say that (E/K,α) is a cyclic cyclotomic algebra. Some properties of cyclic
cyclotomic algebras with respect to ring isomorphism were studied in [HOR1].

It is well known that every element of Br(K) is represented by a cyclic algebra over K and
every element of S(K) is represented by a cyclotomic algebra over K [Yam]. However, in general,
not every element of S(K) is represented by a cyclic cyclotomic algebra. In fact, as we will see
in this paper, in general, S(K) is not generated by classes represented by cyclic cyclotomic
algebras.

Let CC(K) denote the subgroup of S(K) generated by classes containing cyclic cyclotomic
algebras. In other words CC(K) is formed by elements of S(K) represented by tensor products
of cyclic cyclotomic algebras. The aim of this article is to study the gap between S(K) and
CC(K). More precisely, we give a characterization of when CC(K) has finite index in S(K) in
terms of the relative position of K in the lattice of cyclotomic extensions of the rationals.

For every positive integer n, let ζn denote a complex primitive n-th root of unity. By the
Benard-Schacher Theorem [BS], S(K) =

⊕
p S(K)p, where p runs over the primes such that

ζp ∈ K and S(K)p denotes the p-primary part of S(K). Thus CC(K) has finite index in S(K)
if and only if CC(K)p = CC(K) ∩ S(K)p has finite index in S(K)p for every prime p with
ζp ∈ K. Therefore, we are going to fix a prime p such that ζp ∈ K and our main result gives
necessary and sufficient conditions for [S(K)p : CC(K)p] < ∞, in terms of the Galois group of
a certain cyclotomic field F that we are going to introduce next.
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Let L = Q(ζm) be a minimal cyclotomic field containing K, a the maximum positive integer
such that ζpa ∈ K, s the maximum positive integer such that ζps ∈ L and

b =


s, if p is odd or ζ4 ∈ K,
s+ vp([K ∩Q(ζps) : Q]) + 2, if Gal(K(ζp2a+s)/K) is not cyclic,
s+ 1, otherwise,

where vp : Q → Z denotes the p-adic valuation. Then we let ζ = ζpa+b and define F = L(ζ).
The Galois groups of F mentioned above are

Γ = Gal(F/Q), G = Gal(F/K), C = Gal(F/K(ζ)) and D = Gal(F/K(ζ + ζ−1)).

Notice that if C 6= D then pa = 2 and ρ(ζ) = ζ−1 for every ρ ∈ D \ C. On the other hand
D 6= G. Indeed, otherwise ζpa+b + ζ−1

pa+b
= ζ + ζ−1 ∈ Q(ζ) ∩ L = Q(ζps). Since a ≥ 1 and b ≥ s,

this implies that p = 2, a = 1 and b = s, in contradiction with the definition of b.
We need to fix elements ρ, σ of G, with G = 〈ρ, σ, C〉, such that D = B×〈ρ〉 and C = B×〈ρ2〉

for some subgroup B of C and G/C = 〈ρC〉× 〈σC〉. Furthermore, if G/C is cyclic (equivalently
C = D) then we select ρ = 1 and otherwise σ is selected so that σ(ζ4) = ζ4. The existence of
such ρ and σ in G follows by standard arguments (see [Pen1, Lemma 1.4] or [HOR2, Lemma 3]).

The order of a group element g is denoted by |g|. Finally, to every ψ ∈ Γ we associate two
non-negative integers,

d(ψ) = min{a,max{h ≥ 0 : ψ(ζph) = ζph}} and ν(ψ) = max{0, a− vp(|ψG|)},

and a subgroup of C:
T (ψ) = {η ∈ B : ηp

ν(ψ) ∈ Bpd(ψ)}.

Now we are ready to state our main result.

Theorem 1. Let K be an abelian extension of the rationals, p a prime integer and use the above
notation.

If G/C is cyclic then the following are equivalent.

(1) CC(K)p has finite index in S(K)p.

(2) For every ψ ∈ Γp one has ψ|ψG| ∈
|σC|−1⋃
i=0

σiT (ψ).

(3) For every ψ ∈ Γp satisfying ν(ψ) < min{vp(expB), d(ψ)}, one has ψ|ψG| ∈
|σC|−1⋃
i=0

σiT (ψ).

If G/C is non-cyclic then the following are equivalent:

(1) CC(K)2 has finite index in S(K)2.
(2) For every ψ ∈ Γ2 \G, if d = v2([K ∩Q(ζ) : Q]) + 2 then

ψ|ψG| ∈ Gal(F/Q(ζ2d+1)) ∩

|σC|−1⋃
i=0

σi〈ρ, T (ψ)〉

 .

Notice that conditions (2) and (3) in Theorem 1 can be verified by elementary computations
in the Galois group Γ.
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2. The subgroup of S(K) generated by cyclic cyclotomic algebras

In this section we provide some information on the structure of CC(K)p. We start by in-
troducing some notation and recalling some known facts about local information concerning
S(K).

The group of roots of unity of a field E is denoted by W (E). If A is a central simple K-
algebra then [A] denotes the class in the Brauer group of K containing A. By a crossed product
algebra we mean an associative algebra A = (E/K,α) =

⊕
π∈Gal(E/K)Euπ, where E/K is a

finite Galois extension, α : Gal(E/K) × Gal(E/K) → E∗ is a map, {uπ : π ∈ Gal(E/K)} is
an E-basis of units of A and the product in A is determined by the rules: uπuτ = απ,τuπτ

and uπa = π(a)uπ. The map α is called the factor set of the crossed product and the basis
{uπ : π ∈ Gal(E/K)} is called a crossed section of the crossed product. Replacing each element
uπ of a crossed section by vπ = λπuπ, for λπ a non-zero element of E gives rise to another crossed
section of the crossed product which yields a different factor set. This change of crossed section
is called a diagonal change of basis. A cyclotomic algebra over K is a crossed product algebra
(E/K,α) for which E/K is a finite cyclotomic extension and the factor set α takes values in
W (E). When Gal(E/K) = 〈τ〉 is a cyclic group, there exists a diagonal change of basis for
which uτ i = uiτ , for every 0 ≤ i ≤ |τ |, and hence the corresponding factor set is determined by
u
|τ |
τ = ζ ∈ K∗. The corresponding crossed product algebra is called a cyclic algebra, which we

will denote by (E/K, ζ).
Let P = {r ∈ N : r is prime} ∪ {∞}. Given r ∈ P, we are going to abuse the notation and

denote by Kr the completion of K at a (any) prime of K dividing r. If E/K is a finite Galois
extension, one may assume that the prime of E dividing r, used to compute Er, divides the
prime of K over r, used to compute Kr. We use the classical notation:

e(E/K, r) = e(Er/Kr) = ramification index of Er/Kr.
f(E/K, r) = f(Er/Kr) = residue degree of Er/Kr.

mr(A) = Index of Kr ⊗K A, for a Schur algebra A over K.
Since E/K is a finite Galois extension and A has uniformly distributed invariants, e(E/K, r),

f(E/K, r) and mr(A) do not depend on the selection of the prime of K dividing r (see [Ser] and
[Ben]).

We also use the following notation, for π ⊆ P and r ∈ P:
S(K,π) = {[A] ∈ S(K) : mr(A) = 1, for each r ∈ P \ π},
S(K, r) = S(K, {r}),

CC(K,π) = CC(K) ∩ S(K,π),
CC(K, r) = CC(K) ∩ S(K, r),

Pp =
{
r ∈ P \ {∞} : CC(K, {r,∞})p = CC(K, r)p

⊕
CC(K,∞)p

}
.

If p is odd or ζ4 ∈ K then m∞(A) = 1 for each Schur algebra A and so Pp = P \ {∞}.
Finally, if r is odd then we set

ν(r) = max{0, a+ vp(e(K(ζr)/K, r))− vp(|W (Kr)|)}.

The following theorem provides information on the structure of CC(K)p.
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Theorem 2.1. For every prime p we have

CC(K)p =

⊕
r∈Pp

CC(K, r)p

 ⊕  ⊕
r∈P\Pp

CC(K, {r,∞})p

 .

Let Xr denote the direct summand labelled by r in the previous decomposition, that is

Xr =

{
CC(K, r)p, if r ∈ Pp;
CC(K, {r,∞})p, if r ∈ P \ Pp

Then we have

(1) If r is odd then Xr is cyclic of order pν(r) and it is generated by the class of (K(ζr)/K, ζpa).
(2) X2 has order 1 or 2 and if it has order 2 then pa = 2 and X2 is generated by the class

of (K(ζ4)/K,−1).
(3) If X∞ 6= 1, then p = 2, K ⊆ R, and X∞ has exponent 2.

Proof. Let A = (E/K, ξ) be a cyclic cyclotomic algebra with [A] ∈ S(K)p. One may assume
without loss of generality that ξ ∈W (K)p. For every subextension M of E/K let M ′ denote the
maximal subextension of M/K of degree a power of p. Since E/K is cyclic, the subextensions of
E/K of degree a power of p are linearly ordered. This implies that E′ = K(ζrk)′ for some prime
r and integer k. Furthermore, if ` = [E : K(ζrk)], then [A⊗`] = [(E/K, ξ`)] = [(K(ζrk)/K, ξ)].
Since ` is coprime to p, mq(A) = mq(A⊗`) = mq(K(ζrk)/K, ξ), for every q ∈ P. If q 6∈ {r,∞}
then K(ζrk)/K is unramified at q and therefore mq(A) = 1 [Rei, pg. 67, Exercise 16]. Thus
[A] ∈ CC(K, {r,∞}). This shows that CC(K)p =

∑
r∈P\{∞}CC(K, {r,∞})p.

If P \ {∞} = Pp then this implies that

CC(K)p =
⊕
r∈P

CC(K, r) =

⊕
r∈Pp

CC(K, r)

 ⊕
CC(K,∞)

as wanted. Assume otherwise that P \ {∞} 6= Pp. If 1 6= [A] ∈ CC(K,∞) then for every r ∈ P
and [B] ∈ CC(K, {r,∞})\CC(K, r) one has [B] = [A⊗B] · [A] and [A⊗B] ∈ CC(K, r), because
Br(K∞) has order 2. This implies that CC(K, {r,∞}) = CC(K, r)

⊕
CC(K,∞), contradicting

the hypothesis. Hence CC(K,∞) = 1 and then

CC(K)p =

⊕
r∈Pp

CC(K, r)p

 ⊕  ⊕
r∈P\Pp

CC(K, {r,∞})p


as desired.

(1). Let r ∈ P. The map Kr ⊗K − : Xr → S(Kr) is an injective group homomorphism. If
r is odd then S(Kr) is cyclic of order e(K(ζr)/K, r) and it is generated by the cyclic algebra
(Kr(ζr)/Kr, ζn), where n = |W (Kr)| (see e.g. [Yam]). Therefore Xr is cyclic and hence it is
generated by a class containing a cyclic cyclotomic algebra A. As above we may assume that
A = (K(ζrk)/K, ζ`pa) for some k, ` ≥ 1. Since [A] = [(K(ζrk)/K, ζpa)]`, one may assume that ` =
1. Then |Xr| = mr(A) = mr((K(ζrk)′/K, ζpa)) = mr((K(ζr)/K, ζpa)) = m((Kr(ζr)/Kr, ζpa)) =
m((Kr(ζr)/Kr, ζpa+a(r))

⊗a(r)) = pν(r), where a+ a(r) = vp(n). This proves (1).
(2) and (3) follow by similar or standard arguments. �
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Remark 2.2. Notice that the proof of Theorem 2.1 shows that if A is a cyclic cyclotomic algebra
of index a power of p then [A] ∈ S(K, {r,∞}) for some prime r ∈ P \ {∞} and if p is odd or
ζ4 ∈ K then [A] ∈ S(K, r).

By Theorem 2.1, if r is odd then ν(r) = max{vp(mr(A)) : [A] ∈ CC(K)p}. We can extend
the definition of ν(r) by setting ν(2) = max{vp(m2(A)) : [A] ∈ CC(K)p}. Notice that ν(2) ≤ 1
and ν(2) = 1 if and only if pa = 2 and (K(ζ4)/K,−1) is non-split. We will need to compare
ν(r) to

β(r) = max{vp(mr(A)) : [A] ∈ S(K)p}.

Recall that S(Kr) is finite (see e.g. [Yam]) and so β(r) <∞.
A consequence of Theorem 2.1 is the following.

Corollary 2.3. Let r ∈ P. Then

(1) CC(K)p = S(K)p if and only if ν(r) = β(r) for each r ∈ P \ {∞}.
(2) CC(K)p has finite index in S(K)p if and only if ν(r) = β(r) for all but finitely many

primes r.

Proof. We prove (2) and let the reader to adapt the proof to show (1).
Assume that CC(K)p has finite index in S(K) and let [A1], . . . , [An] be a complete set of

representatives of cosets modulo CC(K)p. Then π = {r ∈ P : mr(Ai) 6= 1 for some i} is
finite and ν(r) = β(r) for every r ∈ P \ π. Conversely, assume that ν(r) = β(r) for every
r ∈ P \ π, with π a finite subset of P containing ∞. Then S(K,π)p is finite and we claim that
S(K)p = S(K,π)p + CC(K)p. Let [B] ∈ S(K)p. We prove that [B] ∈ S(K,π)p + CC(K)p
by induction on h(B) =

∏
r∈P\πmr(B). If h(B) = 1 then [B] ∈ S(K,π)p and the claim

follows. Assume that h(B) > 1 and the induction hypothesis. Then there is a cyclic cyclotomic
algebra A and r ∈ P \ π such that mr(B) = mr(A) > 1. Since S(Kr) is cyclic, there is a
positive integer ` coprime to mr(B) such that (A⊗`) ⊗K Kr

∼= B ⊗K Kr as Kr-algebras. Let
C = (Aop)⊗` ⊗ B. Since A⊗` ∈ CC(K, {r,∞})p, it follows that h(C) = h(B)

mr(A) < h(B), and
hence [C] ∈ S(K,π)p + CC(K)p, by the induction hypothesis. Therefore, [B] = [A]`[C] ∈
S(K,π)p + CC(K)p, as required. �

Notice that for p odd Corollary 2.3 is a straightforward consequence of the decomposition of
CC(K)p given in Theorem 2.1 and the Janusz Decomposition Theorem [Jan2].

3. Examples

In this section we present several examples comparing S(K) and CC(K) for various fields.
We use the standard notation for the generalized quaternion algebra:(

a, b

K

)
= K[i, j|i2 = a, j2 = b, ji = −ij, a, b ∈ K∗] and H(K) =

(
−1,−1
K

)
.

Example 3.1. K = Q.
It follows from the Hasse–Brauer–Noether–Albert Theorem that CC(Q, r) is trivial for all

primes r. The cyclic cyclotomic algebra H2,∞ = H(Q) = (Q(ζ4)/Q,−1) is a rational quaternion
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algebra which lies in CC(Q, {2,∞}). When r is odd, the cyclic algebra Hr,∞ = (Q(ζr)/Q,−1)
has real completion R ⊗Q Hr,∞ ' Mn(H(R)), for n = r−1

2 , so m∞(Hr,∞) = 2. The extension
Qr(ζr)/Qr is unramified at primes other than r, so [Hr,∞] ∈ CC(Q, {r,∞}) (and mr(Hr,∞) must
be 2). If r and q are distinct finite primes, then [Hr,∞][Hq,∞] is an element of CC(Q, {r, q}),
and it follows from Remark 2.2 that this element cannot be represented by a cyclic cyclotomic
algebra. Nevertheless, it is easy to see at this point that S(Q) = CC(Q).

The smallest example of an algebra representing an element in CC(Q, {2, 3}) is the general-
ized quaternion algebra

(
−3,2

Q

)
. The algebra of 2 × 2 matrices over

(
−3,2

Q

)
is isomorphic to a

simple component of the rational group algebra of the group of order 48 that has the following
presentation 〈x, y, z : x12 = y2 = z2 = 1, xy = x5, xz = x7, [y, z] = x9〉.

Example 3.2. CC(K,∞) 6= 1.
It is also possible that CC(K,∞) is non-trivial. For example, H(Q(

√
2)) = (Q(ζ8)/Q(

√
2),−1)

is homomorphic to a simple component of the rational group algebra of the generalized quater-
nion group of order 16. It has real completion isomorphic to H(R) at both infinite primes of
Q(
√

2), so m∞(H(Q(
√

2))) = 2. If r is an odd prime then mr(H(Q(
√

2))) = 1. Since Q2(
√

2)/Q2

is ramified and the sum of the local invariants at infinite primes is an integer, we deduce that
m2(H(Q(

√
2))) = 1, so it follows that [H(Q(

√
2))] ∈ CC(Q(

√
2),∞).

Example 3.3. Cyclotomic fields.
Suppose K = Q(ζm) for some positive integer m > 2. Assume that either m is odd or 4|m.

The main theorem of [Jan3] shows that if p is a prime dividing m and m = pnm0 with m0

coprime to p, then

S(Q(ζm))p = {[A⊗Q(ζpn ) Q(ζm)] : [A] ∈ S(Q(ζpn))p}.

When pn > 2, we know by [BS, Theorem 3] that S(Q(ζpn))p is generated by the Brauer classes of
characters of certain metacyclic groups, which, in their most natural crossed product presenta-
tion, take the form of cyclic cyclotomic algebras. Therefore, S(Q(ζpn))p = CC(Q(ζpn))p. Since
it is easy to see that when K is an extension of a field E, {[A⊗E K] : [A] ∈ CC(E)} ⊆ CC(K),
we can conclude that S(Q(ζm)) = CC(Q(ζm)) for all positive integers m.

Combining Corollary 2.3 with the results of [Jan2] one can obtain examples with S(K)p 6=
CC(K)p.

Example 3.4. CC(K)p 6= S(K)p, p odd.
By Theorem 2.1, if CC(K)p = S(K)p then S(K)p =

⊕
r∈P S(K, r)p. However Proposition

6.2 of [Jan2] shows that for every odd prime p there are infinitely many abelian extensions K
of Q such that S(K)p 6=

⊕
r∈P S(K, r)p. Thus for such fields K one has S(K)p 6= CC(K)p.

Example 3.5. CC(K)2 6= S(K)2 with ζ4 ∈ K.
Let q be a prime of the form 1 + 5 · 29t with (t, 10) = 1. In the last section of [Jan3] one

constructs a subfield K of Q(ζ29·5·q) such that max{mq(A) : [A] ∈ S(K)2} = 4 (in particular
ζ4 ∈ K), and for every [A] ∈ S(K)2 with mq(A) = 4, one has mr(A) 6= 1, for some prime r not
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dividing 10q. In the notation of Corollary 2.3 this means that v2(|S(K, q)|) < β(q) = 4 (for p =
2). Then S(K)2 6=

⊕
r∈P S(K, r)2 and, as in Example 3.4, this implies that CC(K)2 6= S(K)2.

Example 3.6. CC(K)2 6= S(K)2 with ζ4 6∈ K.
An example with S(K)2 6= CC(K)2 and ζ4 6∈ K can be obtained using Theorem 5 of [Jan1].

This result gives necessary and sufficient conditions for S(k) to have order 2 when k is a cy-
clotomic extension of Q2. This is the maximal 2-local index for a Schur algebra. If |S(k)| = 2
then ζ4 6∈ k. If, moreover, H = (k(ζ4)/k,−1) is not split then CC(k)2 = S(k)2, because H is
a cyclic cyclotomic algebra. However, there are some fields k for which |S(k)| = 2 and H is
split. In that case S(k) is generated by the class of a cyclotomic algebra A and we are going to
show that CC(k) 6= S(k). Then for any algebraic number field with K2 = k we will also have
CC(K)2 6= S(K)2.

Indeed, if CC(k) = S(k) then A is equivalent to a cyclic cyclotomic algebra (k(ζm)/k, ζ).
One may assume that ζ ∈W (k)2 \ {1} and hence ζ = −1, because ζ4 6∈ k. Write m = 2v2(m)m′,
with m′ odd. Since k(ζm)/k must be ramified, v2(m) ≥ 2. If k(ζm′)/k has even degree then
this would contradict the fact that k(ζm)/k is cyclic. So k(ζm′)/k has odd degree and therefore
(k(ζm)/k,−1) is equivalent to (k(ζ2vp(m))/k,−1) by [Rei, (30.10)]. Then A is equivalent to
(k(ζ4)/k,−1) by [Jan1, Theorem 1], yielding a contradiction.

4. Finiteness of S(K)p/CC(K)p

In this section we prove Theorem 1. The main idea is to compare ν(r) and β(r) for odd
primes r not dividing m. We will use the notation introduced in sections 1 and 2 including the
Galois groups Γ, G, C, D, and B, the elements ρ, σ ∈ G, and the decompositions D = 〈ρ〉 × B

and C = 〈ρ2〉 ×B.
We also use the following numerical notation for every odd prime r not dividing m:
a+ a(r) = vp(|W (Kr)|),

d(r) = min{a, vp(r − 1)},
fr = f(K/Q, r),

f(r) = vp(fr),
and introduce ψr ∈ Γ and φr ∈ G as follows:

ψr(ε) = εr for every root of unity ε ∈ F, and φr = ψfrr .

The order of ψr modulo G is fr, and ψr and φr are Frobenius automorphisms at r in Γ and G
respectively. By the uniqueness of an unramified extension of a local field of given degree, one
has vp(|W (Kr)|) = vp(|W (Qr)|) + f(r) = vp(e(K(ζr)/K, r)) + f(r). Thus

(1) ν(r) = max{0, a− f(r)}.

This gives ν(r) in terms of the numerical information associated to r. Next we quote a
result from [HOR2] which gives the value of β(r). This result was obtained by Janusz [Jan2,
Theorem 3] in the case when p is odd or ζ4 ∈ K. The remaining case was considered by
Pendergrass in [Pen1], but the results there were based on incorrect calculations involving factor
sets (see [HOR2]).
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Theorem 4.1. Let r be an odd prime not dividing m and use the above notation. Let φr =
ψfrr = ρj

′
σjη, with η ∈ B, 0 ≤ j′ < |ρ| and 0 ≤ j < |σC|.

(1) If G/C is non-cyclic (and hence pa = 2) and j 6≡ j′ mod 2, then β(r) = 1.
(2) Otherwise β(r) = max{ν(r), vp(|ηBpd(r) |)}.

We will need the following lemma.

Lemma 4.2. ν(r) and β(r) depend only on d(r) and the element ψr ∈ Γ.

Proof. ν(r) is determined by f(r) (see (1)), and f(r) by fr = |ψrG|. So ν(r) is determined by
ψr. On the other hand, ψr = ρj

′
σjη for uniquely determined integers 0 ≤ j′ < |ρ|, 0 ≤ j < |σC|

and η ∈ B. Therefore, ψr determines whether or not j ≡ j′ mod 2, and also the element η
required in Theorem 4.1. So knowing ψr and d(r) will allow one to compute β(r). �

We can now give a necessary and sufficient condition, in local terms, for CC(K)p to have
finite index in S(K)p.

Theorem 4.3. CC(K)p has finite index in S(K)p if and only if ν(r) = β(r) for all odd primes
r not dividing m.

Proof. The sufficiency is a consequence of Corollary 2.3.
Suppose that there is an odd prime r not dividing m for which ν(r) < β(r). By Dirichlet’s

Theorem on primes in arithmetic progression there are infinitely many primes r′ such that
r′ ≡ r mod lcm(m, pa+b, pvp(r−1)+1). For such an r′ one has ψr′ = ψr and vp(r′−1) = vp(r−1).
Then β(r′) = β(r) > ν(r) = ν(r′) for infinitely many primes r′, by Lemma 4.2, and hence
[S(K)p : CC(K)p] = ∞, by Corollary 2.3. �

When p is odd, this result can be interpreted in terms of the local subgroups of S(K)p and
CC(K)p.

Theorem 4.4. Let K be a subfield of Q(ζn) and p an odd prime and n a positive integer. Then
the following conditions are equivalent:

(1) CC(K)p has finite index in S(K)p.
(2) CC(K, r)p = S(K, r)p, for almost all r ∈ P.
(3) CC(K, r)p = S(K, r)p, for every prime r not dividing n.

Proof. By the Janusz Decomposition Theorem [Jan2], we have

S(K)p = S(K,π)p
⊕ ⊕

r 6∈π
S(K, r)p

 ,

where π is the set of prime divisors of m, the smallest integer for which K ⊆ Q(ζm). This
shows that β(r) = vp(|S(K, r)|p), whenever r is a prime that does not divide m and hence, for
such primes ν(r) = β(r) if and only if CC(K, r)p = S(K, r)p. Now the results follows from
Corollary 2.3 and Theorem 4.3. �

An obvious consequence of Theorem 4.4 is the following:
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Corollary 4.5. If K is a subfield of Q(ζn) and p is an odd prime then the order of the group⊕
r∈P,r-n S(K, r)p/CC(K, r)p is either 1 or infinity.

We now proceed with the proof of the main theorem.

Proof of Theorem 1. For each ψ ∈ Γ we put h(ψ) = max{0 ≤ h ≤ a+ b : ψ(ζph) = ζph}.
Clearly d(ψ) = min{a, h(ψ)}. By Dirichlet’s Theorem on primes in arithmetic progression, for
every ψ ∈ Γ there exists an odd prime r not dividing m such that ψ = ψr. For such a prime
one has h(ψ) = min{a + b, vp(r − 1)}. This prime r can be selected so that h(ψ) = vp(r − 1),
because otherwise we would have h(ψ) = a+ b < vp(r− 1), and we could replace r by a prime r′

satisfying r′ ≡ r mod m and r′ ≡ 1 + pa+b mod pa+b+1. For such an r′, one has d(r) = d(r′),
and thus ν(r) = ν(r′) and β(r) = β(r′) by Lemma 4.2.

Let q = |σC|.
We now consider the case when G/C is cyclic. Then D = C = B and ρ = 1. We set

t = vp(exp(B)). If t = 0, then T (ψ) = B for every ψ ∈ Γp, so that (2) and (3) obviously
hold. Furthermore |ηBpd(r) | = 1 and so ν(r) = β(r) for all odd primes r not dividing m, by
Theorem 4.1. So (1) holds by Theorem 4.3. So to avoid trivialities we assume that t > 0.

(1) implies (2). Suppose K does not satisfy condition (2) and let ψ ∈ Γp with ψ|ψG| 6∈⋃q−1
j=0 σ

iT (ψ). Let r be an odd prime not dividing m for which ψ = ψr and h(ψ) = vp(r − 1).
Then d(r) = d(ψ) and pf(r) = fr = |ψG|, so ν(r) = ν(ψ). The assumption ψ|ψG| 6∈

⋃q−1
j=0 σ

iT (ψ)

means that when we express ψ|ψG| as σjη with 0 ≤ j < q and η ∈ B, the order of ηBpd(ψ)
in

B/Bpd(ψ)
is strictly greater than pν(ψ) = pν(r). By Theorem 4.1, we have β(r) > ν(r) for this

odd prime r not dividing m, and so Theorem 4.3 implies that (1) fails.
(2) implies (3) is obvious.
(3) implies (1). Assume that (1) fails. Then, by Theorem 4.3, there exists a prime r not

dividing m for which β(r) > ν(r). As above, we may select such an r so that vp(r − 1) ≤ a+ b.
Let ψ = ψr. Our choice of r implies that d(ψ) = d(r). We claim that one can assume

ψ ∈ Γp. If ψ 6∈ Γp, then let ` be the least positive integer such that ψ` lies in Γp. Let r′

be a prime integer such that r′ ≡ r` mod lcm(m, pa+b). Since ` is coprime to p, we have
vp(r′ − 1) = vp(r` − 1) = vp(r − 1) and therefore d(ψ`) = d(r′) = d(r) = d(ψ). Since ψr′ = ψ`r
and ` is coprime to p, we also have f(r′) = f(r) = f(ψ). It follows from Lemma 4.2 that
β(r) = β(r′) and ν(r) = ν(r′). So by replacing r by r′ if necessary, one may assume that ψ ∈ Γp
and d(ψ) = d(r).

For this prime r and element ψ = ψr ∈ Γp, the assumption β(r) > ν(r) and Theorem 4.1 imply
that, when we write φr = ψfr = σjη, with 0 ≤ j < q and η ∈ B, the order of ηBpd(r) in B/Bpd(r)

is precisely pβ(r). Then ηp
ν(r) 6∈ Bpd(r) , equivalently η 6∈ T (ψ) and hence ψ|ψG| 6∈

⋃q−1
j=0 σ

iT (ψ).

Since the exponent of B/Bpd(r) is precisely pk, where k = min{t, d(r)}, this can only be
possible if ν(ψ) = ν(r) < k = min{t, d(ψ)}. This shows that if condition (1) fails, then condition
(3) also fails. This completes the proof in the case that G/C is cyclic.
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Now suppose G/C is non-cyclic. In particular, pa = 2 and σ(ζ4) = ζ4. Let d = v2([K ∩Q(ζ) :
Q]) + 2 and let c be an integer such that σ(ζ) = ζc. Then vp(c − 1) = d and d(ψ) = 1 for all
ψ ∈ Γ2.

(1) implies (2). Suppose (2) fails. Then there exists a ψ ∈ Γ2 \ G such that either ψ|ψG| 6∈
Gal(F/Q(ζ2d+1)) or ψ|ψG| 6∈

⋃q−1
i=0 σ

i〈ρ, T (ψ)〉.
As above, there exists an odd prime r not dividing m such that ψ = ψr, |ψG| = fr, and

ν(ψ) = ν(r). Since ψ 6∈ G we have f(r) > 0 and so ν(r) = 0, by (1). Also from f(r) > 0 one
deduces that φr = ψfr fixes ζ4 and so when we write φr = ρj

′
σjη with 0 ≤ j′ < |ρ|, 0 ≤ j ≤ q,

η ∈ B, we have that j′ is even.
If φr 6∈ Gal(F/Q(ζ2d+1)), then j is odd, and we are in the case of Theorem 4.1, part (1), with

ν(r) = 0 and β(r) = 1. Otherwise j is even and ψ|ψG| 6∈
⋃q−1
i=0 σ

i〈ρ, T (ψ)〉. Then η 6∈ T (ψ),
or equivalently, ν(r) < v2(|ηB2|) (observe that d(r) = 1). By Theorem 4.1, we have β(r) =
v2(|ηB2|) > ν(r). Therefore, in all cases in which (2) fails, we have ν(r) < β(r). So (1) fails by
Theorem 4.3.

(2) implies (1). Suppose (1) fails. By Theorem 4.3, there exists an odd prime r not dividing m
such that 0 = ν(r) < β(r) = 1. Since ν(r) = 0, we must have f(r) > 0, so ψ = ψr 6∈ G. As above,
we may adjust ψr by an odd power and make a different choice of r without changing ν(r) or β(r)
in order to arrange that ψ ∈ Γ2. Write φr = ψfr = ψ|ψG| = ρj

′
σjη, with 0 ≤ j′ < |ρ|, 0 ≤ j < q

and η ∈ B. As above, j′ is even because f(r) > 0. If j is odd, then ψ|ψG| 6∈ Gal(F/Q(ζ2d+1))
and so (2) fails. Suppose now that j is even, so we have ψ|ψG| ∈ Gal(F/Q(ζ2d+1)). Then the
fact that β(r) = 1 implies by Theorem 4.1, part (2), that |ηB2d(r) | = 2. Since d(r) ≤ a = 1, we
have d(ψ) = d(r) = 2 and so η 6∈ B2 and η 6∈ T (ψ). Then ψ|ψG| 6∈

∏q−1
i=0 σ

i〈ρ, T (ψ)〉 and so (2)
fails. �

Some obvious consequences of Theorem 1 are the following.

Corollary 4.6. If ψ|ψG| 6∈ 〈σ, ρ, T (ψ)〉, for some ψ ∈ Γp, then CC(K)p does not have finite
index in S(K)p.

Corollary 4.7. If G/C is cyclic and ν(ψ) ≥ min{vp(expB), d(ψ)} for all ψ ∈ Γp, then CC(K)p
has finite index in S(K)p.

Corollary 4.8. If G/C is cyclic and vp(expB) + vp(exp(Gal(K/Q))) ≤ a then CC(K)p has
finite index in S(K)p.

Proof. If ψ ∈ Γp then vp(|ψG|) ≤ vp(exp(Gal(K/Q))) ≤ a−vp(expB), by assumption. Therefore
ν(ψ) = max{0, a− vp(|ψG|)} ≥ vp(expB) and Corollary 4.7 applies. �

Example 4.9. A simple example with [S(K)p : CC(K)p] = ∞.
Let p and q be odd primes with vp(q−1) = 2. Let K be the subextension of L = Q(ζpq)/Q(ζp)

with index p in Q(ζpq). Then F = Q(ζp2q), G ∼= 〈θ〉 × C is elementary abelian of order p2, and
Γp has an element ψ such that ψp generates C. Then a = vp(|ψG|) = 1 and so ν(ψ) = 0 and
d(ψ) = 1. Therefore, T (ψ) = 1 and hence 〈σ, T (ψ)〉 = 〈σ〉. However 〈σ〉 ∩ C = 1 and hence
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ψ|ψG| = ψp 6∈ 〈σ, T (ψ)〉. So it follows from Corollary 4.6 that CC(K)p has infinite index in
S(K)p.

The reader may check using Theorem 1 that [S(K)p : CC(K)p] = ∞ for the fields K con-
structed by Janusz that were mentioned in Example 3.4. The same holds for the field of Ex-
ample 3.5. This can be verified using the arguments in the proofs of Lemmas 4.2 and 6.4 and
Proposition 6.5 in [Jan2] where it is proved that 0 = vp(|S(K, q)|) < β(q) for all the primes q
such that q ≡ 1 mod 16 and r is not a square modulo q.

In all the examples shown so far, the index of CC(K)p in S(K)p is either 1 or infinity. This,
together with Corollary 4.5, may lead one to believe that the quotient group S(K)p/CC(K)p is
either trivial or infinite for every field K and every prime p. By Corollary 2.3 and Theorem 4.3,
S(K)p/CC(K)p is both finite and non-trivial if and only if ν(r) = β(r) for every odd prime not
dividing m and ν(r) 6= β(r) for r either 2 or an odd prime dividing m. In the following example
we show that for every odd prime p there exists a field K satisfying these conditions.

Example 4.10. An example with CC(K)p 6= S(K)p and [S(K)p : CC(K)p] <∞.
Let p be an arbitrary odd prime and let q and r be primes for which vp(q−1) = vp(r−1) = 2,

vq(rp − 1) = 0, and vq(rp
2 − 1) = 1. The existence of such primes q and r for each odd prime

p is a consequence of Dirichlet’s Theorem on primes in arithmetic progression. Indeed, given p

and q primes with vp(q − 1) = 2, there is an integer k, coprime to q such that the order of k
modulo q2 is p2. Choose a prime r for which r ≡ k + q mod q2 and r ≡ 1 + p2 mod p3. Then
p, q and r satisfy the given conditions.

LetK be the compositum ofK ′ andK ′′, the unique subextensions of index p in Q(ζp2q)/Q(ζp2)
and Q(ζp2r)/Q(ζp2) respectively. Then m = p2rq, a = 2 and L = Q(ζm) = K(ζq) ⊗K K(ζr).
Therefore, F = Q(ζp4qr), and G = Gal(F/K(ζqr)) × Gal(F/K(ζp4q)) × Gal(F/K(ζp4r)). We
may choose σ so that 〈σ〉 = Gal(F/K(ζqr)) ∼= G/C has order p2. The inertia subgroup of r
in G is Gal(F/K(ζp4q)), which is generated by an element θ of order p. Note that B = C and
vp(exp(Gal(K/Q))) = vp(expB) = 1 < a = 2. Hence K satisfies the conditions of Corollary 4.8
and so CC(K)p has finite index in S(K)p.

Since K = K ′ ⊗Q(ζp2 ) K
′′ and K ′′/Q(ζp2) is totally ramified at r, we have that K ′

r is the

maximal unramified extension of Kr/Qr. It follows from vq(rp
2 − 1) = 1 and vq(rp− 1) = 0 that

[Qr(ζq) : Qr] = p2, and so [K ′
r : Qr] = p = f(K/Q, r). Therefore vp(|W (Kr)|) = vp(|W (Qr)|) +

f(r) = vp(r − 1) + 1 = 3, and so we have ν(r) = max{0, a+ vp(|θ|)− vp(|W (Kr)|)} = 0.
Let ψr be the Frobenius automorphism of r in Gal(F/Q). Then ψpr = σpη, where η ∈ B

generates Gal(F/K(ζp4r)). Since 〈θ〉 ∩ 〈η〉 = 1, there exists a skew pairing Ψ : B×B →W (K)p
such that Ψ(θ, η) has order p. By [HOR2, Theorem 13], it follows that β(r) ≥ 1, and so
S(K)p 6= CC(K)p.

The last example shows that when G/C is noncyclic, it is possible for CC(K)2 to have infinite
index in S(K)2 even when t = v2(expB) = 0. It also is a counterexample to [Pen1, Theorem 2.2].

Example 4.11. An example with [S(K)2 : CC(K)2] = ∞ and C = 1.
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Let q be an odd prime greater than 5. Let K = Q(ζq,
√

2), and consider [S(K)2 : CC(K)2].
It is easy to see that pa = 2 and b = 2. Since Gal(K(ζ24)/K) is noncyclic, we compute
s = a + b + v2([Q(

√
2) : Q] + 2 = 6, and so F = Q(ζ64q). Since Q(ζq) ⊂ K, we have C =

Gal(F/K(ζ64)) = 1. For our generators of Gal(F/K), we may choose ρ, σ such that ρ(ζq) = ζq,
ρ(ζ64) = ζ−1

64 , σ(ζq) = ζq, and σ(ζ64) = ζ9
64. Let r be any prime for which r2 ≡ 1 mod q and

r ≡ 5 mod 26. Then ψr 6∈ G, but 52 ≡ 93 mod 64 implies that ψ2
r = σ3. This means that we

are in the case of Theorem 4.1 where ν(r) = 0 and j is odd, so β(r) = 1. So [S(K)2 : CC(K)2]
is infinite.
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