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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C
be a nonempty closed convex subset of H. A mapping T of C into itself is called
nonexpansive if [|Tx — Ty|| < ||z — y|| for all 2,y € C. We use Fiz(T) to denote the
set of fixed points T, i.e., Fiz(T) = {x € C : Tx = x}. Also, a contraction on C is
a self-mapping f of C such that ||f(z) — f(y)|| < &|lz — y|| for all z,y € C and some
constant x € [0,1). In this case f is said to be a k-contraction.

Consider an equilibrium problem (EP) which is to find a point v € C satisfying
the property:

¢(x,y) >0 forallyeC, (1.1)

where ¢ : C x C — R is a bifunction of C. We use EP(¢) to denote the set of
solutions of EP (1.1), that is, EP(¢) = {« € C': (1.1) holds}. The EP (1.1) includes,
as special cases, numerous problems in physics, optimization and economics. Some
authors (e.g., [19, 21, 20, 23, 25, 24, 26, 27]) have proposed some useful methods for
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solving the EP (1.1). Set ¢(x,y) = (Az,y — z) for all z,y € C, where A: C — H is
a nonlinear mapping. Then, z* € EP(¢) if and only if

(Az*,y —2*) >0 forallyeC, (1.2)

that is, z* is a solution of the variational inequality. The (1.2) is well known as the
classical variational inequality. The set of solutions of (1.2) is denoted by VI(A,C).

In 2008, Ceng et al. [12] considered the following problem of finding (z*, y*) € CxC
satisfying

{(uAy*+x*—y*,x—x*>20 forall z € C (1.3)

(uBx* +yx —z*,x—y*) >0 forallxeC,
which is called a general system of variational inequalities, where A, B : C — H are
two nonlinear mappings, A > 0 and g > 0 are two fixed constants. Precisely, they
introduced the following iterative algorithm:

r1=u€C,
Yn = Po(wy, — pBry),
Tn41 = QpU + ﬂnxn + ’)/nSPC(yn - )\Ayn)a

and obtained strong convergence theorem.
Recently, Cai et al. [3] introduced the following modified viscosity implicit rules

r €C

Up = SpTpn + (1 — $p)Yn

zn = Po(I — uB)uy,

Yn = Po(I — AA)zp,

Tpt1 = Pol(anf(Tn) + Bnzn + (1 = Bp)l — anpF)Tyn), n>1,
where F' is a Lipschitzian and strongly monotone map. Under some suitable assump-
tions imposed on the parameters, they obtained some strong convergence theorems.

In this paper, motivated by the above results, we propose a new composite iterative

scheme for finding a common element of the set of solutions of a general system of
variational inequalities, an equilibrium problem and the set of common fixed points of

a countable family of nonexpansive mappings in Hilbert spaces. A numerical example
is given for supporting our main result.

2. PRELIMINARIES

Let H be a real Hilbert space. We use — and — to denote the weak and strong
convergence in H, respectively. The following identity holds:

loz + Byl* =allz|® + Bllyll* — aBllz -y,

for all z,y € H and «,f € [0,1] such that « + 8 = 1. Let C be a nonempty closed
convex subset of H. Then, for any x € H, there exists a unique nearest point in C,
denoted by Po(x), such that

|z — Po(x)|| < ||z —y| forallyeC.
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Pc is called the metric projection of H onto C. It is known that Pc is nonexpansive
and satisfies

(x —y, Po(x) — Po(y))| > ||[Pex — Poy|* for all z,y € H. (2.1)
Further, for x € H and z € C, we have
z=Po(z) < (x—z,2z—y)>0 forallyeC.
Definition 2.1. A mapping T' : H — H is called firmly nonexpansive if for any
z,y € H,
Tz - Ty|?> < (Tz — Ty,z —y).

Lemma 2.2. [2] Let C be a nonempty closed convex subset of H and ¢ : C x C' — R
be a bifunction satisfying the following conditions:

(A1) ¢(z,x) =0 for allz € C;

(A2) ¢ is monotone, i.e., d(x,y) + ¢(y,z) <0 for all x,y € C;

(As) for each x,y,z € C, limyp ¢p(tz + (1 — t)x,y) < ¢(z,y);

(Ag) for each x € C,y— ¢(x,y) is conver and weakly lower semicontinuous.
Let r >0 and x € H. Then, there exists z € C such that

1
oz, y)+—(y—z,2z—x)> 0, forallyeC.
T

Lemma 2.3. [15] Assume ¢ : C x C — R satisfies the conditions (A1)-(A4). For
r >0, define a mapping Q, : H — C by

Qrz:={ze€C:¢(zy) + %(y—z,z—@ >0 foralyeC} (2.2)

for allx € H. Then, the following hold:
(i) Q@ is single-valued;

(i) Q. is firmly nonexpansive;

(iii) Fiz(Qy) = EP(0);

(iv) EP(¢) is closed and conver.

Definition 2.4. A nonlinear operator A with domain D(A) C H and range R(A) C
H is said to be a— inverse strongly monotone ( for short, a—ism ) if there exists
v > 0 such that

(x —y, Ar — Ay) > o||Az — Ay||* for all z,y € D(A).
Lemma 2.5. [16] Let C be a closed convex subset of H and T : C' — C' be a nonez-

pansive mapping with Fiz(T) # 0. If {x,} is a sequence in C such that x, — = and
(I —-T)x, =0, then (I —T)x =0.

Lemma 2.6. [1] Assume {a,} is a sequence of nonnegative real numbers such that
An1 < (1 = Yn)an + YnUn + pin,

where {v,} is a sequence in [0,1], {u,} a sequence of nonnegative real numbers, and
{vn} a sequence in R such that y " | v, = 00, limsup,, o vn < 0 and Y07 pn < 00.
Then lim,,_, o a,, = 0.
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Lemma 2.7. [12] For given z*,y* € C, (z*,y") is a solution of problem (1.3) if and
only if x* is a fixed point of the mapping G : C — C' defined by

G(z) = Po(Po(x — uBx) — vAPo(x — uBx))  for all z € C,
where y* = Po(x* — uBz™).

3. MAIN RESULT

Let {T,,}52, be a sequence of nonexpansive self-mappings on C and {A,}52, a
sequence of nonnegative numbers in [0, 1]. For any n > 1, define a mapping W,, of H
into itself as follows:

Un,n+1 = 17

Un,n = AnTnUn,nle + (]- - )\n)I7

Unke = MTUp 1 + (1 — M),

3.1
Un i1 = Me—1Th—1Upn ks + (1 — Mp—1)1, (8:1)

Un2 = MToUn s+ (1 — X2)1,
Wi = Unr = MT1Uns + (1— A1)

Such a mapping W,, is called the W —mapping generated by T1,75,...,T, and
A1y A2y ey Ap; see [18].

Lemma 3.1. [22] Let C be a nonempty closed convex subset of a strictly convex
Banach space X, {T,}521 a sequence of nonexpansive self-mappings on C' such that
N0 Fiz(T,) # 0 and {\,}52, a sequence of positive numbers in [0,b] for some
b€ (0,1). Then, for every x € C and k > 1, the limit lim,,_,o U,z exists.

Using Lemma 3.1, one can define mapping W : C' — C as follows:
Wz = lim Wyz = lim U,z (3.2)

n—oo n—oo

for every z € C. Such a W is called the W—mapping generated by {7},}5°; and
{An}52 . Throughout this paper, we assume {\,}>2 is a sequence of positive num-
bers in [0, b] for some b € (0, 1).

Lemma 3.2. [22] Let C be a nonempty closed convex subset of a strictly convex
Banach space X, {T,}52, a sequence of nonexpansive self-mappings on C' such that
N, Fiz(T,) # 0 and {\,}32, a sequence of positive numbers in [0,b] for some
be (0,1). Then, Fiz(W) = —, Fiz(T,).

Theorem 3.3. Let C be a closed convex subset of H, ¢ : C' x C' — R be a bifunction
satisfying the conditions (A1)—(A4) of Lemma 2.2, A, B : C — H be a-ism and B-ism,
respectively, and f a k-contraction on C for some k € [0,1). Set Q := N2, Fiz(T,)N

Fiz(G) N EP(¢) and assume Q@ # 0. Suppose {a,} and {r,} are real sequences
satisfying the following conditions:
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(B1) {an} C (0,1), limy o0 ayy = 0, Y07 |41 — a| < 00,
and Y )7 oy = 00;
(B2) {rn} C (a,0) for some a >0 and ZZOZI [Pns1 — Tnl| < 00.
Let {x,} be a sequence generated by

G (un,y) + 7=y — Un, Uy — ) 20 forall y e C,
zn = Po(1 —",uB)un,
yn = Po(I —vA)z,,
Tnt1 = Qnf(zn) + (1 — an)Woyn, n >0,
where the initial guess x9 € C is arbitrary, v € (0,2a), and p € (0,28). Then,

the sequence {x,} converges strongly to q € Q, where ¢ = Pqof(q), which solves the
following variational inequality (VI):

(I—=f)g,q—x) <0 forallzeq. (3.4)

(3.3)

Proof. Since Pqf is a contractive self-mapping on C, there exists a unique element
q € Q such that ¢ = Pqf(q); equivalently, ¢ is the unique solution of VI (3.4). Also,
observe that u,, = Q,, =, where Q, is defined by (2.2). For z,y € C, we have

I(I = vA)z — (I - vAy|* =|z -y — v(Az — Ay)||?
=||z — y|* - 2v{x —y, Az — Ay)
+ 0% Az — Ay|?
<|lz =yl - 2av||Az — Ay|* + v*|| Az — Ay|®
=[x —y|* + v(v - 20)|| Az — Ay||? (3.5)
<[z —yl?,
by v € (0,2a). This implies I — vA is nonexpansive. In the following six steps, we
can show I — uB is also nonexpansive in a similar way.
Step 1: First, we claim {z,} and {u,} are bounded. Suppose that z* € Q and
y* = Po(x* — pBx*). Noticing u,, = Q,, =, and Q, z* = z*, we get
l[un — 2" < flan — 2]
Then
lyn — 27| = [|Gun — 27|| = [|Gun — Go™|| < [|lzn — 27| (3.6)
From (3.3), we get
[2n41 — 2" <[lan(f(zn) —27) + (1 = an) Wayn — 27|
Son([1f(zn) = F@) |+ [1/(27) = 2*])) + (1 = an)llyn — 27|
Sankllzn — 2|+ anll f(2") — ¥ + (1 — an) ||z, — 27|
<1 - QA =r)an)[len — 2| + an| f(z") — 27|

) 1 *

Smax{”xn -
— K



768 MARYAM YAZDI AND SAEED HASHEMI SABABE

By induction,

1f(z") — 7|
K

o =) < s { o — o, 1L

} for all n > 1.
Hence {z,} is bounded, so are {u,}, {f(zn)} and {Wy,y,}. Set

1
M, = sup{nf(xn)n, Wl llun = 0] € N}.

Step 2: We claim lim, o ||Zn4+1 — @] = 0. By the definition of {z,}, we have

||$n+1 - $n+2||
= [low f(zn) + (1 = 0 )Wayn — g1 f(2ns1) — (1 = ans 1) Wag1 ¥ ||
= llan(f(@n) = f(2ni1)) + (an — ang1) f(@n41)
+ (1= an) Wnyn — Wag1¥ni1) + (ang1 — an) Wap1Yn 1|
< aphillzn = g || + 2Milon — anga| + (1= an) ([Wayn — Wasiya||

+ IWath — W) &0
< ankillzy — Tpgall + 2Mian — anga| + (1= o) ([Wayn — Wi aynll
+1yn = Ynta ),
< ankl|T, — $n+1|| + 2]\41|O‘n - an+1| +(1— an)(HWnyn - Wn+lyn”
+ [Jtn = unqal)),
for all n € N. From (3.1), since T; and U, ; are nonexpansive, we obtain
Wht1yn — Waynll =M T1Un 1,290 — MT1Un 29|
<MUnt1,2Yn — Un 2vnll
=M1 || XN ToUp 11,3y — X ToUp 3yn ||
<M Unt1,3Yn — Un synll
(3.8)

<...

g)\l>\2 e )\n||Un+1,n+lyn - n,n+1yn||
n

SMZ H)\“
i=1

where My > 0 is a constant such that [|[Upt+1nt1Yn — Unnt1ynl < My for all n > 0.
Let up = Qp,Tn and Uy 1 = Qr,,  Tny1. SO

1
O(Un,Y) + — (Y = Un,Up — ) 20 forally e C (3.9)

n

and

d(Un+1,y) + (Y = Unt1,Unt1 — Tnt1) =0 forally e C. (3.10)

7AnJrl
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Set y = up41 in (3.9) and y = w, in (3.10). Then by adding these two inequalities
and using (As), we have

Up — Tp Un+1 — Tn41 >0
un—i—l — Up, - el
Tn TnJrl

and hence

T'n

<un+1 — Un, Unp — Up+1 +up —xTp — (UnJrl - xn+1)> > 0.

Tn+1

This implies

T
||un+l - un”Q § <Un+1 — Up; Tp+1 — Tn + <1 - i > (Un+1 - zEn—‘,—l)>
Tn+1

1
< s = wnll { s = 2all + 310 = Pmallinss = 2l }-

Therefore
tnt1 — unll < [|Tng1 — @l + [Ppg1 — 70l My (3.11)
Substituting (3.8) and (3.11) into (3.7), we get
||37n+1 —Tpyof < an””‘xn - xn+1H +2M;i e, — an+1‘
+ (1 — Ozn) <M2 H /\1 + HCL’n+1 — LEnH + IT’n+1 — 7‘an>
i=1
<(1—=(1=r)ap)||lzn — Tpgrll + 2My|ay — apy1| + Mab™
+ |rn+1 - Tn|M17

for all n € N. So, from Lemma 2.5, we obtain

nhﬁrr;o |Znt1 — znll = 0. (3.12)

Step 3: We claim lim,_, ||yn — upn| = 0. By (3.5), we have
l2n = y*|* =|Po(I = pB)un — Pe(I — pB)z*||?
< = pB)un — (I — pB)a™||?

o . (3.13)
<llun = 2|° = (28 — p) || Bun, — Ba™|
<lwn —*|* = (28 — w)l| Buy — Ba*||.
In a similar way, we get
lyn = 2*1* <[z — y*|I* = v(2a — v)[| Az, — Ay*|*. (3.14)

Substituting (3.13) into (3.14), we obtain
g — 212 <l — 212 — (28 — )| Bun — B (3.15)
—v(2a — V)| Az, — Ay*||%.
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It follows from (3.15) that
ns1 = 2|7 = o (f (@n) = 2) + (1 = an)(Wayn — ")

< onllf(@n) = f(@7) + f(2") — 2|
+ (1= an) [Wayn — 27|

< o flon — 2" + ol f (@) — 2"
+ (1= am)llyn — "1 + 200 (f (2n) = f(2"), f(2") = 2%)

< o flon — 2" + a1 f (@) — 2"
+ 2ank|zn — 27| f(27) — 27|
+ (1= an)(lan — 2™|* = (28 — )| By, — Ba™|?
—v(2a = v)[[ Az, — Ay*|*)

< (- (1= s)an)lon — 27| + an (@) — 2"
+ 2ank)zn — ||| f(27) — 27| + (1 = an)
= n(28 = )| Buy — Ba* | — v(20 — v)|| Az, — Ay"|]?).

(3.16)

which implies
(1 — an) (28 — p)|| Buy, — Ba*|| + v(2a — v)[| Az, — Ay*|?)
< lln = 2*|° = [lzngs — 2*[1* + anMs
< (len — 2™ = llentr =" N(lzn = 27 + 2041 — 27() + an Ms
<lwn — znpall(ln — 2% + lZnea — 27) + anMs,

where M3 = sup{||f(z*) — 2*|* + 2k|x,, — 2*|||| f(z*) — 2*| : n € N}. From (B;) and
(3.12), we have

|Bu, — Bx*|| =0 and |Az, — Ay™|| = 0. (3.17)

lim lim
n— o0 n— o0

On the other hand by (2.1), we get
lyn — 2*|* = [|Po(I = vA)zn — Po(I —vA)y*, yn — ||
< (U —vA)z, — (I = VA", yp — z7)
1 * *
ST =vA)zn — (I —vA)y 1 + lyn — 2*1?
—lzn —yn + 2" —y* —v(Az, — Ay*)”2]
This implies
lyn — m*HQ < lzn — y*||2 —lzn = yn + 2" —y" —v(Az, - Ay*)Hz
= llzn = 4" [1” = lllzn — yn + 2 = 4" + 12| A2, — Ay*|?
—2U{zy —yp + 2" —y*, Az, — Ay™)] (3.18)
<z =11 = l2n = yn + 2" —y*|I?
+2v|[zn =y + 3" =y ||| Az — Ay
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Again by (2.1), we obtain
20 = y*1* = [[Pc(I — uB)uy, — Pe(I — uB)a*|?
< = pBlun — (I = pB)a™, zn — y*)
1 * *
= ST = pB)un — (I = uB)2"||* + |20 — y”|I*

—lun — 20 +y* — 2% — p(Bu, — Bx*)||]

which implies

20 —y*|1?

< un = 2| = |Jun — 20 +y* — 2% — p(Buy, — Ba")|?

= un — || = [lun — 20 +y* — ") (3.19)
— 2u{tiy, — 2p +y* — 2%, Bu,, — Bx* + p?||Bu,, — Bz*|?]

<l — 21 = llun — 20 +y* — 2|

+ 2ullun — 20+ y" — 2" | Bun — Ba"|.
It follows from (3.18) and (3.19) that
lyn — *||®
<lan = 2|7 = llun = 20 +y" = 2™
—llzn —yn +y" — x*HQ (3-20)
+ 2pllun — 20 +y" — 2" || Bun — Bz™||
+ 20z —yn + 27 — 7| | Az — Ay

Substituting (3.20) into (3.16), we have

zns1 = 2*(* = llen (f(@n) = %) + (1 = an) (Ways — 2|
< onllf(wn) = f@") + f(2") = 2" + (1 = an) [Wayn — 2*||?
< anh?llzn — 2| + anl| £ () — 2|

+ (1= an)llyn — 2" + 200 (f (2n) = f(2"), f(27) — 2%)
< ok flen — a2 + anll f(@*) — 2P + 2ank]zn — 2*||][ f(27) - 27|

+ (1= an)(llzn = 22 = llun = 20 + 4" = 2" = ll2n — yn +y" — 2"||?
+2ullun = zn +y" = 27| Bun — Ba™|| + 20|z — yn + 2" — y7[|[| Az, — Ay7|)
< lon = 2" + (1 = an)(=llun = 20 +y* = 2*[* = 20 = yu +y* — 2"
+2ullun — zn +y" = 27| Bun — Ba™|| + 2v[|zn — yn + 2" — y"[|[| Az0 — Ay7|)
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This implies
(1= an)llun = 20 +y" = 2*|* + (1 = an)llzn — yo + 2" —y"|?
< o — 22 = fonar — 2|2 + 2ulfin — 20 + 47 — 27| Bun — Ba"|
+ 2z — yn + 27 — y ||| Azn — AyT|| + 20, M3
<Nzns1 — znllzn — 2| + |2nt1 — 27)
+ 2pllwy, — 25 +y* — z*|||| Buy, — Bx™||
+2u||zn, —yn + 2" — y ||| Az — Ay*|| + 200, M3
From (By), (3.12) and (3.17), we get
lim |lup, — 2, +y" —2"]| =0 and nh_)ngO llzn — yn + 2" —y*|| = 0. (3.21)

n—oo

By (3.21) and
lun = Ynll < llun — 20 + 4" — 2% + |20 — yn + 2" — ¥

we obtain
nILrI;O [, — yn]l = 0. (3.22)
Step 4: We claim lim,,_, |2, — up|| = 0. From Lemma 2.3, we have

lun = 2| =Qr, 20 — Qr,2"|* < (2 — 2%, un — o)

1
=5 (ln =271 + un = 2[* = flun — 2a]]*).

This implies
lun = 2*[|” < llzn — 2" = lun — @nl|. (3.23)
So, we derive from (3.23) that

lznt1 = 2% [* = o (f (@n) = 27) + (1 = an) (W — 27)|?

< anl|f(an) — 2*|* + (1 — an)|Juy — 27|
< ol f(@n) = 2|7 + (1 = an)(llzn — 277 = [Jun — 2n]|*)
< anl|f(zn) = 2| + [lon — 2*(* — llun — a1

Hence
[un = @nll® < llzn = 2|* = llznss — 2 + anll fzn) — 2"
<Nwngr = 2l (l2n = 2* | + l2nsr — 2*[]) + nll f(20) — 2.
Therefore lim,, o0 ||Zn — un|| = 0. So, from (3.22), lim, 0 ||Zn — yn|| = 0. Also, from
(3.3), we have

lim (| — Wagall = lim ]l f(20) ~ Wl = 0.

n—oo
Hence lim,— o0 ||€n — Wyhyn|| = 0. Since
lun — Whun || <[[Watn — Wyl + [Whyn — 4|
S”Un - ynH + ”Wnyn - an;
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from (3.22), we obtain lim,,_, ||ty — Wyuy| = 0. From

[tn = W] < [[Wntn = W + [[un — Waun|,
and (3.2), we have

nll)néo ln, — Wu,|| = 0. (3.24)

Step 5: We claim limsup,,_,..((I — f)g,q — Wyoyn) < 0. To show this, choose a
subsequence {uy,, } of {u,} such that

n—o0 1—00
Since {un,} is bounded, without loss of generality, we assume u,, — z. We show
z € Q. From (3.24) and Lemma 2.5, we get z € Fiz(W). Now, we show z € EP(¢).
Since uy, = Qr, Tpn, We obtain

1
Gtn, y) + —(y = tp, un —an) 2 0 forally € C,

n

From (As), we get %(y — Up, Uy — Tp) > d(y,u,) for all y € C. Replacing n by n;,
we have

1
— (Y — U,y Up; — Tn,) = Oy, uy,) forallyeC.
Tn,;
Since u,, — z and lim;_, ||Tn;, — un,|| = 0, it follows from (A4) and (Bz) that

d(y,z) <O0foralyeC. Sety =ty+ (1—1t)zforallt e (0,1] and y € C. Then
y¢ € C and hence ¢(y;, 2) < 0. From (A;) and (Az), we obtain

0=y, y) < to(r,y) + (1 = )by, 2) < tP(yr,y)-

Therefore ¢(y:,y) > 0. Letting ¢t — 0, we get ¢(z,y) > 0 for all y € C. This implies
z € EP(¢). Moreover, we know

=0.

hm ”um - Gu’ﬂz ” = hm HunL — Yn;
1—00 1— 00

From Lemma 2.5, we have z € Fiz(G). So z € Q. Since ¢ = Pof(q), we get

n—o0 1—00
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Step 6: We claim {z,,} converges strongly to ¢. By using (3.3) and (3.6), we have
[2n41 =l = llan(F(zn) = @) + (1 = ) (Wayn — )|

= ap||(f(2n) = (@) + (f(@) = DI* + (1 = )2 [(Wayn — )|
+ 200, (1 — a0 )(f () — ¢ Wayn — @)

< ap (K2[|lzn —ql” + 1f(q) — alI”) + (1 — an)? ||z — q|?
+ 205, (f(x0) = f(a), F(a) — )
+ 200 (1 — an)(f(2n) = f(2), Wnyn — q)
+ 200 (1 = an)(f(2) = @& Wnyn — q)

< (apr® + (1 - Oén)Q)IIIn —q||* + 2aikl|zn — qllll f(a) — gl
+apllf(a) = all® + 200 (1 — an)slln — gff?
+ 200 (1 = an)(f(@) = ¢ Wnyn — q)

< (1= (1 =wan)?|lzn — ql* + 2055z — gl f(a) — gl
+aqllf(@) = all® + 2001 — an)(F(@) = @ Wayn — )

= (1= (1= Rl — P + a1 1) 12— (el £ (0) —

+ 2akl|zn — gl f(q) — all +2(1 — an){f(a) — @, Wayn — @))]-
Hence

1
zns1 = all* <1 =) 20 — glf? + ol (enllf(a) — al®

+ 2an k)|, — qll|f(q) — 4 + 2(1 — an)(f(q) — ¢, Wayn — @))],

(3.25)
where v, = @, (1—k), we may apply Lemma 2.6 to (3.25) to obtain that ||z, —q| — 0,
that is, z,, — ¢ in norm. O

Table 1. The values of the sequence {z,}

Numerical results for 1 = —49 and z; = 38
n Ty n Ty

1 -49 1 38

2 -24.5 2 19

3 -7.175 3 5.5643
20 —1.6249¢ 1% 20 1.2601e~ 14
21 —1.8252¢~ 15 21 1.4154e~15
22 —2.033¢"16 22 1.5766e~16
38 —5.3901e73? 38 4.1801e32
39 —5.5502¢733 39 4.3042¢=33
40 —5.7003e73% 40 4.4206e 34
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4. NUMERICAL TEST

In this section, we give a numerical example to illustrate the convergence of the
algorithm (3.3) in Theorem 3.3. Let C = [-50,50] C H =R and define

d(z,y) = —72% + zy + 6y°.

First, we verify that ¢ satisfies the conditions (A1) — (A4) as follows:
(A1) ¢(x,x) = —T2? + 22 + 622 = 0 for all x € [-50,50;

(42) 6(z.y) + 6y, ) = —(y — )? < 0 for all 2,y € [~50,50);

(A3) For all x,y, z € [-50,50],

limsup ¢(tz + (1 — t)x,y) =limsup(—T7(tz + (1 — t)z)?

t—0t t—0t
+(tz + (1= t)x)y + 6y%)
=¢(x,y).
(A4) For all x € [-50,50], ®(y) = ¢(z,y) = —T2%+xy+6y? is a lower semicontinuous

and convex function.

From Lemma 2.3, @, is single-valued for all > 0. Now, we deduce a formula for
Q. (z). For any y € [—50,50] and r > 0, we have

Bey) + 1 ly— 77— 7) 20

S 6ry’* + ((r+ 1)z —a)y+xz— (Tr+1)22 > 0.
Set

Gly) =6ry* + ((r+ 1)z — )y +xz — (7r + 1)2%
Then G(y) is a quadratic function of y with coefficients a = 6r, b = (r + 1)z — z and
c=xz— (7Tr +1)z2. So its discriminate A = b? — 4ac is

A =[(r+1)z —x)? — 24r(zz — (Tr + 1)2?)
=[(13r + 1)z — z]*.
Since G(y) > 0 for all y € C, this is true if and only if A < 0. That is,
[(13r + 1)z — 2]* < 0.

Therefore,
x
2=,
13r +1
which yields
x
@©) =
So, from Lemma 2.3, we get EP(¢) = {0}. Let
1
n = s T = 571%, A =7v€(0,1), and T,z =z

for all n € N. Suppose f(z) = 52, Ax = {5 is 5—ism , Bx = £ is 2—ism, v = 5, and

= 2. Hence
Q = N, Fiz(T,) N EP(¢) N Fiz(G) = {0}.
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0 5 10 15 20 25 30 o 5 10 15 20 25 30

n n
(a) x,=49 (b) x,=38

Figure 1. The convergence of {x,} with different initial values x;.

Also, from (3.1), we have
Wi=Ug=MT1U12+ (1 - M),
Wy =Usz1 = MT1Usz2 4+ (1 — M) = MT1(AToUsz 3+ (1 — X)) + (1 — Ai)I
=M1 T+ A (1 —X)Th + (1 — M),
Wi =Us1=MT1Us 24+ (1 — M) = MT1(AToUs s+ (1 — X)) + (1 — Ap)I
=MD ToUs 3+ Ai(1— X)Th + (1 — AT
=M1 To(AsT3Us 4 + (1 — A3)I) + M (1 — Xo)Th + (1 — M)I
= M1 ToTs + Mo (1 — )T T + M (1 — o)1y + (1 — M) 1.
By computing in this way by (3.1), we obtain
Wip =Un1 =AA2 AT To.. Ty + Mg A1 (1 — M) 1 T2 Ty
+ MA2Ano(1 = X)) TN T . Tyoa + .+
+AMA =)+ (1= M)
Since T,, = I, A\, = 7y for all n € N, we get
Wo=0""+7""11=9) ++y1 =)+ 1 -y =1
Then, from Theorem 3.3, the sequence {z, }, generated iteratively by

_ _ 5n—1
Up = Qp, Tn = T8n_1%ns

zn = Po(I — pB)un = Po(3un) = 2uy

(4.1)
Yn = Pc(I = vA)z, = Po(iz,) = Sun
2
s = g+ (1 D = B,

converge strongly to 0 € Q, where 0 = Pqo(f)(0).

The Table 1 indicates the values of sequence {x,,} for algorithm (4.1) where z; = —49,
x1 = 38, and n = 40.

The Figure 1 presents the behavior of {z,, } that corresponds to the Table 1 and shows
the sequence {z,} converges to 0 € Q.
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Finally, we note that there have now been many results on the various composite
iterative schemes related closely to the extragradient method in the present literature.
We refer the readers to compare other composite iterative schemes to their iterative
one (see [4, 8,9, 13, 7, 14, 10, 11, 5, 6]).
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