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1. Introduction

In recent years, fractional differential equations have been of great interest to
researchers due to their wide applications to problems in physics, electroanalytical
chemistry, biology, control theory, signal processing, aerodynamics; see monographs
[23, 21, 11] and the references therein. One significant branch of the study is the the-
ory of fractional evolution equations, which, motivated by practical problems arising
in viscoelasticity, electrodynamics and heat conduction in materials with memory, has
been attracting increasing attention. The purpose of this paper is to deal with the
solvability and optimal control of semilinear fractional evolution equations in vector-
valued function spaces.

There is considerable literature on the existence of mild solutions for semilin-
ear fractional evolution equations with the Caputo and Riemann-Liouville fractional
derivatives; see, e.g. [32, 2, 34, 27, 13]. Let 0 < α < 1 and J = [0, T ] with T > 0
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being terminal time. In this work, we first study the existence and uniqueness of the
mild solution to the initial-value problem of a semilinear fractional evolution equation

{
LDα

t y −Ay = f(t, y) a.e. t ∈ J

I1−αy(0+) = y0,
(1.1)

where LDα
t denotes the Riemann-Liouville fractional derivative with respect to time,

A : D(A) → X is the infinitesimal generator of a C0-semigroup T (t) (t ≥ 0) on a
Banach space X, and f : J × X → X is a nonlinear term to be specified later.
Moreover, y0 ∈ X and I1−αy(0+) = limt→0+ I1−αy(t) where I1−α stands for the
fractional integration of order 1− α. Note that, unlike fractional evolution equations
with Caputo derivatives, the mild solution of (1.1) involves a singular term with
respect to the initial value. For the existence results of (1.1), the conditions of the
nonlinear term f(t, y) in existing literature are restrictive, see, e.g. [34, 13, 18, 9]. In
this work, we show that (1.1) has a unique mild solution where the growth condition
of f(t, y) has been improved. Meanwhile, a uniform boundedness of mild solutions to
the data is given.

Then, following the existence result of (1.1), we deal with an optimal control prob-
lem of semilinear fractional diffusion equations with constraints. As is known, optimal
control of differential equations of integer order have been studied extensively by nu-
merous authors. We refer readers to Lions [12] and Tröltzsch [26] for optimal control
problems governed by partial differential equations, and to Barbu [4], Peng-Kunisch
[20], Peng [19] and Xiao-Sofonea [29] for optimal control problems governed by varia-
tional inequalities. Optimal control problems governed by linear fractional differential
equations can be found in [17, 7, 6, 25]. Optimal control of semilinear fractional dif-
ferential equations have been considered in [27, 18] which focused on the existence of
optimal solutions. In addition, optimal feedback control, the exact and approximate
controllability of fractional evolution equations can be found in [13, 28, 14, 22, 30, 1],
etc. To the best of our knowledge, however, no literature has yet studied the opti-
mality system governed by the semilinear fractional evolution equation (1.1).

The novelty of this paper is two-fold. On the one hand, the work generalizes the
existence theorems established in [13, 18] since one restrictive growth condition of
f(t, y) used in [13, 18] has been dropped (Theorem 3.3, Remark 3.7, Remark 3.8).
Also, the hypothesis of f(t, y) here is more direct and simpler than that considered in
[34, 9]. This makes our result entail wider applications in practical problems. On the
other hand, an optimal control problem governed by semilinear diffusion equations has
been considered. In addition to the existence of optimal solutions and the compactness
of the states, the first-order necessary optimality conditions are derived (Theorem 4.3,
4.4).

The paper is organized as follows. In section 2, we recall some vector-valued
function spaces and the preliminaries concerning fractional calculus. Section 3 is
devoted to the solvability and uniform boundedness of the mild solutions to problem
(1.1). On the basis of Section 3, an optimal control problem governed by semilinear
fractional diffusion equations is considered in Section 4. We first show the existence
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of optimal pairs and the compactness of the states, and then derive the necessary
optimality condition of first order by the Lagrange multiplier method.

2. Preliminaries

We begin with some definitions and preliminaries concerning function spaces and
fractional calculus which are used throughout the paper. Let X be a real Banach
space with norm ‖ · ‖. We denote by Lp(J ;X) the Banach space of all measurable
vector-valued functions v : J → X such that ‖v(·)‖ belongs to Lp(J) with the norm

‖v‖Lp(J;X) =

(∫ T

0

‖v(t)‖pdt

) 1
p

, 1 ≤ p <∞.

The space C(J ;X) comprises all continuous functions v : J → X with the norm

‖v‖C(J:X) = sup
t∈J
‖v(t)‖.

Furthermore, AC(J ;X) consists of all functions v : J → X that are absolutely con-
tinuous, and ACn(J ;X) := {v ∈ C(J ;X) : v(n−1) ∈ AC(J ;X)} for n ∈ Z+.
According to monographs [23, 21, 11, 33], we present the definitions of fractional
derivatives and integrals for vector-valued functions.
Definition 2.1. If Re(z) > 0, the Gamma function is defined by

Γ(z) =

∫ ∞
0

e−ttz−1dt. (2.1)

If −m < Re(z) < −m+ 1 where m is a positive integer, then

Γ(z) =
Γ(z +m)

z(z + 1) · · · (z +m− 1)
. (2.2)

Definition 2.2. Let f ∈ L1(J ;X) and α > 0. The Riemann-Liouville fractional
integral Iαf of order α is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0.

Definition 2.3. Let n − 1 < α < n, n ∈ Z+ and f ∈ L1(J ;X) with I1−αf ∈
ACn(J ;X). The Riemann-Liouville fractional derivative LDα

t f of order α is defined
by

LDα
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds, t > 0.

Definition 2.4. Let n − 1 < α < n, n ∈ Z+ and f ∈ ACn(J ;X). The Caputo

fractional derivative CDα
t f of order α is defined by

CDα
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds, t > 0.

From now on, we set

Dαf(t) =
1

Γ(1− α)

∫ T

t

(s− t)−αf ′(s)ds, 0 < t < T, (2.3)
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where 0 < α < 1, f ∈ AC(J ;X). Note that the notation −Dαf is the so-called right
fractional Caputo derivative of f .

What follows is a Banach space used frequently in fractional evolution equations
with Riemann-Liouville fractional derivative; see, [34, 13] for examples.
Definition 2.5. The Banach space C1−α(J ;X) is defined by

C1−α(J ;X) = {y : J ′ → X; t1−αy ∈ C(J ;X)},

with the norm

‖y‖C1−α(J;X) = sup
t∈J
{t1−α‖y(t)‖},

where J ′ = (0, T ]. Note that t1−αy ∈ C(J ;X) is understood that the limit η =
limt→0 t

1−αy exists, and the function t1−αy is continuous on J by taking the value at
t = 0 with the limit η.
Lemma 2.6. ([11]) Let 0 < α < 1, g ∈ Lp(J), 1 ≤ p ≤ ∞ and ψ : J ′ → R+ be the
function defined by:

ψ(t) =
t−α

Γ(1− α)
.

Then for almost every t ∈ J , the function s 7→ ψ(t − s)g(s) is integrable on J .
Moreover, the convolution ψ ∗ g, given by

ψ ∗ g(t) =

∫ t

0

ψ(t− s)g(s)ds,

belongs to Lp(J) and

‖ψ ∗ g‖Lp(J) ≤ ‖ψ‖L1(J)‖g‖Lp(J).

Note that if, in addition, p > 1
1−α , then ψ ∗ g is continuous on [0, T ].

lemma 2.7. ([24, Theorem 1]) Let Σ ⊂ Lp(J ;X). Then Σ is relatively compact in
Lp(J ;X) for 1 ≤ p <∞, if and only if

(i) {
∫ t2
t1
η(t)dt : η ∈ Σ} is relatively compact in X, ∀ 0 < t1 < t2 < T.

(ii)
∫ T−h

0
‖η(t+ h)− η(t)‖pXdt→ 0 as h→ 0+, uniformly for η ∈ Σ.

Here conditions (i) and (ii) are called the space and time criterions, respectively. Note
that if Σ = {η} with η ∈ Lp(J ;X). Then Σ is compact, and thus (i) and (ii) are
satisfied.

3. Existence of mild solution

This section is devoted to the solvability of problem (1.1). We begin with the
hypotheses on the data of the problem.
(H1) The operator A is the infinitesimal generator of a C0-semigroup T (t) with
‖T (t)‖ ≤M for some constant M > 0 and all t > 0.
(H2) The operator f(t, y) is measurable with respect to t for each fixed y ∈ X with
φ(·) := ‖f(·, 0)‖ ∈ L2(J), and there exists a constant L > 0 such that

‖f(t, y1)− f(t, y2)‖ ≤ L‖y1 − y2‖, a.e. t ∈ J, ∀ y1, y2 ∈ X.

According to [13, lemma2.4], we give the definition of mild solutions to (1.1).
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Definition 3.1. A function y ∈ L2(J ;X) is called a mild solution to problem (1.1)
if it satisfies the following fractional integration equation

y(t) = tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)f(s, y(s))ds, (3.1)

where

Tα(t) = α

∫ ∞
0

θΦα(θ)T (tαθ)dθ. (3.2)

Recall that Φα(θ) the is the so-called Wright function given by

Φα(θ) =

∞∑
n=1

(−θ)n

Γ(−αn+ 1− α)
, 0 < α < 1.

It’s well known that ([16, A.39])∫ ∞
0

θΦα(θ)dθ =
1

Γ(α+ 1)
. (3.3)

Lemma 3.2. Let 1
2 < α < 1 and the hypothesis (H1) hold. Define a vector-valued

function ξ : J → X by ξ(t) =
∫ t

0
(t−s)α−1Tα(t−s)ϑ(s)ds for t ∈ J , where ϑ ∈ L2(J ;X)

is given. Then ξ ∈ C(J ;X).
Proof. In fact, using (3.3) and assumption (H1), we have

‖Tα(t)‖ ≤ M

Γ(α)
. (3.4)

Take t ∈ [0, T ) and h > 0 with 0 < t+ h ≤ T . Since

ξ(t+ h) =

∫ t+h

0

(t+ h− s)α−1Tα(t+ h− s)ϑ(s)ds

=

∫ t

−h
(t− τ)α−1Tα(t− τ)ϑ(τ + h)dτ

=

∫ t

0

(t− s)α−1Tα(t− s)ϑ(s+ h)ds

+

∫ 0

−h
(t− s)α−1Tα(t− s)ϑ(s+ h)ds,

we calculate

‖ξ(t+ h)− ξ(t)‖

≤ M

Γ(α)

(∫ t

0

(t− s)α−1‖ϑ(s+ h)− ϑ(s)‖ds+

∫ 0

−h
(t− s)α−1‖ϑ(s+ h)‖ds

)
.

(3.5)

On the one hand, using the Hölder inequality, we have∫ t

0

(t− s)α−1‖ϑ(s+ h)− ϑ(s)‖ds ≤
(
T 2α−1

2α− 1

) 1
2
(∫ t

0

‖ϑ(s+ h)− ϑ(s)‖2ds
) 1

2

.
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From Lemma 2.7(ii), it follows that the right-hand side of the last inequality tends
zero as h→ 0+. On the other hand,

lim
h→0+

∫ 0

−h
(t− s)α−1‖ϑ(s+ h)‖ds = lim

h→0+

∫ h

0

(t+ h− τ)α−1‖ϑ(τ)‖dτ = 0.

Consequently,

lim
h→0+

‖ξ(t+ h)− ξ(t)‖ = 0, t ∈ [0, T ). (3.6)

Next, take h > 0 with 0 ≤ t− h < T . we see that

‖ξ(t− h)− ξ(t)‖

≤ M

Γ(α)

∫ t−h

0

(
(t− h− s)α−1 − (t− s)α−1Tα(h)

)
‖ϑ(s)‖ds

+
M

Γ(α)

∫ t

t−h
(t− s)α−1‖ϑ(s)‖ds.

(3.7)

On the one hand,

lim
h→0+

∫ t−h

0

(
(t− h− s)α−1 − (t− s)α−1Tα(h)

)
‖ϑ(s)‖ds

≤ lim
h→0+

‖ϑ‖L2(Q)

∫ t−h

0

(
(t− h− s)α−1 − (t− s)α−1

)2
ds.

(3.8)

We set

$h(s) =
(
(t− h− s)α−1 − (t− s)α−1

)2
,

Obviously, |$h(s)| ≤ $1(s) ∈ L(J), as h < 1, and limh→0$h(s) = 0 a.e. s ∈ J .
According to the Lebesgue dominated convergence theorem, we have

lim
h→0+

∫ T

0

$h(s)ds = 0. (3.9)

On the other hand, since (t− s)α−1, ‖ϑ(s)‖ ∈ L2(J), we get

lim
h→0+

∫ t

t−h
(t− s)α−1‖ϑ(s)‖ds = 0. (3.10)

Using (3.7)-(3.10), we have

lim
h→0+

‖ξ(t− h)− ξ(t)‖ = 0, t ∈ (0, T ]. (3.11)

Thus, from (3.6) and (3.11) we get ξ ∈ C(J ;X). The proof is complete. �
We are now in position to present the main result of this section.
Theorem 3.3. Let (H1), (H2) hold and 1

2 < α < 1. Then problem (1.1) has a unique

mild solution y ∈ C(J ′;X) ∩ L2(J ;X) given by (3.1). Moreover,

‖y‖2L2(J;X) ≤ k1(1 + k2e
k2)
(
α2‖y0‖2 + (2α− 1)T‖φ‖2L2(J)

)
, (3.12)

where

k1 =
3M2T 2α−1

(2α− 1)(Γ(α+ 1))2
, k2 =

3(MLTα)2

(2α− 1)(Γ(α))2
.
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Proof. Consider an operator F defined by

Fy(t) = tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)f(s, y(s))ds, t > 0. (3.13)

The proof is divided into four steps.
Step 1. We show that F maps L2(J ;X) into itself. In fact, according to (3.4) and
the assumption (H2), we have

‖Fy(t)‖ ≤ Mtα−1

Γ(α)
‖y0‖+

M

Γ(α)

∫ t

0

(t− s)α−1‖f(s, y(s))‖)ds

≤ Mtα−1

Γ(α)
‖y0‖+

M

Γ(α)

∫ t

0

(t− s)α−1(φ(s) + L‖y(s)‖)ds,
(3.14)

which implies that

‖Fy(t)‖2 ≤ 3M2t2α−2

(Γ(α))2
‖y0‖2 +

3M2

(Γ(α))2

(∫ t

0

(t− s)α−1φ(s)ds

)2

+
3M2

(Γ(α))2

(∫ t

0

(t− s)α−1L‖y(s)‖ds
)2

.

(3.15)

Since φ(·), ‖y(·)‖ belong to L2(J), by using Lemma 2.6, we have∫ T

0

‖Fy(t)‖2dt

≤ 3M2T 2α−1

(2α− 1)(Γ(α))2
‖y0‖2 +

3(MTα)2

(Γ(α+ 1))2
‖φ‖2L2(J) +

3(MLTα)2

(Γ(α+ 1))2
‖y‖2L2(J;X).

Therefore, Fy belongs to L2(J ;X) for each y ∈ L2(J ;X), i.e., F maps L2(J ;X) into
itself.
From now on, for each g ∈ L2(J) and n ∈ Z+, we set

Ing(t) :=

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

((t− t1)(t1 − t2) · · · (tn−1 − tn))
α−1

g(tn)dtn · · · dt2dt1.

Step 2. We claim that for any y1, y2 ∈ L2(J ;X), the following inequality holds:

‖Fny1(t)−Fny2(t)‖ ≤
(
ML

Γ(α)

)n
In‖y1(t)− y2(t)‖, n ∈ Z+, t > 0. (3.16)

This inequality will be proved by mathematical induction. Using (H2), we have

‖Fy1(t)−Fy2(t)‖ =

∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)(f(s, y1(s))− f(s, y2(s)))ds

∥∥∥∥
≤ M

Γ(α)

∫ t

0

(t− s)α−1‖f(s, y1(s))− f(s, y2(s))‖ds

≤ ML

Γ(α)

∫ t

0

(t− s)α−1‖y1(s)− y2(s)‖ds.
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This implies that the inequality (3.16) holds for n = 1. Assume that (3.16) holds for
n = k, (k ≥ 1) i.e.,

‖Fky1(t)−Fky2(t)‖ ≤
(
ML

Γ(α)

)k
Ik‖y1(t)− y2(t)‖.

Then we see that for n = k + 1,

‖Fk+1y1(t)−Fk+1y2(t)‖

=

∥∥∥∥∫ t

0

(t− t1)α−1Tα(t− t1)(f(t1,Fky1(t1))− f(t1,Fky2(t1)))dt1

∥∥∥∥
≤ ML

Γ(α)

∫ t

0

(t− t1)α−1‖Fky1(t1)−Fky2(t1)‖dt1

≤ ML

Γ(α)

∫ t

0

(t− t1)α−1Ik‖y1(t1)− y2(t1)‖dt1

≤
(
ML

Γ(α)

)k+1

Ik+1‖y1(t)− y2(t)‖.

Thus inequality (3.16) holds.
Step 3. The operator Fn is contractive on L2(J ;X) for n being sufficiently large.
Moreover, we have the bound (3.12). In fact, we see from (3.16) that

‖Fny1 −Fny2‖2L2(J;X) =

∫ T

0

‖Fny1(t)−Fny2(t)‖2dt

≤
(
ML

Γ(α)

)2n ∫ T

0

(
In−1

∫ t

0

(t− tn)α−1‖y1(tn)− y2(tn)‖dtn
)2

dt

≤
(
ML

Γ(α)

)2n

‖y1 − y2‖L2(J;X)

∫ T

0

(
In−1

(
t2α−1

2α− 1

) 1
2

)2

dt.

Then, by the Hölder inequality, we have∫ T

0

(
In−1

( t2α−1

2α− 1

) 1
2

)2

dt

=

∫ T

0

In−2

(∫ t

0

(t− tn−1)2α−2dtn−1

) 1
2

(∫ t

0

t2α−1
n−1

2α− 1
dtn−1

) 1
2

2

dt

≤
∫ T

0

(
In−2

(
t4α−1

2α(2α− 1)2

) 1
2

)2

dt

≤
∫ T

0

(
In−2

(
t4α−1

2α(2α− 1)2

) 1
2

)2

dt

=

∫ T

0

(
In−3

∫ t

0

(t− tn−2)α−1
( t4α−1

n−2

2α(2α− 1)2

) 1
2

dtn−2

)2

dt
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≤
∫ T

0

(
In−3

( t6α−1

2α · 4α(2α− 1)3

) 1
2

)2

dt

≤
∫ T

0

t2nα−1

2α · 4α · · · 2(n− 1)α(2α− 1)n
dt

=
T 2nα

n!(2α(2α− 1))n
.

Thus, it follows that

‖Fny1 −Fny2‖2L2(J;X) ≤
(
ML

Γ(α)

)2n
T 2nα

n!(2α(2α− 1))n
‖y1 − y2‖2L2(J;X).

The last inequality gives

‖Fny1 −Fny2‖L2(J;X) ≤
(MLTα)n

(Γ(α))n
√

(2α(2α− 1))nn!
‖y1 − y2‖L2(J;X).

Due to
(MLTα)n

(Γ(α))n
√

(2α(2α− 1))nn!
→ 0, as n→∞,

there exist a positive integer N such that

(MLTα)N

(Γ(α))N
√

(2α(2α− 1))NN !
< 1.

Hence, FN is a contraction operator on L2(J ;X). By the Banach fixed point theorem
of contraction mapping, we can deduce that F has a unique fixed point y = Fy on
L2(J ;X), which is the desired mild solution of problem (1.1).
Next, we shall prove the estimate (3.12). Since the solution y is the fixed point of Fy,
we see from (3.15) that

‖y(t)‖2 ≤ 3M2t2α−2

(Γ(α))2
‖y0‖2 +

3M2

(Γ(α))2

(∫ t

0

(t− s)α−1φ(s)ds

)2

+
3M2

(Γ(α))2

(∫ t

0

(t− s)α−1L‖y(s)‖ds
)2

.

Integrating the last inequality over (0, τ) with τ ∈ (0, T ], and using Lemma 2.6 and
the Hölder inequality, we have∫ τ

0

‖y(t)‖2dt ≤ 3M2T 2α−1

(2α− 1)(Γ(α))2
‖y0‖2 +

3(MTα)2

(Γ(α+ 1))2
‖φ‖2L2(J)

+
3(ML)2T 2α−1

(Γ(α))2(2α− 1)

∫ τ

0

∫ t

0

‖y(s)‖2dsdt.
(3.17)

Now, we set

ζ1(τ) =

∫ τ

0

‖y(t)‖2dt.

Then, it follows that

ζ1(τ) ≤ ρ1 + γ1

∫ τ

0

ζ1(t)dt, (3.18)
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where

ρ1 =
3M2T 2α−1

(2α− 1)(Γ(α))2
‖y0‖2 +

3(MTα)2

(Γ(α+ 1))2
‖φ‖2L2(J), γ1 =

3(ML)2T 2α−1

(Γ(α))2(2α− 1)
.

Finally, using the Gronwall inequality, we deduce that

ζ1(τ) ≤ ρ1(1 + γ1τe
γ1τ ), τ ∈ (0, T ]. (3.19)

Taking τ = T we obtain the estimate (3.12), where k2 = γ1T .
Step 4. We show that y ∈ C(J ′;X). In fact, since y ∈ L2(J ;X), we have

f(·, y(·)) ∈ L2(J ;X)

by (H2). Thus ∫ ·
0

(· − s)α−1Tα(· − s)f(s, y(s))ds ∈ C(J ;X)

by Lemma 3.2. Moreover, it is easy to see that tα−1Tα(t)y0 ∈ C(J ′;X). Therefore,
we conclude that the mild solution y given by (3.1) belongs to C(J ′;X). The proof
is complete. �
Theorem 3.4. Let (H1), (H2) hold and y0 = 0. Then for all 1

2 < α < 1, problem
(1.1) has a unique mild solution y ∈ C(J ;X) given by

y(t) =

∫ t

0

(t− s)α−1Tα(t− s)f(s, y(s))ds. (3.20)

with the bound

‖y‖C(J;X) ≤
M

Γ(α)

(
T 2α−1

2α− 1

) 1
2

Eα(MLTα)‖φ‖L2(J).

Proof. According to Theorem 3.3 and the proof in step 4, problem (1.1) has a unique
mild solution y ∈ C(J ;X) which satisfies the inequality (3.14) with Fy = y, i.e.,

‖y(t)‖ ≤ M

Γ(α)

∫ t

0

(t− s)α−1(φ(s) + L‖y(s)‖)ds.

Using the Hölder inequality, we obtain

‖y(t)‖ ≤ M

Γ(α)

(
T 2α−1

2α− 1

) 1
2

‖φ‖L2(J) +
ML

Γ(α)

∫ t

0

(t− s)α−1‖y(s)‖ds.

By the Gronwall inequality for fractional differential equations ([31, Corollary 2], [10,
Lemma 7.1.1]), we have

‖y(t)‖ ≤ M

Γ(α)

(
T 2α−1

2α− 1

) 1
2

Eα(MLTα)‖φ‖L2(J), ∀ t ∈ J.

The proof is complete. �
Remark 3.5. Let 1

α < p < 1
1−α and hypothesis (H1) be satisfied. Besides, assume

(H2) holds with the function ‖f(·, 0)‖ ∈ Lp(J). Then the problem (1.1) admits a
unique mild solution y ∈ C(J ′;X) ∩ Lp(J ;X).
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The condition p < 1
1−α is used to ensure the singular term tα−1Tα(t)y0 in (3.1)

belongs to Lp(J ;X). The proof is similar to Theorem 3.3, so we omit the details for
simplicity.
Remark 3.6. Let y ∈ C(J ′;X) ∩ L2(J ;X) be the mild solution of problem (1.1)
given by (3.1). Then it follows y ∈ C1−α(J ;X).

In fact, taking z(t) = t1−αy(t) for t > 0 where y is the mild solution of (1.1), i.e.,

z(t) = Tα(t)y0 + t1−α
∫ t

0

(t− s)α−1Tα(t− s)f(s, y(s))ds, t > 0.

Since
∫ ·

0
(·−s)α−1Tα(·−s)f(s, y(s))ds ∈ C(J ;X) from step 4 in the proof of Theorem

3.3, we see that the function t1−α
∫ t

0
(t−s)α−1Tα(t−s)f(s, y(s))ds is continuous on J .

This implies z ∈ C(J ′;X). Since z(t) tends to y0 as t goes to zero, setting z(0) = y0

we conclude that z ∈ C(J ;X). From Definition 2.5, it follows y ∈ C1−α(J ;X). �
Note that if y ∈ C1−α(J ;X) is a mild solution of problem (1.1) given by (3.1), as

a rule, we could not necessarily deduce y ∈ L2(J ;X).
Remark 3.7. For the existence of semilinear fractional evolution equations with
Riemann-Liouville derivatives, the conditions posed on the nonlinear term f(t, y) are,
in general, quite strong in the literature because the mild solution (3.1) involves a
singular term with respect to the initial value. For example, except for (H2), the
following additional hypothesis is considered in [13, 18] to show the existence of a
mild solution y ∈ C1−α(J ;X) to problem (1.1).
(H2-1) There exists φ ∈ Lp(J) with p > 1

α , and a constant c > 0 such that

‖f(t, y)‖ ≤ φ(t) + ct1−α‖y‖ for a.e. t ∈ J and all y ∈ X. (3.21)

If, in particular, c = 0, (H2-1) is considered in [15]. Besides, we also mention that
problem (1.1) has been proved in [34, 9] to have a mild solution y ∈ C1−α(J ;X) under
the following assumption.
(H2-2) There exists a function φ ∈ L1(J ;X) such that Iαφ(t) ∈ C(J ;X),

lim
t→0+

t1−αIαφ(t) = 0

and

‖f(t, y(t))‖ ≤ φ(t), for all y ∈ Bαr and a.e. t ∈ J,
where Bαr := {y ∈ C1−α(J,X) : ‖y‖C1−α(J,X) ≤ r} and r > 0 is a constant related to
the fractional integration of φ(t).

Note that (H2-1) is not a friendly condition since it requires that the second term
on the right hand side of (3.21) tend to zero as t goes to zero. For instance, if
f(t, y) = e−tz0 + t sin y + y where z0 ∈ X is given, then (H2) holds but (H2-1) does
not hold. From Remark 3.6 and 3.7, we have the following conclusion.
Remark 3.8. Theorem 3.3 improves the existence theorems of the mild solution to
(1.1) in [13, 18] because the condition (H2-1) is removed.

4. Optimal control problem

Based on Theorem 3.3, this section deals with an optimal control problem governed
by semilinear fractional diffusion equations. For simplicity, from now on, we set
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X = L2(Ω) and Q = Ω × (0, T ) where Ω is a bounded subset of Rm with m ≥ 1.
It follows that L2(J ;X) = L2(Q). Let U = L2(J ;U) where U is a given reflexive
Banach space. We consider an optimal control problem:
minimize the functional

J (u) =
1

2
‖y − zd‖2L2(Q) +

N

2
‖u‖2U , (4.1)

on all (y, u) ∈ L2(Q)× Uad, subject to
LDα

t y −∆y = f(y) +Bu in Q

y = 0 on ∂Ω× (0, T )

I1−αy(0+) = y0 in Ω,

(4.2)

where y is the state, u is the control, zd belongs to L2(Q), N is a positive constant,
∆ is the Laplace operator, and Uad is a nonempty, closed and convex subset of the
control space U . Moreover, the operator B : U → X is linear and continuous, but
not necessarily compact. For the sake of brevity, from now on we assume that the
nonlinear mapping f is independent of the time t.
Definition 4.1. A function y : J → X is called a mild solution of (4.2) if

y(t) = tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)(f(y(s)) +Bu(s))ds, t > 0.

Theorem 4.2. For a given u ∈ Uad and 1/2 < α < 1, the problem (4.2) admits a
unique mild solution y(u) ∈ C(J ′;X) ∩ L2(Q) under (H2).
Proof. It is known that the Laplace operator with the homogeneous Dirichlet bound-
ary condition is the infinitesimal generator of a C0-semigroup in L2(Ω) which is con-
tractive and compact [5, 8]. Therefore, (4.2) can be transformed into the abstract
evolution equation (1.1) where f(t, y) is replaced by f(y) + Bu and A = ∆ with
domain H1

0 (Ω)∩H2(Ω). Therefore, this theorem is a direct corollary of Theorem 3.3
as Bu is fixed. �
Theorem 4.3. Under (H2), the optimal control problem (4.1)-(4.2) admits an opti-
mal pair (ȳ, ū).
Proof. Since the functional J (u) is nonnegative, there exists a minimizing sequence
un ∈ Uad such that

J (un) =
1

2
‖yn − zd‖2L2(Q) +

N

2
‖un‖2U −→ inf

u∈Uad
J (u), as n→∞, (4.3)

where yn, from Theorem 4.2, is given by

yn(t) = tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)(f(yn(s)) +Bun(s))ds. (4.4)

Moreover, in view of (4.3), there exists a constant c1 > 0 such that

‖yn‖L2(Q) ≤ c1, ‖un‖U ≤ c1. (4.5)

Therefore, by taking a subsequence there exists ū ∈ U , ȳ ∈ L2(Q) such that

un ⇀ ū in U , yn ⇀ ȳ in L2(Q).
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Since un belongs to Uad which is closed and convex, we obtain ū ∈ Uad. Next, we aim
to show that the pair (ȳ, ū) satisfies (4.2). To this end, we first shall prove that the
sequence Gyn, given by

Gyn :=

∫ t2

t1

yn(t)dt, 0 < t1 < t2 < T,

is relatively compact in X. For simplicity, set

ωn(t) := f(yn(t)) +Bun(t).

Since B : U → X is a bounded and linear operator, from (4.5) and (H2), there exist
constants c2, c3 such that

‖f(·, yn)‖L2(Q) ≤ c2, ‖ωn‖L2(Q) ≤ c3.

For each ε ∈ (0, t1), and δ > 0, set

G
ε,δ
yn =

∫ t2

t1

∫ t−ε

0

(t− s)α−1

∫ ∞
δ

αθΦα(θ)T ((t− s)αθ)ωn(s)dθdsdt

+

∫ t2

t1

tα−1

∫ ∞
δ

αθΦα(θ)T (tαθ)y0dθdt := I1 + I2.

Since T (t) is a C0−semigroup, s ∈ (0, t− ε), θ ∈ (δ,∞), we have

(t− s)αθ − εαδ > 0.

Therefore,

I1 = T (εαδ)

∫ t2

t1

∫ t−ε

0

(t− s)α−1

∫ ∞
δ

αθΦα(θ)T ((t− s)αθ − εαδ)ωn(s)dθdsdt

:= T (εαδ)E1.

From (3.3), we have

lim
δ→0

∫ ∞
δ

θΦα(θ)dθ =
1

Γ(α+ 1)
.

It follows that (since Φα(θ) ≥ 0 for all θ ≥ 0 [3])∫ ∞
δ

θΦα(θ)dθ ≤ 1

Γ(α+ 1)
,

for δ being sufficiently small. Because T (t) is a contractive semigroup, i.e., ‖T (t)‖ ≤ 1,
using the Hölder inequality, we obtain

‖E1‖ =

∥∥∥∥∫ t2

t1

∫ t−ε

0

(t− s)α−1

∫ ∞
δ

αθΦ(θ)T ((t− s)αθ − εαδ)ωn(s)dθdsdt

∥∥∥∥
≤ 1

Γ(α)

∫ t2

t1

∫ t−ε

0

(t− s)α−1‖ωn(s)‖dsdt

≤ (t2 − t1)

Γ(α)

√
T 2α−1

2α− 1
‖ωn‖L2(Q).
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We calculate

I2 = T (tα1 δ)

∫ t2

t1

tα−1

∫ ∞
δ

αθΦα(θ)T (tαθ − tα1 δ)y0dθdt := T (tα1 δ)E2,

where

‖E2‖ =

∥∥∥∥∫ t2

t1

tα−1

∫ ∞
δ

αθΦα(θ)T (tαθ − tα1 δ)y0dθdt

∥∥∥∥ ≤ (tα2 − tα1 )

Γ(α+ 1)
‖y0‖.

From the boundness of E1, E2 and the compactness of T (εαδ), T (tα1 δ), we deduce
G
ε,δ
yn is relatively compact in X for each ε ∈ (0, t) and δ > 0.

Moreover, we have

‖Gyn −Gε,δyn‖

≤ α

∥∥∥∥∥
∫ t2

t1

∫ t−ε

0

(t− s)α−1

∫ δ

0

θΦα(θ)T ((t− s)αθ)ωn(s)dθdsdt

∥∥∥∥∥
+α

∥∥∥∥∫ t2

t1

∫ t

t−ε
(t− s)α−1

∫ ∞
0

θΦα(θ)T ((t− s)αθ)ωn(s)dθdsdt

∥∥∥∥
+α

∥∥∥∥∥
∫ t2

t1

tα−1

∫ δ

0

θΦα(θ)T (tαθ)y0dθdt

∥∥∥∥∥ := I3 + I4 + I5.

By the assumption (H1) and the Hölder inequality, we have

I3 ≤ α(t2 − t1)

√
T 2α−1

2α− 1
‖ωn‖L2(Q)

∫ δ

0

θΦα(θ)dθ,

I4 ≤
1

Γ(α)

∫ t2

t1

∫ t

t−ε
(t− s)α−1‖ωn(s)‖dsdt ≤ t2 − t1

Γ(α)

√
ε2α−1

2α− 1
‖ωn‖L2(Q),

I5 ≤ (tα2 − tα1 )‖y0‖
∫ δ

0

θΦα(θ)dθ.

Because of ‖ωn‖L2(Q) ≤ c3, we deduce that I3, I4 and I5 tend to zero as ε → 0 and
δ → 0. Therefore,

Gε,δyn → Gyn, as ε, δ → 0.

Since Gε,δyn is relatively compact in X, the sequence Gyn is relatively compact in X
too.
Next, we aim to prove that∫ T−h

0

‖yn(t+ h)− yn(t)‖2dt→ 0, as h→ 0+. (4.6)



SOLVABILITY AND OPTIMAL CONTROL 755

Similarly to (3.5), we have

‖yn(t+ h)− yn(t)‖

≤ 1

Γ(α)

∫ t

0

(t− s)α−1‖f(yn(s+ h))− f(yn(s))‖ds

+
1

Γ(α)

∫ 0

−h
(t− s)α−1‖f(yn(s+ h))‖ds

+
1

Γ(α)

∫ t

0

∥∥(t+ h− s)α−1Tα(h)Bun(s)− (t− s)α−1Bun(s)
∥∥ ds

+
1

Γ(α)

∫ t+h

t

(t+ h− s)α−1‖Bun(s)‖ds

+
1

Γ(α)
‖(t+ h)α−1Tα(h)y0 − tα−1y0‖

:=
L

Γ(α)

∫ t

0

(t− s)α−1‖yn(s+ h)− yn(s)‖ds+ I6 + I7 + I8 + I9.

It follows that

‖yn(t+ h)− yn(t)‖2

≤5

(
L

Γ(α)

)2
t2α−1

2α− 1

∫ t

0

‖yn(s+ h)− yn(s)‖2ds+ 5(I2
6 + I2

7 + I2
8 + I2

9 ).
(4.7)

According to the Gronwall’s inequality of differential form, we deduce that∫ T−h

0

‖yn(s+ h)− yn(s)‖2ds ≤ 5e5
∫ T−h
0 ( L

Γ(α) )
2 t2α−1

(2α−1)
dt

∫ T−h

0

(I2
6 + I2

7 + I2
8 + I2

9 )dt.

Since ∫ T−h

0

(
L

Γ(α)

)2
s2α−1

(2α− 1)
ds ≤ (LTα)2

(Γ(α))2(2α)(2α− 1)
,

we have∫ T−h

0

‖yn(s+ h)− yn(s)‖2ds ≤ 5e
5(LTα)2

(Γ(α))2(2α)(2α−1)

∫ T−h

0

(I2
6 + I2

7 + I2
8 + I2

9 )ds. (4.8)

Using the Hölder inequality and the fact that ‖f(yn)‖L2(Q) ≤ c2, we get

I2
6 ≤

(
c2

Γ(α)

)2 ∫ 0

−h
(t− s)2α−2ds ≤

(
c2

Γ(α)

)2 ∫ h

0

t2α−2ds =

(
c2

Γ(α)

)2

t2α−2h.

Then we have∫ T−h

0

I2
6dt ≤

(
c2

Γ(α)

)2 ∫ T

0

t2α−2hdt =
c22T

2α−1h

(2α− 1)Γ2(α)
→ 0 as h→ 0+. (4.9)
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On the other hand, we deduce that

lim
h→0+

∫ T−h

0

I2
7dt

≤ lim
h→0+

(
1

Γ(α)

)2 ∫ T−h

0

(∫ t

0

((t+ h− s)α−1 − (t− s)α−1)‖Bun(s)‖ds
)2

dt

≤ lim
h→0+

(
1

Γ(α)

)2

‖Bun‖2L2(Q)

∫ T−h

0

∫ t

0

((t+ h− s)α−1 − (t− s)α−1)2dsdt.

Now for each fixed t ∈ (0, T − h), as T 2α−2 is decreasing on (0,+∞), we have

((t+ h− s)α−1 − (t− s)α−1)2 ≤ (t− s)2α−2 ∈ L(J),

and (
(t+ h− s)α−1 − (t− s)α−1

)2 → 0, as h→ 0+,

using the Lebesgue dominated convergence theorem, we have∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)2
ds→ 0 as h→ 0+. (4.10)

Moreover, we see that∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)2
ds ≤

∫ t

0

(t− s)2α−2ds =
t2α−1

2α− 1
.

Since t2α−1 ∈ L(J), using (4.10) and the Lebesgue dominated convergence theorem
once more, we have

lim
h→0+

∫ T−h

0

∫ t

0

((t+ h− s)α−1 − (t− s)α−1)2dsdt = 0.

Thus, by the boundedness of ‖Bun‖2L2(Q), we find∫ T−h

0

I2
7dt→ 0 as h→ 0+. (4.11)

Next, by the Hölder inequality, we get∫ T−h

0

I2
8dt ≤

(
1

Γ(α)

)2

‖Bun‖2L2(Q)

∫ T−h

0

h2α−1

2α− 1
dt

≤
(

1

Γ(α)

)2

‖Bun‖2L2(Q)

Th2α−1

2α− 1
→ 0 as h→ 0+.

(4.12)

We also see that

lim
h→0+

∫ T−h

0

I2
9dt = lim

h→0+

(
1

Γ(α)

)2

‖y0‖2
∫ T−h

0

(
(t+ h)α−1 − tα−1

)2
dt = 0. (4.13)

In conclusion, from(4.8), (4.9), (4.11), (4.12) and (4.13), we deduce that (4.6) holds.
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Since Gyn is relatively compact, it follows from (4.6) that the sequence yn is rela-
tively compact in L2(Q), Passing to a subsequence (denoted by the same notation for
simplicity) and recalling yn ⇀ ȳ in L2(Q), we have

yn → ȳ in L2(Q). (4.14)

Finally, we aim to show that ȳ = ȳ(ū) is the mild solution of problem (4.2).
Using (H2), we have

f(yn)→ f(ȳ) in L2(Q),

and∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)(f(yn(s))− f(ȳ(s)))ds

∥∥∥∥ ≤ L
√
T 2α−1

Γ(α)
√

2α− 1
‖yn − ȳ‖L2(Q).

Then, if follows from (4.14) that∫ t

0

(t− s)α−1Tα(t− s)(f(yn(s))− f(ȳ(s)))ds→ 0 a.e. t ∈ J. (4.15)

Using un ⇀ ū in U , we have

Bun ⇀ Bū in L2(Q). (4.16)

For each υ ∈ L2(Ω), we set

ῡ(x, s) =

{
(t− s)α−1T ∗α(t− s)υ(x), 0 < s < t,

0, t ≤ s ≤ T.

Obviously, ῡ ∈ L2(Q). We see that∫
Ω

υ(x)

∫ t

0

(t− s)α−1Tα(t− s)
(
Bun(s)−Bū(s)

)
dsdx

=

∫ t

0

∫
Ω

υ(x)(t− s)α−1Tα(t− s)
(
Bun(s)−Bū(s)

)
dxds

=

∫ t

0

(
(t− s)α−1υ, Tα(t− s)

(
Bun(s)−Bū(s)

))
L2(Ω)

ds

=

∫ t

0

(
(t− s)α−1T ∗α(t− s)υ,Bun(s)−Bū(s)

)
L2(Ω)

ds

= (ῡ, Bun −Bū)L2(Q) ,

which goes to zero from (4.16) as n→∞. This implies that for a.e. t ∈ J ,∫ t

0

(t− s)α−1Tα(t− s)Bun(s)ds ⇀

∫ t

0

(t− s)α−1Tα(t− s)Bū(s)ds in L2(Ω). (4.17)

From (4.15) and (4.17), it follows

yn(t) ⇀ tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)(f(ȳ(s)) +Bū(s))ds a.e. t ∈ J.
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Recalling (4.14), we deduce that

ȳ(t) = tα−1Tα(t)y0 +

∫ t

0

(t− s)α−1Tα(t− s)(f(ȳ(s)) +Bū(s))ds a.e. t ∈ J. (4.18)

Thus, ȳ is the mild solution of (4.2) corresponding to the fixed control ū ∈ Uad.
From the weak lower semi-continuity of the functional J (u), we have

lim inf
n→∞

J (un) ≥ J (ū).

Hence, according to (4.3), we have

J (ū) ≤ inf
u∈Uad

J (u),

which implies that

J (ū) = inf
u∈Uad

J (u). (4.19)

Thus, from (4.18) and (4.19), (ȳ, ū) is an optimal pair of (4.1)-(4.2). The proof of
Theorem 4.3 is complete. �
To study the necessary optimality conditions of the optimal control problem (4.1)-
(4.2), in what follows, we further assume that U is a Hilbert space. Thus, U =
L2(J ;U) is a Hilbert space too. Let (·, ·)U stand for the inner product on U . Moreover,
the following additional hypothesis is considered:
(H3) the mapping f(y) is Fréchet differentiable with respect to y.
Theorem 4.4. If (ȳ, ū) is an optimal pair of the problem (4.1) subject to (4.2). Then
there exist p̄ ∈ L2(Q) and the triple (ȳ, ū, p̄) satisfies the system

−Dαp̄−∆p̄− f ′(ȳ)p̄ = ȳ − zd in Q

p̄ = 0 on ∂Ω× (0, T )

p̄(T ) = 0 in Ω,

(4.20)

and (
B(v − ū), p̄

)
L2(Q)

+N
(
ū, v − ū

)
U ≥ 0, ∀ v ∈ Uad. (4.21)

Note that (4.20) and (4.21) are referred to as the first-order necessary optimality
conditions to the optimal control problem (4.1)-(4.2) where (4.20) is known as the
adjoint problem of (4.2). To prove this theorem, we present several lemmas. The first
is the so-called fractional integration by parts formula; see, e.g, [17].
Lemma 4.5. For any ϕ ∈ C∞(Q), we have∫ T

0

∫
Ω

(LDα
t (y(x, t))−∆y(x, t))ϕ(x, t)dxdt

=

∫
Ω

ϕ(x, T )I1−αy(x, T )dx−
∫

Ω

ϕ(x, 0)I1−αy(x, 0+)dx

+

∫ T

0

∫
∂Ω

y
∂ϕ

∂υ
dσdt−

∫ T

0

∫
∂Ω

∂y

∂υ
ϕdσdt

+

∫ T

0

∫
Ω

y(x, t)(−Dαϕ(x, t)−∆ϕ(x, t))dxdt.
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The second is connected to the solvability of problem (4.20).
Lemma 4.6. Assume that 1

2 < α < 1, g ∈ L2(Q), Then, the following problem
−Dαp̄(t)−∆p̄(t)− f ′(ȳ)p̄(t) = g(t) in Q

p̄ = 0 on ∂Ω× (0, T )

p̄(T ) = 0 in Ω,

(4.22)

has a unique mild solution p̄ ∈ C(J ;X) given by

p̄(t) =

∫ T−t

0

(T − t− s)α−1Tα(T − t− s)(f ′(ȳ)p̄(T − s) + g(T − s))ds, (4.23)

with the bound

‖p̄‖C(J;X) ≤
1

Γ(α)

√
T 2α−1

2α− 1
‖g‖L2(Q)Eα(Tα‖f ′(ȳ)‖). (4.24)

Proof. We now define a mapping JT p(t) = p(T − t), t ∈ J. A direct computation
gives DαJT p(t) = −CDα

t JT p(t); see, e.g. the proof in [17, Proposition 3.6]. Making
the change of variable t→ T − t in (4.22), we obtain

CDα
t JT p̄(t)−∆JT p̄(t)− f ′(JT ȳ)JT p̄(t) = JT g(t) in Q

JT p̄ = 0 on ∂Ω× (0, T )

JT p̄(0) = 0 in Ω.

(4.25)

As usual, a mild solution JT p̄ ∈ C(J ;X) to (4.25) is defined by

JT p̄(t) =

∫ t

0

(t− s)α−1Tα(t− s)
(
f ′(JT ȳ)JT p̄(s) + JT g(s)

)
ds. (4.26)

Replacing f(t, y) in (H2) with f ′(JT ȳ)y + JT g, we see that the inequality in (H2) is
satisfied with L = ‖f ′(JT ȳ)‖ because ȳ, g are fixed, and f ′(JT ȳ) is a linear and con-
tinuous mapping. Taking A as the Laplace operator with the homogeneous Dirichlet
boundary condition, by a similar proof to Theorem 3.3, we deduce that (4.25) has
a unique mild solution JT p̄ ∈ C(J ;X) given by (4.26). In fact, here is easier since
(4.25) is linear and the initial value is zero. Moreover,

‖JT p̄‖C(J;X) ≤
1

Γ(α)

√
T 2α−1

2α− 1
‖JT g‖L2(Q)Eα(Tα‖f ′(JT ȳ)‖). (4.27)

Making the change of variable t→ T − t from (4.25) to (4.27), we see that this lemma
holds. The proof is complete. �

Now we are in a position to prove Theorem 4.4.
Proof. Define the Lagrangian function L associated with the problem (4.1)-(4.2),

L(y, u, p) := J (u)−
∫ T

0

∫
Ω

(LDα
t y −∆y − f(y)−Bu)pdxdt.
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Since (ȳ, ū) is an optimal pair, by the formal Lagrange multiplier method, see, e.g.
[26], we obtain the following first-order necessary optimality conditions:

DyL(ȳ, ū, p)h = 0, ∀h ∈ C∞(Q) with h|∂Ω = 0 , I1−αh(0+) = 0 in Ω, (4.28)

DuL(ȳ, ū, p)(v − ū) ≥ 0, for all v ∈ Uad. (4.29)

The condition (4.28) leads to the adjoint equation. In fact, from (4.28), we have

DyL(ȳ, ū, p)h =

∫ T

0

∫
Ω

(ȳ − zd)hdxdt−
∫ T

0

∫
Ω

(LDα
t h−∆h− f ′y(ȳ)h)pdxdt.

According to Lemma 4.5, we further deduce that

0 =

∫ T

0

∫
Ω

(ȳ − zd + Dαp+ ∆p+ f ′(ȳ)p)hdxdt+

∫ T

0

∫
∂Ω

∂h

∂v
pdσdt

−
∫

Ω

p(x, T )I1−αh(x, T )dx.

(4.30)

Note that for all h ∈ C∞0 (Q) the expressions I1−αh(T ) and ∂h
∂υ vanish on Ω and ∂Ω,

respectively. Consequently,∫ T

0

∫
Ω

(ȳ − zd + Dαp+ ∆p+ f ′(ȳ)p)hdxdt = 0, ∀ h ∈ C∞0 (Q).

Recalling that C∞0 (Q) is dense in L2(Q), we have

−Dαp−∆p− f ′(ȳ)p = ȳ − zd in Q. (4.31)

Then, for all h ∈ C∞(Q) with h|∂Ω = 0 and I1−αh(T ) = 0 on Ω , from (4.30) and
(4.31) it follows

p|∂Ω = 0. (4.32)

Finally, for all h ∈ C∞(Q) with h|∂Ω = 0, from (4.30) to (4.32), we get

p(x, T ) = 0 in Ω. (4.33)

Note that (4.31) to (4.33) is referred to as the adjoint problem to (4.2). Now it follows
from Lemma 4.6 that problem (4.31) to (4.33) has a unique mild solution p̄ ∈ C(J ;X),
i.e. (ȳ, ū, p̄) satisfies (4.20).
Moreover, from the condition (4.29) with p = p̄, we have

DuL(ȳ, ū, p̄)(v − ū) = (B(v − ū), p̄)L2(Q) +N(ū, v − ū)U ≥ 0 ∀ v ∈ Uad.

Thus, the inequality (4.21) holds. The proof is complete. �
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[26] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Appli-

cations, American Mathematical Society Providence, vol. 112, 2010.
[27] J.R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear

Analysis: Real World Applications, 12(2011), 262-272.

[28] J.R. Wang, Y. Zhou, W. Wei, Optimal feedback control for semilinear fractional evolution
equations in Banach spaces, Systems and Control Letters, 61(2012), 472-476.

[29] Y.B. Xiao, M. Sofonea, On the optimal control of variational-hemivariational inequalities, J.

Mathematical Analysis and Applications, 475(2019), 364-384.
[30] M. Yang, Q.R. Wang, Approximate controllability of Riemann-Liouville fractional differential

inclusions, Applied Mathematics and Computation, 274(2016), 267-281.
[31] H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a frac-

tional differential equation, J. Mathematical Analysis and Applications, 328(2007), 1075-1081.

[32] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Com-
puters and Mathematics with Applications, 59(2010), 1063-1077.

[33] Y. Zhou, J.R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Sci-

entific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2016.
[34] Y. Zhou, L. Zhang, X.H. Shen, Existence of mild solutions for fractional evolution equations,

J. Integral Equations Appl., 25(2013), 557-586.

Received: December 28, 2020; Accepted: July 8, 2021.


