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Abstract. This paper investigates two inertial extragradient algorithms for seeking a common

solution to a variational inequality problem involving a monotone and Lipschitz continuous mapping
and a fixed point problem with a demicontractive mapping in real Hilbert spaces. Our algorithms

need to calculate the projection on the feasible set only once in each iteration. Moreover, they can
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any linesearch process. Strong convergence theorems of the suggested algorithms are established

under suitable conditions. Some experiments are presented to illustrate the numerical efficiency of

the suggested algorithms and compare them with some existing ones.
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1. Introduction

Throughout this paper, one assumes that H is a real Hilbert space with 〈·, ·〉 and
‖ · ‖ as its inner product and induced norm, respectively. Let C ⊂ H be convex and
closed, and let PC denote the metric (nearest point) projection of H onto C. Let
A : C → H be a nonlinear operator. The variational inequality problem (in short,
VIP) is considered as follows:

find x† ∈ C such that 〈Ax†, x− x†〉 ≥ 0 , ∀x ∈ C . (VIP)

The symbol Ω represents the solution set of the problem (VIP).
Variational inequality problems provide a useful and indispensable tool for inves-

tigating various interesting issues emerging in many areas, such as social, physics,
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engineering, economics, network analysis, medical imaging, inverse problems, trans-
portation and much more; see, e.g., [1, 8, 12, 7, 19]. Variational inequality theory has
been proven to provide a simple, universal, and consistent structure to deal with pos-
sible problems. In the past few decades, researchers have shown tremendous interest
in exploring different extensions of variational inequality problems. Recently, vari-
ous forms of computational approaches have been developed and proposed to solve
variational inequalities, such as projection-based methods, hybrid steepest descent
methods, and Tikhonov regularization methods. For some related results, the readers
can refer to [2, 5, 6, 23, 21, 27].

We concentrate primarily on projection-based approaches in this study. The ear-
liest and cheapest projection-type method is called the projected gradient method.
This method contains only one iterative process in each iteration, and only needs to
calculate one projection on the feasible set. Unfortunately, the convergence condition
of this algorithm is very strong, that is, the operator involved is strongly monotone
or inverse strongly monotone, which limits the wide use of the algorithm. To prevent
the use of such strong assumptions, Korpelevich proposed the extragradient method
(EGM) [13], which can guarantee weak convergence under the condition that the op-
erator is only monotone and Lipschitz continuous. Looking back on the extragradient
method, it can be seen that EGM needs to evaluate the value of the operator twice
and calculate two projections on the feasible set in each iteration. It should be remem-
bered that when the feasible set has a complex structure, it may be very expensive
to calculate the projection on the feasible set, which will further affect the efficiency
of the iterative method. Next, let us review two notable approaches to overcome this
shortcoming. The first one is the Tseng’s extragradient method [30] (TEGM for short,
it is also known as the forward-backward-forward algorithm), which is a two-step it-
erative method. In the second step of TEGM, an explicit formula is used to replace
the second projection of EGM. So, this method calculates the projection only once on
the feasible set in every iteration. The other method is the subgradient extragradient
method (SEGM) proposed in [3], which is widely considered as an improvement of
EGM. This method replaces the second projection of EGM with the projection on a
half-space. It is known that the projection on a half-space can be calculated by an
explicit formula. Therefore, SEGM greatly improves the computational efficiency of
EGM.

The second problem that we are interested in is the fixed point problem (in short,
FPP). One recalls that the fixed point problem is described as follows:

find x† ∈ H such that x† = Tx† , (FPP)

where T : H → H is a general operator, and its fixed point set is represented as
Γ = {x : Tx = x}. We always suppose that the fixed point set of T is non-empty, i.e.,
Γ 6= ∅. Iterative approaches of fixed point problems of nonlinear operators have been
bustling some fields due to their applications in engineering and science recently. In
recent years, iterative methods of fixed-point estimation for nonexpansive operators
and demicontractive operators are studied in [9, 11, 15, 16, 25].

In this paper, we are concerned about finding common solutions of variational in-
equality problems (VIP) and fixed point problems (FPP). More precisely, we consider
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the following general problem:

find x† such that x† ∈ Ω ∩ Γ , (VIPFPP)

where A : C → H and T : H → H are two nonlinear operators. The reason for ex-
ploring such problems is that they can be applied to mathematical models, and their
constraints can be represented as fixed-point problems and/or variational inequality
problems. In recent years, researchers have investigated and proposed many efficient
iterative approaches to find common solutions for variational inequalities and fixed-
point problems. We here list some of the iterative approaches to solve (VIP) and
(FPP) which motivate us to introduce our new schemes for solving (VIPFPP). Re-
cently, Kraikaew and Saejung [14] proposed an algorithm called Halpern subgradient
extragradient method to solve (VIPFPP) by combining the subgradient extragradient
method and the Halpern method. Their algorithm is expressed as follows:

yk = PC(x
k − λAxk) ,

Hk = {x ∈ H : 〈xk − λAxk − yk, x− yk〉 ≤ 0} ,

zk = αkx
0 + (1− αk)PHk

(xk − λAyk) ,

xk+1 = βkx
k + (1− βk)Tzk ,

(HSEGM)

where x0 represents the initial point, {αk} ⊂ (0, 1) satisfies that
∑∞
k=1 αk = ∞,

limk→∞ αk = 0, step size λ ∈ (0, 1/L), mapping A : H → H is L-Lipschitz continuous
monotone and mapping T : H → H is quasi-nonexpansive with (I − T ) being demi-
closed at zero. Under the assumption of Ω ∩ Γ 6= ∅, they proved that the sequence
{xk} formulated by (HSEGM) converges to an element u ∈ Ω ∩ Γ in norm, where
u = PΩ∩Γx

0. However, the Algorithm (HSEGM) converges very slowly because it
uses the initial point x0 in each iteration. Another method used to obtain strong
convergence is called the viscosity method. Recently, based on the extragradient-type
method and the viscosity method, Thong and Hieu [28] suggested two extragradient-
viscosity algorithms in a Hilbert space for solving (VIPFPP). Let {xk} be formulated
by: 

yk = PC(x
k − λkAxk) ,

Hk = {x ∈ H : 〈xk − λkAxk − yk, x− yk〉 ≤ 0} ,

zk = PHk
(xk − λkAyk) ,

xk+1 = αkf(xk) + (1− αk)[(1− βk)zk + βkTz
k] ,

(VSEGM)

and 
yk = PC(x

k − λkAxk) ,

zk = yk − λk(Ayk −Axk) ,

xk+1 = αkf(xk) + (1− αk)[(1− βk)zk + βkTz
k] ,

(VTEGM)

where Algorithms (VSEGM) and (VTEGM) update the step size {λk} by following:

λk+1 =

 min

{
φ‖xk − yk‖
‖Axk −Ayk‖

, λk

}
, if Axk −Ayk 6= 0;

λk, otherwise,
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where {αk} ⊂ (0, 1) satisfies that
∑∞
k=1 αk = ∞, limk→∞ αk = 0, {βk} ⊂ (a, 1 − ϑ)

for some a > 0 and λ0 > 0, mapping A : H → H is monotone and L-Lipschitz
continuous, mapping T : H → H is ϑ-demicontractive such that (I−T ) is demiclosed
at zero and mapping f : H → H is ρ-contraction with constant ρ ∈ [0, 1). It was
proven that, if Ω∩Γ 6= ∅, the sequence {xk} formulated by (VSEGM) and (VTEGM)
converges strongly to u ∈ Ω ∩ Γ, where u = PΩ∩Γ ◦ f(u). Note that (HSEGM) uses a
fixed step size, i.e., it needs to know the prior information of Lipschitz constant of the
mapping A. However, (VSEGM) and (VTEGM) do not require the prior information
of Lipschitz constants of the mapping, which makes them more flexible in practical
applications.

It is worth noting that the methods mentioned above need to calculate at least one
projection in every iteration. It is known that calculating the value of the projection is
equivalent to finding a solution to an optimization problem, which is computationally
expensive. A natural problem appears in front of us. Is there a way to prevent calcu-
lating projections and solve variational inequalities? Indeed, Yamada [31] proposed
the hybrid steepest descent method, which is read as follows:

xk+1 = (I − λkσS)Txk ,

where mapping T : H → H is nonexpansive, mapping S : C → H is κ-Lipschitz
continuous and η-strong monotone, 0 < σ < 2η/κ2 and the sequence {λk} ⊆ (0, 1)
satisfies some conditions. He proved that the formulated sequence {xk} converges
to an element x† in norm, which is a unique solution of the variational inequality
〈Sx†, y − x†〉 ≥ 0,∀y ∈ Γ.

Very recently, Tong and Tian [29] combined the Tseng’s extragradient method
with the hybrid steepest descent method, and proposed a new method for solv-
ing (VIPFPP). In addition, they used an adaptive criterion to update the step size.
Indeed, the sequence {xk} is expressed in the following form:

yk = PC(x
k − λkAxk) ,

zk = yk − λk(Ayk −Axk) ,

xk+1 = (1− σαkS)[(1− βk)zk + βkTz
k] ,

(STEGM)

where mapping A : H → H is monotone and Lipschitz continuous, mapping T : H →
H is quasi-nonexpansive such that (I −T ) is demiclosed at zero, mapping S : H → H
is η-strongly monotone and κ-Lipschitz continuous for η > 0 and κ > 0. Furthermore,
for any χ > 0, ` ∈ (0, 1), φ ∈ (0, 1), the sequence {λk} is selected as the maximum
λ ∈

{
χ, χ`, χ`2, . . .

}
satisfying λ‖Axk −Ayk‖ ≤ φ‖xk − yk‖. This update criterion is

called the Armijo linesearch rule. Under some suitable conditions, the sequence {xk}
formulated by (STEGM) converges to u ∈ Ω∩Γ in norm, where u = PΩ∩Γ(I − σS)u.
It should be pointed out that using the Armijo-like linesearch rule may require more
computation time, because update the step size in each iteration needs to calculate
the value of A many times.

On the other hand, problems in practical applications have the characteristics of
diversity, complexity and large-scale. How to build fast and stable algorithms be-
comes particularly important. Recently, many scholars have developed various types
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of inertial algorithms by employing inertial extrapolation techniques. The inertial
method is based on the discrete version of the second-order dissipative dynamical
system originally proposed by Polyak [17]. The main feature of the inertial type
methods is that they use the previously known sequence information to generate the
next iteration point. More precisely, the procedure requires two iteration steps and
the second iteration step is implemented through the preceding two iterations. Note
that this small change can greatly accelerate the convergence speed of the iterative
algorithms. In recent years, this technique has been investigated intensively and im-
plemented successfully to many problems; see, e.g., [4, 10, 20, 22, 24, 32] and the
references therein.

Encouraged and influenced by the above work, the purpose of this paper is to
develop two inertial extragradient algorithms with a new step size for discovering a
common solution of the variational inequality problem containing a monotone and
Lipschitz continuous mapping and of the fixed point problem with a demicontractive
mapping in real Hilbert spaces. The suggested algorithms need to calculate the pro-
jection on the feasible set only once per iteration, which makes them faster. Strong
convergence theorems of the algorithms are established without the prior information
of the Lipschitz constant of the operator. Lastly, some computational tests appearing
in finite and infinite dimensions are proposed to verify our theoretical results. Our
algorithms develop and summarize some of the results in the literature [14, 28, 29].

The organizational structure of our paper is built up as follows. Some essential
definitions and technical lemmas that need to be used are given in the next section. In
Section 3, we propose the algorithms and analyze their convergence. Some numerical
experiments to verify our theoretical results are presented in Section 4. At last, the
paper ends with a brief summary in Section 5, the final section.

2. Preliminaries

Let C be a convex and closed set in a real Hilbert space H. The weak convergence
and strong convergence of {xk} to a point x are represented by xk ⇀ x and xk → x,
respectively. Here we state one inequality and one equality that need to be used in
the proofs. For any x, y ∈ H and α ∈ R, we have

• ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.
• ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

For every point x ∈ H, there exists a unique nearest point in C, which is represented
by PC(x), such that PC(x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric
projection of H onto C, and it is a nonexpansive mapping. The following two basic
projection properties will be used for many times in subsequent proofs.

• 〈x− PC(x), y − PC(x)〉 ≤ 0, ∀y ∈ C.
• ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉 , ∀y ∈ H.

Definition 2.1. Assume that T : H → H is a nonlinear operator with Γ 6= ∅. Then,
I − T is said to be demiclosed at zero if for any {xk} in H, the following implication
holds: xk ⇀ x and (I − T )xk → 0 =⇒ x ∈ Γ.
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Definition 2.2. For any x, y ∈ H, z ∈ {x : Mx = x}, a mapping M : H → H is said
to be:

• L-Lipschitz continuous with L > 0 if

‖Mx−My‖ ≤ L‖x− y‖ .
If L = 1 then the mapping M is called nonexpansive and if L ∈ (0, 1), M is
called contraction.
• monotone if

〈Mx−My, x− y〉 ≥ 0 .

• quasi-nonexpansive if

‖Mx− z‖ ≤ ‖x− z‖ .
• ρ-strictly pseudocontractive with 0 ≤ ρ < 1 if

‖Mx−My‖2 ≤ ‖x− y‖2 + ρ‖(I −M)x− (I −M)y‖2 .
• ϑ-demicontractive with 0 ≤ ϑ < 1 if

‖Mx− z‖2 ≤ ‖x− z‖2 + ϑ‖(I −M)x‖2 , (2.1)

or equivalently

〈Mx− z, x− z〉 ≤ ‖x− z‖2 +
ϑ− 1

2
‖x−Mx‖2 . (2.2)

Remark 2.1. According to the above definitions, we can easily see the following
facts:

• The class of demicontractive mappings includes the class of quasi-
nonexpansive mappings.
• Every strictly pseudocontractive mapping with a nonempty fixed point set is

demicontractive.

The following three lemmas are crucial to prove the convergence of our algorithms.

Lemma 2.1. Suppose that the mapping S : H → H is κ-Lipschitz continuous and
η-strongly monotone with 0 < η ≤ κ. Let the mapping U : H → H be nonexpansive.
Take σ > 0 and α ∈ (0, 1]. The mapping Uσ : H → H is defined by

Uσx = (I − ασS)(Ux),∀x ∈ H.

Then, Uσ is a contraction mapping provided σ < 2η
κ2 , i.e.,

‖Uσx− Uσy‖ ≤ (1− αγ)‖x− y‖, ∀x, y ∈ H ,

where γ = 1−
√

1− σ(2η − σκ2) ∈ (0, 1).

Proof. Indeed, it follows that

‖(I − σS)(Ux)−(I − σS)(Uy)‖2 = ‖Ux− Uy‖2 + σ2‖S(Ux)− S(Uy)‖2

− 2σ〈Ux− Uy, S(Ux)− S(Uy)〉
≤ ‖Ux−Uy‖2 + σ2κ2‖Ux−Uy‖2 − 2ση‖Ux−Uy‖2

= (1− σ(2η − σκ2))‖Ux− Uy‖2 .



INERTIAL EXTRAGRADIENT ALGORITHMS FOR VIPS AND FPPS 713

It follows from 0 < η ≤ κ that

1− σ(2η − σκ2) = (σκ− η

κ
)2 + 1− η2

κ2
≥ 0 .

Therefore, we get

‖(I − σS)(Ux)− (I − σS)(Uy)‖ ≤
√

1− σ(2η − σκ2)‖x− y‖ .
From the definition of Uσx, one has

‖Uσx− Uσy‖ = ‖(I − ασS)(Ux)− (I − ασS)(Uy)‖
= ‖α[(I − σS)(Ux)− (I − σS)(Uy)] + (1− α)(Ux− Uy)‖
≤ α‖(I − σS)(Ux)− (I − σS)(Uy)‖+ (1− α)‖x− y)‖ .

Thus, we conclude that

‖Uσx− Uσy‖ ≤ (1− αγ)‖x− y‖ .

where γ = 1−
√

1− σ(2η − σκ2) ∈ (0, 1) with 0 < η ≤ κ and σ < 2η
κ2 . �

Lemma 2.2 ([14]). Assume that mapping A : H → H is monotone and L-Lipschitz
continuous on C. Set T = PC(I − φA), where φ > 0. If {xk} ⊂ H satisfies xk ⇀ u
and xk − Txk → 0. Then u ∈ Ω = Γ.

Lemma 2.3 ([18]). Let {ak} be a nonnegative real number sequence. The sequence
{αk} ⊂ (0, 1) satisfies

∑∞
k=1 αk =∞. Assume that the following inequality holds:

ak+1 ≤ (1− αk)ak + αkb
k, ∀k ≥ 1,

where {bk} is a real number sequence such that lim supi→∞ bki ≤ 0 for every subse-
quence {aki} of {ak} satisfying lim infi→∞ (aki+1 − aki) ≥ 0. Then limk→∞ ak = 0.

3. Strong convergence of two inertial algorithms

In this section, we present two inertial extragradient methods with a new step size
for searching a common solution of variational inequality problems and fixed point
problems and analyze their convergence. Our algorithms consist of four methods: the
inertial method, the subgradient extragradient method, the Tseng’s extragradient
method and the hybrid steepest descent method. The advantages of our iterative
schemes are that the projection onto the feasible set needs to be computed only once
in each iteration and no prior knowledge of the Lipschitz constant of the mapping is
required. Assume that the suggested iterative schemes satisfy the following conditions.

(C1) The mapping A : H → H is monotone and L-Lipschitz continuous on H.
(C2) The mapping T : H → H is ϑ-demicontractive such that (I−T ) is demiclosed

at zero.
(C3) The solution set of (VIPFPP) is non-empty, i.e., Ω ∩ Γ 6= ∅.
(C4) The mapping S : H → H is η-strongly monotone and κ-Lipschitz continuous,

where η and κ are positive numbers.
(C5) Let {ζk} be a positive sequence satisfying limk→∞

ζk
αk

= 0, where {αk} ⊂ (0, 1)

such that
∑∞
k=1 αk = ∞ and limk→∞ αk = 0. Let {βk} be a real sequence

such that βk ⊂ (a, 1− ϑ) for some a > 0.
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3.1. The self-adaptive inertial subgradient extragradient algorithm. So far,
we can state our first self-adaptive iterative algorithm, which is motivated by the
inertial subgradient extragradient method and the hybrid steepest descent method.
Our Algorithm 3.1 is described as follows.

Algorithm 3.1 The self-adaptive inertial subgradient extragradient algorithm

Initialization: Take ξ > 0, λ1 > 0, φ ∈ (0, 1), σ ∈ (0, 2η
κ2 ). Let x0, x1 ∈ H.

Iterative Steps: Calculate the next iteration point xk+1 as follows:
Step 1. Given two previously known iteration points xk−1 and xk (k ≥ 1).
Calculate uk = xk + ξk(xk − xk−1), where

ξk =

 min

{
ζk

‖xk − xk−1‖
, ξ

}
, if xk 6= xk−1;

ξ, otherwise.
(3.1)

Step 2. Calculate yk = PC(u
k − λkAuk).

Step 3. Calculate zk = PHk
(uk − λkAyk), where

Hk := {x ∈ H | 〈uk − λkAuk − yk, x− yk〉 ≤ 0}.
Step 4. Calculate xk+1 = (I − σαkS)qk, where qk = (1 − βk)zk + βkTz

k, and
update

λk+1 =

 min

{
φ‖uk − yk‖
‖Auk −Ayk‖

, λk

}
, if Auk −Ayk 6= 0;

λk, otherwise.
(3.2)

Set n := n+ 1 and go to Step 1.

Remark 3.1. It follows from (3.1) and Condition (C5) that

lim
k→∞

ξk
αk
‖xk − xk−1‖ = 0 .

Indeed, we obtain ξk‖xk − xk−1‖ ≤ ζk for all k, which together with limk→∞
ζk
αk

= 0
implies that

lim
k→∞

ξk
αk
‖xk − xk−1‖ ≤ lim

k→∞

ζk
αk

= 0 .

The following two lemmas are very helpful for the convergence analysis of the
algorithms.

Lemma 3.1. The sequence {λk} formulated by (3.2) is nonincreasing and satisfies

lim
k→∞

λk = λ ≥ min
{
λ1,

φ

L

}
.

Proof. It follows from (3.2) that λk+1 ≤ λk for all k ∈ N. Hence, {λk} is nonin-
creasing. Furthermore, we get ‖Auk − Ayk‖ ≤ L‖uk − yk‖ since A is L-Lipschitz
continuous. Consequently, we can show that

φ
‖uk − yk‖
‖Auk −Ayk‖

≥ φ

L
, if Auk 6= Ayk .



INERTIAL EXTRAGRADIENT ALGORITHMS FOR VIPS AND FPPS 715

In view of (3.2), it follows that

λk ≥ min
{
λ1,

φ

L

}
.

Thus, from the sequence {λk} is nonincreasing and lower bounded, we get that

limk→∞ λk = λ ≥ min
{
λ1,

φ
L

}
. �

Lemma 3.2 ([26]). Suppose that Conditions (C1) and (C3) hold. Let the sequence
{zk} be formulated by Algorithm 3.1. Then, for any x† ∈ Ω,

‖zk − x†‖2 ≤ ‖uk − x†‖2 −
(
1− φ λk

λk+1

)
‖yk − uk‖2 −

(
1− φ λk

λk+1

)
‖zk − yk‖2 .

Theorem 3.1. Suppose that Conditions (C1)-(C5) hold. Then the iterative sequence
{xk} created by Algorithm 3.1 converges to an element x† ∈ Ω ∩ Γ in norm, where
x† = PΩ∩Γ(I − σS)x†.

Proof. According to Lemma 2.1, we get that (I − σS) is a contractive mapping.
Therefore, PΩ∩Γ(I − σS) is also a contraction mapping. By means of the Banach
contraction principle, one concludes that there exists a unique point x† ∈ H such
that x† = PΩ∩Γ(I − σS)x†. Let x† ∈ Ω ∩ Γ.
Claim 1. The sequence {xk} is bounded. On account of Lemma 3.1, we see that

lim
k→∞

(
1− φ λk

λk+1

)
= 1− φ > 0.

Hence, there exists k0 ∈ N such that

1− φ λk
λk+1

> 0, ∀k ≥ k0 . (3.3)

Combining Lemma 3.2 and (3.3), it follows that

‖zk − x†‖ ≤ ‖uk − x†‖, ∀k ≥ k0 . (3.4)

According to the definition of uk, we can write

‖uk − x†‖ ≤ ‖xk − x†‖+ ξk‖xk − xk−1‖

= ‖xk − x†‖+ αk ·
ξk
αk
‖xk − xk−1‖ .

(3.5)

From Remark 3.1, one sees that ξk
αk
‖xk−xk−1‖ → 0. Therefore, there exists a constant

Q1 > 0 such that

ξk
αk
‖xk − xk−1‖ ≤ Q1, ∀k ≥ 1 . (3.6)

Combining (3.4), (3.5) and (3.6), we have

‖zk − x†‖ ≤ ‖uk − x†‖ ≤ ‖xk − x†‖+ αkQ1, ∀k ≥ k0 . (3.7)
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On the other hand, from the definition of qk, (2.1) and (2.2), we get

‖qk − x†‖2 = ‖(1− βk)(zk − x†) + βk(Tzk − x†)‖

= (1− βk)2‖zk − x†‖2 + β2
k‖Tzk − x†‖2

+ 2(1− βk)βk〈Tzk − x†, zk − x†〉

≤ (1− βk)2‖zk − x†‖2 + β2
k‖zk − x†‖2 + β2

kϑ‖Tzk − zk‖2

+ 2(1− βk)βk
[
‖zk − x†‖2 − 1− ϑ

2
‖Tzk − zk‖2

]
= ‖zk − x†‖2 + βk[βk − (1− ϑ)]‖Tzk − zk‖2 .

(3.8)

In view of {βk} ⊂ (0, 1− ϑ) and (3.7), we get

‖qk − x†‖ ≤ ‖uk − x†‖ ≤ ‖xk − x†‖+ αkQ1, ∀k ≥ k0 . (3.9)

Therefore, on account of Lemma 2.1 and (3.9), we have

‖xk+1 − x†‖ = ‖(I − σαkS)qk − (I − σαkS)p− σαkSx†‖

≤ ‖(I − σαkS)qk − (I − σαkS)p‖+ σαk‖Sx†‖

≤ (1− γαk)‖qk − x†‖+ σαk‖Sx†‖

≤ (1− γαk)‖xk − x†‖+ γαk
σ

γ
‖Sx†‖+ γαk

Q1

γ

≤ max
{
‖xk − x†‖, σ‖Sx

†‖+Q1

γ

}
≤ · · · ≤ max

{
‖xk0 − x†‖, σ‖Sx

†‖+Q1

γ

}
,

where γ = 1 −
√

1− σ(2η − σκ2) ∈ (0, 1). This means that the sequence {xk} is

bounded. Thus, the sequences {yk}, {zk}, {qk} and
{

(I − σS)xk
}

are also bounded.
Claim 2.

βk[1− ϑ− βk]‖zk − Tzk‖2 +
(
1− φ λk

λk+1

)
‖yk − uk‖2 +

(
1− φ λk

λk+1

)
‖zk − yk‖2

≤ ‖xk − x†‖2 − ‖xk+1 − x†‖2 + αkQ4 , ∀k ≥ k0

for some Q4 > 0. Indeed, on account of Lemma 2.1 and (3.8), it follows that

‖xk+1 − x†‖2 = ‖(I − σαkS)qk − (I − σαkS)p− σαkSx†‖2

≤ ‖(I − σαkS)qk − (I − σαkS)p‖2 − 2σαk〈Sx†, xk+1 − x†〉

≤ (1− γαk)2‖qk − x†‖2 + 2σαk〈Sx†, x† − xk+1〉

≤ ‖qk − x†‖2 + αkQ2

≤ ‖zk − x†‖2 + βk[βk − (1− ϑ)]‖Tzk − zk‖2 + αkQ2

(3.10)
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for some Q2 > 0. In the light of Lemma 3.2, one has

‖xk+1 − x†‖2 ≤ ‖uk − x†‖2 −
(
1− φ λk

λk+1

)(
‖yk − uk‖2 + ‖zk − yk‖2

)
+ βk[βk − (1− ϑ)]‖Tzk − zk‖2 + αkQ2 .

(3.11)

In view of (3.7), we have

‖uk − x†‖2 ≤ (‖xk − x†‖+ αkQ1)2

= ‖xk − x†‖2 + αk(2Q1‖xk − x†‖+ αkQ
2
1)

≤ ‖xk − x†‖2 + αkQ3

(3.12)

for some Q3 > 0. From (3.11) and (3.12), we get

‖xk+1 − x†‖2 ≤ ‖xk − x†‖2 −
(
1− φ λk

λk+1

)
‖yk − uk‖2 −

(
1− φ λk

λk+1

)
‖zk − yk‖2

+ βk[βk − (1− ϑ)]‖Tzk − zk‖2 + αkQ2 + αkQ3 .

which yields

βk[1− ϑ− βk]‖zk − Tzk‖2 +
(
1− φ λk

λk+1

)
‖yk − uk‖2 +

(
1− φ λk

λk+1

)
‖zk − yk‖2

≤ ‖xk − x†‖2 − ‖xk+1 − x†‖2 + αkQ4 , ∀k ≥ k0 ,

where Q4 := Q2 +Q3.
Claim 3.

‖xk+1 − x†‖2 ≤ (1− γαk)‖xk − x†‖2

+ γαk

[2σ

γ
〈Sx†, x† − xk+1〉+

3Qξk
γαk

‖xk − xk−1‖
]
, ∀k ≥ k0

for some Q > 0. Indeed, by the definition of uk, one obtains

‖uk − x†‖2 = ‖xk + ξk(xk − xk−1)− x†‖

= ‖xk − x†‖2 + 2ξk〈xk − x†, xk − xk−1〉+ ξ2
k‖xk − xk−1‖2

≤ ‖xk − x†‖2 + 3Qξk‖xk − xk−1‖ ,
(3.13)

where Q := supk∈N
{
‖xk − x†‖, ξ‖xk − xk−1‖

}
> 0. Using (3.9) and (3.10), we obtain

‖xk+1 − x†‖2 ≤ (1− γαk)‖uk − x†‖2 + 2σαk〈Sx†, x† − xk+1〉 . (3.14)

Substituting (3.13) into (3.14), it follows that

‖xk+1 − x†‖2 ≤ (1− γαk)‖xk − x†‖2

+ γαk

[2σ

γ
〈Sx†, x† − xk+1〉+

3Qξk
γαk

‖xk − xk−1‖
]
, ∀k ≥ k0 .

Claim 4. The sequence
{
‖xk − x†‖2

}
converges to zero. From Lemma 2.3, we need

to show that lim supi→∞〈Sx†, x† − xki+1〉 ≤ 0 for every subsequence {‖xki − x†‖} of
{‖xk − x†‖} satisfying

lim inf
i→∞

(‖xki+1 − x†‖ − ‖xki − x†‖) ≥ 0 .
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For this purpose, one assumes that {‖xki −x†‖} is a subsequence of {‖xk−x†‖} such
that lim infi→∞(‖xki+1 − x†‖ − ‖xki − x†‖) ≥ 0. We obtain

lim inf
i→∞

(
‖xki+1 − x†‖2 − ‖xki − x†‖2

)
= lim inf

i→∞

[(
‖xki+1 − x†‖ − ‖xki − x†‖

)(
‖xki+1 − x†‖+ ‖xki − x†‖

)]
≥ 0 .

From Claim 2 and Condition (C5), it follows that

lim sup
i→∞

[(
1− φ λki

λki+1

)
‖yki − uki‖2 +

(
1− φ λki

λki+1

)
‖zki − yki‖2

+ βki(1− ϑ− βki)‖Tzki − zki‖2
]

≤ lim sup
i→∞

[
‖xki − x†‖2 − ‖xki+1 − x†‖2 + αkiQ4

]
≤ lim sup

i→∞

[
‖xki − x†‖2 − ‖xki+1 − x†‖2

]
+ lim sup

i→∞
αkiQ4

= − lim inf
i→∞

[
‖xki+1 − x†‖2 − ‖xki − x†‖2

]
≤ 0 .

Thus, we obtain the following results:

lim
i→∞

‖yki − uki‖ = 0, lim
i→∞

‖zki − yki‖ = 0 and lim
i→∞

‖Tzki − zki‖ = 0 . (3.15)

Therefore, we have

lim
i→∞

‖zki − uki‖ ≤ lim
i→∞

‖zki − yki‖+ lim
i→∞

‖yki − uki‖ = 0 , (3.16)

and

lim
i→∞

‖xki − uki‖ = lim
i→∞

ξki‖xki − xki−1‖ = lim
i→∞

αki ·
ξki
αki
‖xki − xki−1‖ = 0 . (3.17)

Combining (3.16) and (3.17), we obtain

lim
i→∞

‖zki − xki‖ ≤ lim
i→∞

‖zki − uki‖+ lim
i→∞

‖uki − xki‖ = 0 . (3.18)

From qki = (1− βki)zki + βkiTz
ki , one sees that

‖qki − zki‖ ≤ βki‖Tzki − zki‖ ≤ (1− ϑ)‖Tzki − zki‖ .

In view of (3.15), we get

lim
i→∞

‖qki − zki‖ = 0 . (3.19)

Moreover,

‖xki+1 − qki‖ = σαki‖Sqki‖ → 0 . (3.20)

Combining (3.18), (3.19) and (3.20), we obtain

‖xki+1 − xki‖ ≤ ‖xki+1 − qki‖+ ‖qki − zki‖+ ‖zki − xki‖ → 0 . (3.21)

It follows from {xki} is bounded that there is a subsequence {xkij } of {xki} such that

xkij ⇀ z, where z ∈ H. From (3.17), we get uki ⇀ z as k → ∞. This together
with limi→∞ ‖uki − yki‖ = 0 and Lemma 2.2 implies that z ∈ Ω ∩ Γ. According
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to the definition of x† = PΩ∩Γ(I − σS)x†, using the property of projection, one has
〈(I − σS)x† − x†, z − x†〉 ≤ 0. Thus, we get

lim sup
i→∞

〈Sx†, x† − xki〉 = lim
j→∞
〈Sx†, x† − xkij 〉 = 〈Sx†, x† − z〉 ≤ 0 . (3.22)

Combining (3.21) and (3.22), we obtain

lim sup
i→∞

〈Sx†, x† − xki+1〉 = lim sup
i→∞

〈Sx†, x† − xki〉 ≤ 0 . (3.23)

Hence, combining (3.23), limk→∞
ξk
αk
‖xk − xk−1‖ = 0, Claim 3 and Lemma 2.3, it

follows that limk→∞ ‖xk − x†‖ = 0, namely, xk → x†. We have thus proved the
theorem. �

Next, we state a particular situation of Algorithm 3.1. When S(x) = x − x0

(x0 is an initial point) in Theorem 3.1. It can be easily checked that mapping S :
H → H is strongly monotone and Lipschitz continuous with modulus η = κ = 1.
In this situation, by selecting σ = 1, we obtain a new self-adaptive inertial Halpern
subgradient extragradient algorithm to solve (VIPFPP). More specifically, we have
the following result.

Corollary 3.1. Suppose that mapping A : H → H is L-Lipschitz continuous mono-
tone and mapping T : H → H is ϑ-demicontractive such that (I −T ) is demiclosed at
zero. Take ξ > 0, λ1 > 0, φ ∈ (0, 1). Let sequence {ζk} be positive numbers such that

limk→∞
ζk
αk

= 0, where {αk} ⊂ (0, 1) satisfies limk→∞ αk = 0 and
∑∞
k=0 αk =∞. Let

{βk} be a real sequence such that βk ⊂ (a, 1 − ϑ) for some a > 0. With two start
points x0, x1 ∈ H, the sequence {xk} is defined by

uk = xk + ξk(xk − xk−1) ,

yk = PC(u
k − λkAuk) ,

zk = PHk
(uk − λkAyk) ,

Hk := {x ∈ H | 〈uk − λkAuk − yk, x− yk〉 ≤ 0} ,

xk+1 = αkx
0 + (1− αk)[(1− βk)zk + βkTz

k] ,

(3.24)

where ξk and λk are defined in (3.1) and (3.2), respectively. Then the itera-
tive sequence {xk} formulated by (3.24) converges to x† ∈ Ω ∩ Γ in norm, where
x† = PΩ∩Γx

0.

3.2. The self-adaptive inertial Tseng’s extragradient algorithm. Next,
we introduce a new self-adaptive inertial Tseng’s extragradient algorithm to
solve (VIPFPP). The advantages of this algorithm are that only one projection needs
to be calculated in each iteration, and it can work without the prior information of
the Lipschitz constant of the mapping. The Algorithm 3.2 is read as follows.

The following lemma is very useful for studying the convergence of the Algo-
rithm 3.2.
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Algorithm 3.2 The self-adaptive inertial Tseng’s extragradient algorithm

Initialization: Take ξ > 0, λ1 > 0, φ ∈ (0, 1), σ ∈ (0, 2η
κ2 ). Let x0, x1 ∈ H.

Iterative Steps: Calculate the next iteration point xk+1 as follows:
Step 1. Given two previously known iteration points xk−1 and xk (k ≥ 1).
Calculate uk = xk + ξk(xk − xk−1), where the inertial parameter ξk is defined
in (3.1).
Step 2. Calculate yk = PC(u

k − λkAuk).
Step 3. Calculate zk = yk − λk(Ayk −Auk).
Step 4. Calculate xk+1 = (I − σαkS)qk, where qk = (1 − βk)zk + βkTz

k, and
update the step size λk+1 by (3.2).
Set n := n+ 1 and go to Step 1.

Lemma 3.3 ([26]). Suppose that Conditions (C1) and (C3) hold. Let the sequence
{zk} be formulated by Algorithm 3.2. Then, it follows that

‖zk − x†‖2 ≤ ‖uk − x†‖2 −
(
1− φ2 λ2

k

λ2
k+1

)
‖uk − yk‖2, ∀x† ∈ Ω ,

and

‖zk − yk‖ ≤ φ λk
λk+1

‖uk − yk‖ .

Theorem 3.2. Suppose that Conditions (C1)-(C5) hold. Then the iterative sequence
{xk} generated by Algorithm 3.2 converges to an element x† ∈ Ω ∩ Γ in norm, where
x† = PΩ∩Γ(I − σS)x†.

Proof. Claim 1. The sequence {xk} is bounded. By Lemma 3.1, there exists a

constant k0 ∈ N such that 1− φ2 λ2
k

λ2
k+1

> 0,∀k ≥ k0. Thanks to Lemma 3.3, one sees

that

‖zk − x†‖ ≤ ‖uk − x†‖, ∀k ≥ k0 .

Using the same arguments as in Claim 1 of Theorem 3.1, we get that {xk} is bounded.
So the sequences {yk}, {zk}, {qk} and

{
(I − σS)xk

}
are also bounded.

Claim 2.

βk[1− ϑ− βk]‖zk − Tzk‖2 +
(
1− φ2 λn2

λ2
k+1

)
‖yk − uk‖2

≤ ‖xk − x†‖2 − ‖xk+1 − x†‖2 + αkQ4 , ∀k ≥ k0

for some Q4 > 0. From (3.10), (3.12) and Lemma 3.3, we can show that

‖xk+1 − x†‖2 ≤ ‖zk − x†‖2 + βk[βk − (1− ϑ)]‖Tzk − zk‖2 + αkQ2

≤ ‖xk − x†‖2 −
(
1− φ2 λ2

k

λ2
k+1

)
‖yk − uk‖2 + αkQ4

+ βk[βk − (1− ϑ)]‖Tzk − zk‖2 , ∀k ≥ k0 ,

where Q4 := Q2 +Q3, both Q2 and Q3 are defined in Claim 2 of Theorem 3.1.
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Claim 3.

‖xk+1 − x†‖2 ≤ (1− γαk)‖xk − x†‖2

+ γαk

[2σ

γ
〈Sx†, x† − xk+1〉+

3Qξk
γαk

‖xk − xk−1‖
]
, ∀k ≥ k0 .

This result can be obtained using the same arguments as in Claim 3 of Theorem 3.1.
Claim 4. The sequence {‖xk − x†‖2} converges to zero. The proof is similar to
Claim 4 in Theorem 3.1. We leave it for the reader to check. �

Now, we give a special case of Algorithm 3.2. When S(x) = x−f(x) in Theorem 3.2,
where mapping f : H → H is ρ-contraction. It can be easily verified that mapping
S : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly monotone. In this
situation, by picking σ = 1, we get a new self-adaptive inertial viscosity-type Tseng’s
extragradient algorithm for solving (VIPFPP). Similar to Corollary 3.1, we can get
the following result immediately.

Corollary 3.2. Suppose that mapping A : H → H is L-Lipschitz continuous mono-
tone, mapping T : H → H is ϑ-demicontractive such that (I − T ) is demiclosed at

zero and mapping f : H → H is ρ-contractive with ρ ∈ [0,
√

5 − 2). Take ξ > 0,

λ1 > 0, φ ∈ (0, 1). Let sequence {ζk} be positive numbers such that limk→∞
ζk
αk

= 0,

where {αk} ⊂ (0, 1) satisfies
∑∞
k=0 αk = ∞ and limk→∞ αk = 0. Let {βk} be a real

sequence such that βk ⊂ (a, 1−ϑ) for some a > 0. Let x0, x1 ∈ H and {xk} be defined
by 

uk = xk + ξk(xk − xk−1) ,

yk = PC(u
k − λkAuk) ,

zk = yk − λk(Ayk −Auk) ,

qk = (1− βk)zk + βkTz
k ,

xk+1 = (1− αk)qk + αkf(qk) ,

(3.25)

where ξk and λk are defined in (3.1) and (3.2), respectively. Then the iterative se-
quence {xk} created by (3.25) converges to x† ∈ Ω∩Γ in norm, where x† = PΩ∩Γ◦f(p).

Remark 3.2. (1) Set S(x) = x− f(x) in Theorem 3.1 and select S(x) = x− x0

in Theorem 3.2. We can get two new algorithms to seek the common solution
of problem (VIP) and problem (FPP). Note that these algorithms own strong
convergence results in Hilbert spaces. Furthermore, they can work without
the prior information of the Lipschitz constant of the operator.

(2) The algorithms proposed in this paper improve and extend some recent results
in the literature [14, 28, 29]. Our iterative schemes embed inertial terms and
use a new iteration step size, which makes them faster and more flexible. In
addition, it is worth noting that the mapping T in Algorithms (HSEGM)
and (STEGM) is quasi-nonexpansive, but ours is a demicontractive mapping.
Therefore, our algorithms have a wider range of applications.
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4. Numerical examples

In this section, we provide some computational tests to illustrate the numerical
behavior of the proposed Algorithm 3.1 (in short, iSSEGM), Algorithm 3.2 (in short,
iSTEGM) and compare them with some existed strongly convergent methods, includ-
ing the Halpern subgradient extragradient method (HSEGM) [14], the viscosity-type
subgradient extragradient method (VSEGM) [28], the viscosity-type Tseng’s extra-
gradient method (VTEGM) [28], and the self-adaptive Tseng’s extragradient method
(STEGM) [29]. All the programs were implemented in Matlab 2018a on a Intel(R)
Core(TM) i5-8250T CPU @ 1.60GHz computer with RAM 8.00 GB.

Our parameters are set as follows. In all algorithms, we set

αk = 1/(k + 1) and βk = k/(2k + 1).

For the proposed algorithms and the Algorithms (VSEGM) and (VTEGM), we choose

λ1 = 0.9, φ = 0.5.

Set f(x) = 0.5x in the Algorithms (VSEGM) and (VTEGM). Take

σ = 0.5, ξ = 0.4 and ζk = 1/(k + 1)2

for our suggested algorithms. For the Algorithm (STEGM), we select

χ = 0.5, ` = 0.5, φ = 0.4 and σ = 0.5.

Pick the step size λ = 0.99/L for the Algorithm (HSEGM). In our numerical exam-
ples, when the number of iterations is the same, we use the runtime in seconds to
measure the computational performance of all algorithms. In addition, the solution
x∗ of the problems are known. Thus, we use the function Dk = ‖xk−x∗‖ to measure
the k-th iteration error. It should be noted that Dk → 0 means that the sequence
{xk} converges to x∗.

Example 4.1. In first example, let the nonlinear mapping A : R2 → R2 be defined
as follows:

A(x, y) = (x+ y + sinx;−x+ y + sin y) .

It is easy to verify that mapping A is Lipschitz continuous monotone with modulus
L = 3. Assume that the feasible set C is a two-dimensional box with lower bounds
li = [−1;−1] and upper bounds ui = [1; 1]. Then the projection of a point xi ∈ R2 on
this box can be calculated explicitly by PC(x)i = min{ui,max{li, xi}}. Moreover, the
mapping T : R2 → R2 is defined by Tx = ‖D‖−1

2 Dx, where D = [1, 0; 0, 2] and ‖D‖2
is defined as ‖D‖2 =

√
λmax (DTD) (i.e., the square root of the largest eigenvalue

of the matrix DTD, where DT denotes the conjugate transpose of D). The mapping
S : R2 → R2 is selected as Sx = 0.5x. It can be easily seen that mapping T is 0-
demicontractive and mapping S is Lipschitz continuous and strongly monotone. We
can easily find that the solution of the problem is x∗ = (0, 0)T. In order to verify the
effectiveness of the suggested algorithms, we select four different initial values x0 = x1

in Matlab, namely, (Case I): x1 = rand(2,1), (Case II): x1 = 5rand(2,1), (Case III):
x1 = 10rand(2,1), (Case IV): x1 = 20rand(2,1), and use the maximum iteration 400
as a common stopping criterion for all algorithms. The numerical results of all the
algorithms with four different initial values are plotted in Fig. 1.
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Figure 1. Numerical results for Example 4.1

Example 4.2. In the second example, we consider the form of linear operator A :
Rn → Rn (n = 50, 100, 150, 200) as follows:

A(x) = Gx+ g,

where g ∈ Rn and G = BBT + M + E, matrix B ∈ Rn×n, matrix M ∈ Rn×n is
skew-symmetric, and matrix E ∈ Rn×n is diagonal matrix whose diagonal terms are
non-negative (hence G is positive symmetric definite). We choose the feasible set as

C = {x ∈ Rn : −2 ≤ xi ≤ 5, i = 1, . . . , n} .

It can be easily checked that mapping A is Lipschitz continuous monotone and its
Lipschitz constant L = ‖G‖. In this numerical example, both entries B,E are ran-
domly created in [0, 2], M is generated randomly in [−2, 2] and g = 0. Let T : H → H
and S : H → H be provided by Tx = 0.5x and Sx = 0.5x, respectively. We obtain
the solution to the problem is x∗ = {0}. The maximum iteration 400 as a common
stopping criterion and the initial values x0 = x1 are randomly generated by rand(n,1)
in Matlab. The numerical results of all the algorithms with four different dimensions
are described in Fig. 2.
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Figure 2. Numerical results for Example 4.2

Example 4.3. In the last example, we focus on a case in a Hilbert space

H = L2([0, 1]).

Its inner product and induced norm are defined as

〈x, y〉 :=

∫ 1

0

x(t)y(t)dt and ‖x‖ :=

(∫ 1

0

|x(t)|2dt

)1/2

,

respectively. Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Let the
operator A : C → H be generated as follows:

(Ax)(t) = max{0, x(t)} =
x(t) + |x(t)|

2
.

It can be easily verified that operator A is monotone and Lipschitz continuous with
modulus L = 1. Moreover, the projection onto the feasible set C is explicit, and we
can use the following formula to calculate the projection:

PC(x) =

{ x

‖x‖
, if ‖x‖ > 1;

x, if ‖x‖ ≤ 1.
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We choose the mapping T : L2([0, 1])→ L2([0, 1]) is of the form

(Tx)(t) =

∫ 1

0

tx(s)ds, t ∈ [0, 1].

A simple computation indicates that T is 0-demicontractive and demiclosed at zero.
Let mapping S : H → H be taken as (Sx)(t) = 0.5x(t), t ∈ [0, 1]. It can be easily
proved that the mapping S is strongly monotone and Lipschitz continuous. The
solution to this problem is x∗(t) = 0, and the maximum iteration 50 is used as the
stopping criterion. With four types of starting points: (Case I): x0(t) = x1(t) = t2,
(Case II): x0(t) = x1(t) = 2t, (Case III): x0(t) = x1(t) = et and (Case IV): x0(t) =
x1(t) = log(t). The numerical behaviors of Dk = ‖xk(t) − x∗(t)‖ formulated by all
the algorithms are shown in Fig. 3.
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Figure 3. Numerical results for Example 4.3

Remark 4.1. We have the following observations from Examples 4.1-4.3.

(1) From Figs. 1-3, it is known that the proposed methods outperform some
existing algorithms in the literature. These results are independent of the
selection of initial values and the size of dimensions. Note that our algorithms
converge quickly, and there are some oscillations due to inertial effects.
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(2) The maximum number of iterations we choose is only 400. It should be
noted that the iteration error of Algorithm (HSEGM) is very big. In actual
applications, it may require more iterations to meet the accuracy require-
ments. Furthermore, we point out that since the Algorithm (STEGM) uses
the Armijo-like step size rule, which leads to taking more execution time.

(3) In our future work, we will improve the generality of the operator involved,
for example, consider the operator A is pseudo-monotone and uniformly con-
tinuous. We will also consider how to reduce the oscillation effect caused by
the inertial terms.

5. Conclusions

In this study, we investigated two self-adaptive iterative schemes for seeking a
common solution to the variational inequality problem involving a monotone and
Lipschitz continuous mapping and the fixed point problem with a demicontractive
mapping. We proposed two new inertial extragradient methods with a new step size
to compute the approximate solutions of problems in a real Hilbert space. The strong
convergence of the suggested methods is established under standard and suitable
conditions. Finally, some computational tests are given to explain our convergent
results. The algorithms obtained in this paper improved and summarized some of the
recent results in the literature.
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