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1. Introduction

Fractional Calculus is a powerful tool which has been recently employed to the
most of the sciences including physics, engineering, biology and chemical phenomena
(see for example [1]-[3], [9], [12], [18], [23], [25] and the references therein). Moreover,
significant progress was made in the field of Fractional Differential Inclusions (FDIs)
(see for example [5]-[7], [10], [11], [13]-[17], [19], [20] and [22]).

Presuppose (Y, d) is a b-metric space and P (Y) and 2Y are the class of all subsets
and the class of all nonempty subsets of Y, respectively. For a normed space (Y, ‖.‖),
let
Pcl(Y) = {Y ∈ P (Y) : Y is closed},
Pbd(Y) = {Y ∈ P (Y) : Y is bounded},
Pcp(Y) = {Y ∈ P (Y) : Y is compact} and
Pbd,cl(Y) = {Y ∈ P (Y) : Y is bounded and closed}.

We say that Q : Y → 2Y is a multifunction on Y and if u ∈ Y, then u ∈ Qu is a fixed
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point of Q ([15]). Consider J = [0, 1]; a multivalued map U : J → Pcl(R) is said to
be measurable if for every e ∈ R, the function ϕ : R 7→ R defined by

ϕ(ℵ) = d(e, U(ℵ)) = inf{|e− a| : a ∈ U(ℵ)}

is measurable ([15]). Using some fixed point theorems, we investigate the existence
of solutions for two FDIs stated in this article.
Consider the Hausdorff metric Hd : 2Y × 2Y → [0,∞) defined by

Hd(M,N) = max{ sup
m∈M

d(m,N), sup
n∈N

d(M,n)},

where d(M,n) = inf
m∈M

d(m,n). Note that (Pbd,cl(Y), Hd) is a metric space and

(Pcl(Y), Hd) is a generalized metric space ([15] and [19]).
Let (Y, d) be a metric space, α : Y × Y → [0,∞) be a map and > : Y → 2Y be a

multifunction. We say that Y has condition (Cα) whenever for each sequence {=n} in
Y with α(=n,=n+1) ≥ 1 for all n and =n → =, there exists a subsequence {=nk

} of
{=n} such that α(=nk

,=) ≥ 1 for all k. Also, > is said to be α-admissible whenever
for each = ∈ Y and [ ∈ >= with α(=, [) ≥ 1, we have α([, z) ≥ 1 for all z ∈ >Y.
Suppose that Φ is a family of nondecreasing functions φ : [0,∞) → [0,∞) such that
∞∑
n=1

φn(ℵ) <∞ for all ℵ > 0.

Definition 1.1. Assume h : [0,∞)→ R is continuous, the Caputo derivative of order
ι is defined by

cDιh(µ) =
1

Γ(p− ι)

∫ µ

0

(µ−$)p−ι−1h(p)($)d$,

where p− 1 < ι < p, p = [ι] + 1 and [ι] is the integer part of ι.

Definition 1.2. ([23, 18]) The Riemann-Lioville derivative of order ι for a continuous
function h is defined by

Dιh(µ) =
1

Γ(p− ι)

(
d

dµ

)p ∫ µ

0

h($)

(µ−$)ι−p−1
d$, (p = [ι] + 1),

where the right-hand side defined on (0,∞).

Let Φ be the set of all increasing and continuous functions φ : [0,∞) → [0,∞)
satisfying: φ(ε=) ≤ εφ(=) ≤ εw for all ε > 1, also B is the family of all nondecreasing
functions γ : [0,∞)→ [0, 1

υ2 ) for some υ ≥ 1.
Here consider the following definitions that are special cases of definitions which

are stated in [2].

Definition 1.3. Let (Y, d) be a b-metric space (with constant υ) and S : Y → Pb,cl(Y)
be a multivalued mapping. We say that S is an α − φ-Geraghty contraction type
mapping whenever there exists α : Y × Y → [0,∞) such that

α(c,ℵ)φ(υ3d(Sc, Sℵ)) ≤ γ(φ(d(c,ℵ)))φ(d(c,ℵ)), (1.1)

for all c,ℵ ∈ Y, where γ ∈ B and φ ∈ Φ.
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Definition 1.4. ([24]) Let S : Y → Y where Y is nonempty and α : Y × Y → [0,∞)
be given. Then S is α−admissible if for all c,ℵ ∈ Y,

α(c,ℵ) ≥ 1 =⇒ α(Sc, Sℵ) ≥ 1. (1.2)

Definition 1.5. Let (Y, d) be a b-metric space. Y is said α-regular, if for every
sequence {=n} in Y such that α(=n,=n+1) ≥ 1 for all n and =n → = ∈ Y as n→∞,
then there exists a subsequence {=n(k)} of {=n} such that α(=n(k),=) ≥ 1 for all k.

To state and prove our main results we need the following lemmas.

Lemma 1.6. ([2, Corollary 2.5]) Let (Y, d) be a complete b-metric space and > : Y →
Pbd,cl(Y) be an α− φ−Geraghty contraction type multivalued mapping such that > is
α-admissible. Assume that there exists =0 ∈ Y such that α(=0,>=0) ≥ 1 and Y is
α-regular. Then, > has a fixed point.

Lemma 1.7. ([8]) Let E be a Banach space, C a closed convex subset of E, U an open
subset of C and 0 ∈ U . Suppose that } : U → Pcp,cv(C) is an upper semi-continuous
compact map where Pcp,cv(C) denotes the family of nonempty, compact and convex

subsets of C. Then either } has a fixed point in U or there exist u ∈ ∂U and ε ∈ (0, 1)
such that u ∈ ε}(u).

2. Main results

In this section we prove the existence of solutions for two fractional boundary value
inclusions. First, consider the problem

cDς=(ℵ) ∈ }(ℵ,=(ℵ),cDϑ=(ℵ)).

=(1) + =′(1) =

∫ κ

0

=(υ)dυ, =(0) = 0, (2.1)

where ℵ ∈ J , ϑ, κ ∈ (0, 1), ς ∈ (1, 2] with ς − ϑ > 1, cDς is the Caputo differentiation
and } : J × R× R→ 2R denotes a compact valued multifunction.

A function = ∈ C(J,R) is a solution of problem (2.1) whenever it satisfies
the boundary conditions and there exists a function v ∈ L1(J) such that v(ℵ) ∈
}(ℵ,=(ℵ),cDϑ=(ℵ)) for almost all ℵ ∈ J and

=(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v(υ)dυ

+
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v(υ)dυ

− 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v(υ)dυ

= Pv(ℵ) +

∫ 1

0

G(ℵ, υ)v(υ)dυ.
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Before stating the main results, a lemma is introduced here which is needed in the
proof of the results.

Lemma 2.1. ([5]) Let v ∈ C(J,R). Then, the unique solution of the fractional
differential equation cDς=(ℵ) = v(ℵ) with the boundary conditions

=(1) + =′(1) =

∫ κ

0

=(υ)dυ and =(0) = 0,

where ϑ, κ ∈ (0, 1), ς ∈ (1, 2] with ς − ϑ > 1, is given by

=(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − s)ς−1v(υ)dυ +
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− s)ς−1v(υ)dυ − 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v(υ)dυ

= Pv(ℵ) +

∫ 1

0

G(ℵ, s)v(υ)dυ,

where

Pv(ℵ) =
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v(m)dmdυ

and

G(ℵ, υ) =


(4−κ2)(ℵ−υ)(ς−1)−2ℵ(1−υ)ς−1

(4−κ2)Γ(ς) − 2t(1−υ)ς−2

(4−κ2)Γ(ς−1) 0 < υ < ℵ < 1,

−2ℵ(1−υ)ς−1

(4−κ2)Γ(ς) −
2ℵ(1−υ)ς−2

(4−κ2)Γ(ς−1) 0 < ℵ < υ < 1.

Now let Y = {= : =, cDϑ= ∈ C(J,R)} and d : Y × Y → [0,∞) be given by

d(=, [) = ‖= − [‖2 = sup
ℵ∈J
|=(ℵ)− [(ℵ)|2 + sup

ℵ∈J
|cDϑ=(ℵ)−c Dϑ[(ℵ)|2.

Evidently, (Y, ‖.‖) is a complete b-metric space with υ = 2 but is not a metric space
([26]). Let = ∈ X and define the set of selections of } by

S},= = {v ∈ L1(J) : v(ℵ) ∈ }(ℵ,=(ℵ),cDϑ=(ℵ)) for almost all ℵ ∈ J}.

Theorem 2.2. Suppose that } : J × R× R→ Pcp(R) is a multifunction such that }
is integrable and bounded and }(.,=, [) : J → Pcp(R) is measurable for all =, [ ∈ R.
Assume that there exist a function ξ : R4 → R, φ ∈ Φ and m ∈ C(J, [0,∞)) such that

Hd(}(ℵ,=, [), }(ℵ, z,=))

≤ m(ℵ)

2
√

2

φ(|=(ℵ)− z(ℵ)|2 + |[(ℵ)−=(ℵ)|2)√
4(supℵ∈J |=(ℵ)− z(ℵ)|2 + supℵ∈J |[(ℵ)−=(ℵ)|2) + 1

1

||m||∞
√

Λ1
2 + Λ2

2
,

for all ℵ ∈ J , υ ≥ 1 and =, [, z ∈ R, where

Λ1 =
2ς2 + 7ς + 7

3Γ(ς + 2)
, Λ2 =

1

Γ(ς − ϑ+ 1)
+

2(ς2 + 2ς + 1)

3Γ(ς + 2)Γ(2− ϑ)
.
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and in addition suppose the following three conditions (i)− (iii) hold.
(i) If {=n} is a sequence in Y such that =n → = and

ξ((=n(ℵ),cDϑ=n(ℵ)), (=n+1(ℵ),cDϑ=n+1(ℵ))) ≥ 0,

for all ℵ ∈ J , then there exists a subsequence {=nk
} of {=n} such that

ξ((=nk
(ℵ),cDϑ=nk

(ℵ)), (=(ℵ),cDϑ=(ℵ))) ≥ 0,

for all ℵ ∈ J .
(ii) For each = ∈ Y and h ∈ Ω}(=) with

ξ((=(ℵ),cDϑ=(ℵ)), (h(ℵ),cDϑh(ℵ))) ≥ 0,

there exists z ∈ Ω}(h) such that ξ((h(ℵ),cDϑh(ℵ)), (z(ℵ),cDϑz(ℵ))) ≥ 0, where the
operator Ω} : Y → P (Y) is defined by

Ω}(=) = {h ∈ Y : ∃v ∈ S},= such that h(ℵ) = Pv(ℵ) +

∫ 1

0

G(ℵ, υ)v(υ)dυ ∀ ℵ ∈ J}.

(iii) There exist =0 ∈ Y and h ∈ Ω}(=0) such that

ξ((=0(ℵ),cDϑ=0(ℵ)), (h(ℵ),cDϑh(ℵ))) ≥ 0,

for all ℵ ∈ J .
Then, the boundary value inclusion (2.1) admits a solution.

Proof. We show that the operator Ω} : Y → P (Y) has a fixed point. Note that, the
multi-valued map ℵ 7→ }(ℵ,=(ℵ),cDϑ=(ℵ)) is measurable and closed valued for all
= ∈ Y. Hence, it has measurable selection and therefore the set S},= is nonempty.

First, we show that Ω}(=) is closed subset of Y for all = ∈ Y. Let = ∈ Y and
{un}n≥1 is a sequence in Ω}(=) with un → u. For each n, choose vn ∈ S},= such that

un(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1vn(υ)dυ +
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1vn(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1vn(υ)dυ − 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2vn(υ)dυ,

for almost all ℵ ∈ J . Since } has compact values, {vn}n≥1 has a subsequence which
converges to some v ∈ L1(J). This subsequence is denoted again by {vn}n≥1. It is
easy to check that v ∈ S},= and

un(ℵ)→ u(ℵ)

=
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v(υ)dυ +
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v(υ)dυ − 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v(υ)dυ,

for all ℵ ∈ J . This implies that u ∈ Ω}(=). Thus, the multifunction Ω} has closed
values. Since } is a compact multi-valued map, Ω}(=) is bounded set in Y for all
= ∈ Y.
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Define α : C(J)× C(J)→ [0,∞) by

α(=, [) =

{
1 ξ((=(ℵ),cDϑ=(ℵ)), ([(ℵ),cDϑ[(ℵ))) ≥ 0, for all ℵ ∈ J,
0 else

and define k : [0,∞)→ [0, 1
4 ) by k(ς) = ς

4ς+1 and let υ = 2.

It will be shown that α(=, [)φ(8Hd(Ω}(=),Ω}([))) ≤ k(φ(‖ =− [ ‖))φ(‖=− [‖) for
all =, [ ∈ Y. Let =, [ ∈ Y and %1 ∈ Ω}([). Choose v1 ∈ S},y such that

%1(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v1(υ)dυ +
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v1(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v1(υ)dυ − 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v1(υ)dυ,

for all ℵ ∈ J . Since

Hd(}(ℵ,=(ℵ),cDϑ=(ℵ)), }(ℵ, [(ℵ),cDϑ[(ℵ))

≤ m(ℵ)

2
√

2
× φ(|=(ℵ)− [(ℵ)|2 + |cDϑ=(ℵ)−c Dϑ[(ℵ)|2)√

4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

× 1

||m||∞
√

Λ1
2 + Λ2

2
,

for all =, [ ∈ Y with ξ((=(ℵ),cDϑ=(ℵ)), ([(ℵ),cDϑ[(ℵ))) ≥ 0 for almost ℵ ∈ J , there
exists g ∈ }(ℵ,=(ℵ),cDϑ=(ℵ)) such that

|v1(ℵ)− g| ≤ m(ℵ)

2
√

2

× φ(|=(ℵ)− [(ℵ)|2 + |cDϑ=(ℵ)−c Dϑ[(ℵ)|2)√
4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

× 1

||m||∞
√

Λ1
2 + Λ2

2
.

Consider the multi-valued map U : J → P (R) as

U(ℵ) =
{
g ∈ R : |v1(ℵ)− g| ≤ m(ℵ)

2
√

2

× φ(|=(ℵ)− [(ℵ)|2 + |cDϑ=(ℵ)−c Dϑ[(ℵ)|2)√
4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

× 1

||m||∞
√

Λ1
2 + Λ2

2

}
,

for all ℵ ∈ J . Since v1 and

ϕ =
m(ℵ)

2
√

2
× φ(|=(ℵ)− [(ℵ)|2 + |cDϑ=(ℵ)−c Dϑ[(ℵ)|2)√

4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

× 1

||m||∞
√

Λ1
2 + Λ2

2
,
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are measurable, U(.) ∩ }(.,=(.),cDϑ=(.)) is also measurable. Thus, for each ℵ ∈ J ,
we can choose v2(ℵ) ∈ }(ℵ,=(ℵ),cDϑ=(ℵ)) such that

|v1(ℵ)− v2(ℵ)| ≤ m(ℵ)

2
√

2

× φ(|=(ℵ)− [(ℵ)|2 + |cDϑ=(ℵ)−c Dϑ[(ℵ)|2)√
4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

× 1

||m||∞
√

Λ1
2 + Λ2

2
.

Now consider %2 ∈ Ω}(=) which is given by

%2(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v2(υ)dυ

+
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v2(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v2(υ)dυ

− 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v2(υ)dυ,

for all ℵ ∈ J . Thus,

|%1(ℵ)− %2(ℵ)| =
∣∣∣∣ 1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v1(υ)dυ

+
2ℵ

(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v1(m)dmdυ

− 2ℵ
(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v1(υ)dυ

− 2ℵ
(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v1(υ)dυ

− 1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v2(υ)dυ

− 2ℵ
(4− κ2)Γ(ς)

∫ κ

0

∫ υ

0

(υ −m)ς−1v2(m)dmdυ

+
2ℵ

(4− κ2)Γ(ς)

∫ 1

0

(1− υ)ς−1v2(υ)dυ

+
2ℵ

(4− κ2)Γ(ς − 1)

∫ 1

0

(1− υ)ς−2v2(υ)dυ

∣∣∣∣
≤ ‖m‖∞

2
√

2

(
2ς2 + 7ς + 7

3Γ(ς + 2)

)(
1√

Λ1
2 + Λ2

2‖m‖∞

)
φ(‖= − [‖)√
4‖= − [‖+ 1

.
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Hence,

|%1(ℵ)− %2(ℵ)|2 ≤ 1

8

(
2ς2 + 7ς + 7

3Γ(ς + 2)

)2
1

Λ1
2 + Λ2

2

(φ(‖= − [‖2))2

4‖= − [‖+ 1

and

|cDϑ%1(ℵ)−c Dϑ%2(ℵ)| =
∣∣∣∣ 1

Γ(ς − ϑ)

∫ ℵ
0

(ℵ − υ)ς−k−1v1(υ)dυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ κ

0

∫ υ

0

(υ −m)ς−1v1(m)dmdυ

− 2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−1v1(υ)dυ

− 2Γ(2)t1−ϑ

(4− κ2)Γ(ς − 1)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−2v1(υ)dυ

− 1

Γ(ς − ϑ)

∫ ℵ
0

(ℵ − υ)ς−k−1v2(υ)dυ

− 2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ κ

0

∫ υ

0

(υ −m)ς−1v2(m)dmdυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−1v2(υ)dυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς − 1)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−2v2(υ)dυ

∣∣∣∣
≤ 1

Γ(ς − ϑ)

∫ ℵ
0

(ℵ − υ)ς−k−1|v1(υ)− v2(υ)|dυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ κ

0

∫ υ

0

(υ −m)ς−1|v1(m)− v1(m)|dmdυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−1|v1(υ)− v2(υ)dυ

+
2Γ(2)t1−ϑ

(4− κ2)Γ(ς − 1)Γ(2− ϑ)

∫ 1

0

(1− υ)ς−2|v1(υ)− v2(υ)|dυ

≤ ‖m‖∞
2
√

2

(
1

Γ(ς − ϑ+ 1)
+

2

3Γ(ς + 2)Γ(2− ϑ)
+

2

3Γ(ς + 1)Γ(2− ϑ)

+
2

3Γ(ς)Γ(2− ϑ)

)(
1√

Λ1
2 + Λ2

2‖m‖∞

)
φ(‖= − [‖)√
4‖= − [‖+ 1

.

Therefore,

|cDϑ%1(ℵ)−c Dϑ%2(ℵ)|2 ≤ 1

8

(
1

Γ(ς − ϑ+ 1)
+

2

3Γ(ς + 2)Γ(2− ϑ)

+
2

3Γ(ς + 1)Γ(2− ϑ)

)2
1

Λ1
2 + Λ2

2

(φ(‖= − [‖2))2

4‖= − [‖+ 1
,
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for all ℵ ∈ J . Hence,

‖%1 − %2‖2 = sup
ℵ∈J
|%1(ℵ)− %2(ℵ)|2 + sup

ℵ∈J
|cDϑ%1(ℵ)−c Dϑ%2(ℵ)|2

≤ 1

8
×
(

2ς2 + 7ς + 7

3Γ(ς + 2)

)2

× 1

Λ1
2 + Λ2

2

× (φ(‖= − [‖2))2

4(supℵ∈J |=(ℵ)− [(ℵ)|2 + supℵ∈J |cDϑ=(ℵ)−c Dϑ[(ℵ)|2) + 1

+
1

8
(

1

Γ(ς − ϑ+ 1)
+

2

3Γ(ς + 2)Γ(2− ϑ)
+

2

3Γ(ς + 1)Γ(2− ϑ)
)2

× 1

Λ1
2 + Λ2

2 ×
(φ(‖= − [‖2))2

4‖= − [‖+ 1

=
1

8

φ(‖= − [‖2))2

4‖= − [‖2 + 1
.

Therefore,

α(=, [)φ(8Hd(Ω}(=),Ω}([))) ≤ 8α(=, [)φ(Hd(Ω}(=),Ω}([)))

≤ φ(d(=, [))2

4d(=, [) + 1
≤ φ(d(=, [))2

4φ(d(=, [)) + 1

= k(φ(d(=, [)))φ(d(=, [)), k ∈ B.

Consequently, Ω} is an α-φ-Geraghty contractive multifunction. Assume = ∈ Y and
[ ∈ Ω}(=) be such that α(=, [) ≥ 1. Then,

ξ((=(ℵ),cDϑ=(ℵ)), ([(ℵ),cDϑ[(ℵ))) ≥ 0.

Therefore, there exists z ∈ Ω}([) such that ξ(([(ℵ),cDϑ[(ℵ)), (z(ℵ),cDϑz(ℵ))) ≥ 0.
Hence, α([, z) ≥ 1 and Ω} is α-admissible. Choose =0 ∈ Y and [ ∈ Ω}(=0) such that

ξ((=0(ℵ),cDϑ=0(ℵ)), ([(ℵ),cDϑ[(ℵ))) ≥ 0.

Thus, α(=0, [) ≥ 1. Now, by Lemma 1.6, there exists =∗ ∈ Y such that =∗ ∈ Ω}(=∗).
It is easy to see that =∗ is a solution of the problem (2.1). �

In the sequel, we consider the fractional boundary value inclusion

cDς=(ℵ) ∈ }(ℵ,=(ℵ)),

=(0) = j

∫ ι

0

=(υ)dυ, =(1) = i

∫ κ

0

=(υ)dυ, (2.2)

where ℵ ∈ J , 1 < ς ≤ 2, 0 < ι, κ < 1, j, i ∈ R, cDς is the standard Caputo
differentiation and } : J × R× R→ 2R is a compact valued multifunction.

In 2011, Ahmad and Ntouyas discussed this inclusion problem by utilizing Lemma
1.7 ([10]). In this manuscript, we are going to show that one can solve this inclusion
problem by making use of Lemma 1.6.
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Let v ∈ C(J,R). As a result, the unique solution of the fractional differential
equation cDς=(ℵ) = v(ℵ) with the boundary conditions

=(0) = j

∫ ι

0

=(υ)dυ and =(1) = i

∫ κ

0

=(υ)dυ

is given by

=(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v(υ)dυ

+
a

γΓ(ς)

(
2− iκ2

2
+ (bκ− 1)ℵ

)∫ ι

0

(∫ υ

0

(υ −m)ς−1v(m)dm

)
dυ

+
b

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ κ

0

(∫ υ

0

(υ −m)ς−1v(m)dm

)
dυ

− 1

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ 1

0

(1− υ)ς−1v(υ)dυ,

where 0 ≤ ℵ ≤ 1, 1 < ς ≤ 2, 0 < ι, κ < 1 and

γ =
1

2
[(aι− 1)(bκ2 − 2)− aι(bκ− 1)] 6= 0

(see [10]). Note that w ∈ C(J,R) is a solution of the problem (2.2) whenever it
satisfies the boundary conditions and there exists a function v ∈ L1J such that
v(ℵ) ∈ }(ℵ,=(ℵ)) for almost all ℵ ∈ J (see [10]) and

=(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v(υ)dυ

+
a

γΓ(ς)
(
2− iκ2

2
+ (bκ− 1)ℵ)

∫ ι

0

(

∫ υ

0

(υ −m)ς−1v(m)dm)dυ

+
b

γΓ(ς)
(
aι2

2
+ (1− ιa)ℵ)

∫ κ

0

(

∫ υ

0

(υ −m)ς−1v(m)dm)dυ

− 1

γΓ(ς)
(
aι2

2
+ (1− ιa)ℵ)

∫ 1

0

(1− υ)ς−1v(υ)dυ.

Theorem 2.3. Suppose that } : J × R → Pcp(R) is a multifunction such that } is
integrable and bounded and }(.,=) : J → Pcp(R) is measurable for all = ∈ R. Assume
that there exist a function ξ : R2 → R, φ ∈ Φ and m ∈ C(J, [0,∞)) such that

Hd(}(ℵ,=), }(ℵ, [)) ≤ m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)
,

for all ℵ ∈ J and =, [ ∈ R, where Λ1 = |j|(|2− iκ2|+ 2|iκ− 1|)ις+1 and

Λ2 = (|j|ι2 + 2|1− ιj|)(|i|κς+1 + 1).

Also, suppose the following three conditions ((i)-(iii)) hold,
(i) If {=n} is a sequence in Y such that =n → = and ξ(=n(ℵ),=n+1(ℵ)) ≥ 0 for all
ℵ ∈ J , then there exists a subsequence {=nk

} of {=n} such that ξ(=nk
(ℵ),=(ℵ)) ≥ 0

for all ℵ ∈ J .
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(ii) For each = ∈ Y and [ ∈ Ω}(=) with ξ(=(ℵ), [(ℵ)) ≥ 0, there exists z ∈ Ω}([) such
that ξ(([(ℵ), z(ℵ)) ≥ 0, where the operator Ω} : Y → P (Y) is defined by

Ω}(=) = {h ∈ Y : ∃ v ∈ S},= such that h(ℵ) = =(ℵ) ∀ ℵ ∈ J}

where

=(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v(υ)dυ

+
a

γΓ(ς)

(
2− iκ2

2
+ (bκ− 1)ℵ

)∫ ι

0

(∫ υ

0

(υ −m)ς−1v(m)dm

)
dυ

+
b

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ κ

0

(∫ υ

0

(υ −m)ς−1v(m)dm

)
dυ

− 1

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ 1

0

(1− υ)ς−1v(υ)dυ.

(iii) There exist =0 ∈ Y and h ∈ Ω}(=0) with ξ(=0(ℵ), h(ℵ)) ≥ 0 for ℵ ∈ J .
Then, the boundary value inclusion (2.2) has a solution.

Proof. We show that the operator Ω} has a fixed point. By using a similar proof
of Theorem 2.2, one can show that the operator Ω} has closed and bounded values.
Define the function α : Y ×Y → [0,∞) by α(=, [) = 1 whenever ξ(=(ℵ), [(ℵ)) ≥ 0 for
ℵ ∈ J and α(=, [) = 0 otherwise. Let =, [ ∈ Y and %1 ∈ Ω}([). Choose v1 ∈ S},y such
that

%1(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v1(υ)dυ

+
a

γΓ(ς)

(
2− iκ2

2
+ (bκ− 1)ℵ

)∫ ι

0

(∫ υ

0

(υ −m)ς−1v1(m)dm

)
dυ

+
b

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ κ

0

(∫ υ

0

(υ −m)ς−1v1(m)dm

)
dυ

− 1

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ 1

0

(1− υ)ς−1v1(υ)dυ,

for all ℵ ∈ J . Since

Hd(}(ℵ,=(ℵ)), }(ℵ, [(ℵ))) ≤ m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς+1)+(Λ1+Λ2))‖m‖∞

)
for all =, [ ∈ Y with ξ(=(ℵ), [(ℵ)) ≥ 0 for ℵ ∈ J , there exists g ∈ }(ℵ,=(ℵ)) such that

|v1(ℵ)− g| ≤ m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)
.
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Define U : J → P (R) by

U(ℵ) =

{
g ∈ R : |v1(ℵ)− g|

≤ m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)}
.

Since v1 and

m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞
)

are measurable, it is easy to see that the multifunction U(.)
⋂
}(.,=(.)) is measurable.

Thus, we can choose v2 such that v2(ℵ) ∈ }(ℵ,=(ℵ)) and

|v1(ℵ)− v2(ℵ)| ≤ m(ℵ)

2
√

2

φ(|= − [|2)√
4‖= − [‖2 + 1

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)
,

for all ℵ ∈ J . Now, consider %2 ∈ Ω}(=) which is defined by

%2(ℵ) =
1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1v2(υ)dυ

+
a

γΓ(ς)

(
2− iκ2

2
+ (bκ− 1)ℵ

)∫ ι

0

(∫ υ

0

(υ −m)ς−1v2(m)dm

)
dυ

+
b

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ κ

0

(∫ υ

0

(υ −m)ς−1v2(m)dm

)
dυ

− 1

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ 1

0

(1− υ)ς−1v2(υ)dυ,

for all ℵ ∈ J . Thus,

|%1(ℵ)− %2(ℵ)|

≤ 1

Γ(ς)

∫ ℵ
0

(ℵ − υ)ς−1|v1(υ)− v2(υ)|dυ

+
a

γΓ(ς)

(
2− iκ2

2
+ (bκ− 1)ℵ

)∫ ι

0

(∫ υ

0

(υ −m)ς−1|v1(m)− v2(m)|dm
)
dυ

+
b

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ κ

0

(∫ υ

0

(υ −m)ς−1|v1(m)− v2(m)|dm
)
dυ

+
1

γΓ(ς)

(
aι2

2
+ (1− ιa)ℵ

)∫ 1

0

(1− υ)ς−1|v1(υ)− v2(υ)|dυ,

for all ℵ ∈ J . Hence,

‖%1 − %2‖ = sup
ℵ∈J
|%1(ℵ)− %2(ℵ)| ≤ (

2|γ|(ς + 1) + (Λ1 + Λ2)

2|γ|Γ(ς + 2)
)× ‖m‖∞

2
√

2

×
(

2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)
× φ(‖= − [‖2)√

4‖= − [‖2 + 1
.
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Define k : [0,∞)→ [0, 1
4 ) by k(ς) = q

4q+1 and let υ = 2. Hence,

α(=, [)φ(8Hd(Ω}(=),Ω}([))) ≤ 8α(=, [)φ(Hd(Ω}(=),Ω}([))) ≤ φ(d(=, [))2

4d(=, [) + 1

≤ φ(d(=, [))2

4φ(d(=, [)) + 1
= k(φ(d(=, [)))φ(d(=, [)), k ∈ B.

Therefore,

α(=, [)φ(8Hd(Ω}(=),Ω}([))) ≤ k(φ(‖= − [‖))φ(‖= − [‖),

for all =, [ ∈ Y, Thus, Ω} is an α-φ Geraghty contractive multifunction. Choose
} ∈ Y and [ ∈ Ω}(=) such that α(=, [) ≥ 1. Then, ξ(=(ℵ), [(ℵ)) ≥ 0 and therefore
there exists z ∈ Ω}([) such that ξ([(ℵ), z(ℵ)) ≥ 0. Hence, α([, z) ≥ 1 and Ω} is α-
admissible. Choose =0 ∈ Y and [ ∈ Ω}(=0) such that ξ(=0(ℵ), [(ℵ)) ≥ 0. This implies
that α(=0, [) ≥ 1. Now, by Lemma 1.6, there exists =∗ ∈ Y such that =∗ ∈ Ω}(=∗).
It is easy to see that =∗ is a solution of the problem (2.2). �

By the similar proof of Theorem 2.3, the following corollary can be proven.

Corollary 2.4. Suppose that } : J × R → Pcp(R) is a multifunction such that } is
integrable and bounded and }(.,=) : J → Pcp(R) is measurable for all = ∈ R. Assume
that there exist a function ξ : R2 → R, φ ∈ Φ and m ∈ C(J, [0,∞)) such that

Hd(}(ℵ,=), }(ℵ, [)) ≤ m(ℵ)

2
√

2

√
φ(|= − [|2)

2

(
2|γ|Γ(ς + 2)

(2|γ|(ς + 1) + (Λ1 + Λ2))‖m‖∞

)
,

for all ℵ ∈ J and =, [ ∈ R, where

Λ1 = |j|(|2− iκ2|+ 2|iκ− 1|)ις+1,

Λ2 = (|j|ι2 + 2|1− ιj|)(|i|κς+1 + 1).

If in addition conditions (i)− (iii) in Theorem 2.3 are added to our hypotheses, then
the boundary value inclusion (2.2) has a solution.

Example 2.5. Consider the fractional boundary value problem

cD
3
2=(ℵ) ∈ }(ℵ,=(ℵ)),

=(0) =

∫ 1
3

0

=(υ)dυ, =(1) =

∫ 1
2

0

=(υ)dυ, (2.3)

where ℵ ∈ J , ς = 3
2 , ι = 1

3 , κ = 1
2 , j, i = 1, cD

3
2 is the standard Caputo differentiation

and define the compact valued multifunction map } : J × J → 2R with

}(ℵ,=) =

[
0,

ℵ | = |
200(1+ | = |)

]
.

Let φ(ℵ) = ℵ
2 , ξ(=, [) = (=[)2, m(ℵ) = ℵ

200 and =n = = +
1

n+ 1
. It is obvious that

conditions in Corollary 2.4 hold. Hence, the problem (2.3) has at least one solution.
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3. Conclusion

This paper intend to provide an affirmative answer to this inquiry by verifying
the notion of existence of solutions for fractional differential inclusions by the help
of the fixed point technique based on α-ψ−Geraghty contractive type mappings. An
example is presented as particular case for our proposed theorem. It is proved that
the obtained results are consistent with our theoretical findings.

Acknowledgment. The authors would like to thank anonymous referees for their
carefully reading the manuscript and such valuable comments, which has improved
the manuscript significantly.
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