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1. Introduction

Let N, Q and R be the set of positive integer numbers, the set of rational numbers,
and the set of real numbers, respectively. Also let H be a real Hilbert space with
inner product 〈., .〉 and ‖.‖ be a norm from inner product 〈., .〉 and C be a nonempty
subset of H. The closed convex hull of C is denoted by coC. Furthermore, the weak
convergence is denoted by ⇀ and strong convergence is denoted by →. Let T be a
mapping of C into itself, and the set of fixed point of T , i.e., {x ∈ C : Tx = x} is
denoted by F (T ). A mapping T : C → C is said to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ C. A self mapping T on C with F (T ) 6= ∅ is called quasi-nonexpansive
if ‖x − Ty‖ ≤ ‖x − y‖, for all x ∈ F (T ), and y ∈ C. Now, the definitions of several
classes of nonlinear mappings are recalled:
Definition 1.1. A mapping T : C → C is said to be:

(1) r−firmly nonexpansive, if there exist r ∈ [0, 1) such that for all x, y ∈ C,

‖Tx− Ty‖ ≤ ‖(1− r)(x− y) + r(Tx− Ty)‖.
653
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(2) Nonspreading, if for all x, y ∈ C,

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− Ty‖2.
(3) Hybrid, if for all x, y ∈ C,

3‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− Ty‖2 + ‖x− y‖2.
(4) TJ-1, if for all x, y ∈ C,

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− y‖2.
(5) TJ-2, if for all x, y ∈ C,

3‖Tx− Ty‖2 ≤ 2‖Tx− y‖2 + ‖x− Ty‖2.
Recently, Aoyama and Kohsaka [1] have introduced a new class of nonexpansive

mappings, namely α−nonexpansive mappings as follows:
Definition 1.2. A mapping T : C → C is said to be an α−nonexpansive if for all
x, y ∈ C and α ∈ (−∞, 1)

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖x− Ty‖2 + (1− 2α)‖x− y‖2.
They have obtained the fixed point theorem for the introduced mapings in the

Definition 1. It is obvious that each α−nonexpansive mapping, which has a fixed
point is quasi-nonexpansive.
Remark 1.3. In [2], Ariza-Ruiz et al. showed that the concept of α−nonexpansive
mapping is trivial for α < 0.
Remark 1.4. [2] Every nonexpansive mapping is 0-nonexpansive, and every non-
spreading mapping is 1

2 -nonexpansive. Every hybrid mapping is 1
3 -nonexpansive,

and every TJ-1 mapping is 1
4 -nonexpansive. Every TJ-2 mapping is nonspreading

and hence is 1
2 -nonexpansive. Finally, every r-firmly nonexpansive mapping is α-

nonexpansive with α = r
1+r .

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a.s and s 7→ s.a from S to S
are continuous. A family S = {Tt : t ∈ S} of mappings of C into itself is called a
continuous representation of S as mappings on C if the following propertis hold:

(1) Tts(x) = TtTs(x), ∀s, t ∈ S and x ∈ C;
(2) for each x ∈ C, the mapping t→ Ttx is continuous.

Let S be as above, S is said to be a nonexpansive semigroup on C if

‖Tt(x)− Tt(y)‖ ≤ ‖x− y‖,
for all x, y ∈ C and t ∈ S.

In this paper, we first introduce some new type semigroups of these mappings.
Then motivated by [7] and [15], we prove a fixed point theorem for semigroups. After
that, we show the existence of nonspreading retraction for the fixed point set of these
semigroups. Morever, motivated and inspired by [10], [4], [14], [17], and [15], we
prove weak convergence theorem of Mann’s type and generalized nonlinear ergodic
theorem for the introduced semigroups in Hilbert spaces. Finally, we deduce strong
convergence theorem of Halpern’s type for these semigroups. The presented results
in this paper generalize and improve several results of the topics in the literature.
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2. Preliminaries

Recall that the (nearest point) projection P from H into C assigning to x ∈ H is
the unique point Px ∈ C which satisfy the following property

‖ x− Px ‖= inf
y∈C
‖ x− y ‖ .

If x ∈ H and z ∈ C, then z = Px is equvalent to

〈x− z, y − z〉 ≥ 0, y ∈ C. (2.1)

For more details we refer readers to [6] and [15].
Lemma 2.1. [10] If x, y, z, w ∈ H and α ∈ R, then

(i) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2;
(ii) 2〈x− y, z − w〉 = ‖x− w‖2 + ‖y − z‖2 − ‖x− z‖2 − ‖y − w‖2.

Lemma 2.2. [16] Let D be a nonempty closed convex subset of H. Let P be a metric
projection of H onto D and {xn} be a sequence in H. If ‖xn+1 − u‖ ≤ ‖xn − u‖, for
all u ∈ D and n ∈ N, then {Pxn} converges strongly.

Let l∞ be the Banach space of bounded real number sequences with supremum
norm. Let µ be an element of (l∞)∗ ( the dual space of l∞ ), the value of µ at
f = (x1, x2, x3, ...) ∈ l∞ is denote by µ(f). Sometimes, we denote it by µn(xn).
µ ∈ (l∞)∗ is called Banach limit on l∞ if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, ...) and
µn(xn+1) = µn(xn). If µ is a Banach limit on l∞, then for f = (x1, x2, x3, ...) ∈ l∞,
we have

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, ...) ∈ l∞ and limn→∞ xn = a ∈ R, then we can
deduce µ(f) = µn(xn) = a. For the proof of existence of a Banach limit and its other
properties, see [15].

Let B(S) be the Banach space of all bounded real-valued functions on S with
supremum norm and let C(S) be the subspace of B(S) of all continuous functions
on S. Let µ be an element of C(S)∗ (the dual space of C(S)). The value of µ at
f ∈ C(S) is denote by µ(f). Sometimes, we denote it by µt(f(t)). For each s ∈ S
and f ∈ C(S), we define two functions lsf and rsf as follows:

(lsf)(t) = f(st) and (rsf)(t) = f(ts), t ∈ S.

An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ‖µ‖ = 1, where e(s) = 1
for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).

A mean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S), and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f), for all
f ∈ C(S), and s ∈ S. A left and right invariant mean on C(S) is called an invariant
mean on C(S). A net {µα} of means on C(S) is said to be asymptotically invariant if
for each f ∈ C(S) and s ∈ S,

lim
α

(µα(f)− µα(lsf)) = 0 and lim
α

(µα(f)− µα(rsf)) = 0.
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A net {µα} of means on C(S) is said to be strongly asymptotically invariant if for
each s ∈ S

‖l∗sµα − µα‖ → 0 and ‖r∗sµα − µα‖ → 0,

where l∗s and r∗s are the adjoint operators of ls and rs, respectively ( For more details
see [15]). We know that for a commutative semitopological semigroup, there exists
an invariant mean on C(S) ( see [15]). If S = N, an invariant mean on C(S)=B(S) is
a Banach limit on l∞. Let C be a closed convex subset of H and let U : S → C be
a continuous function such that sups∈S ‖U(s)‖ < +∞. For any y ∈ H, a real valued
function h defined by

h(t) = 〈U(t), y〉,
for all t ∈ S, is in C(S). Let µ be a mean on C(S), and

g(y) = µ(h) = µt〈U(t), y〉, ∀y ∈ H.

Then, g is a linear functional on H and

|g(y)| = |µ(h)| ≤ ‖µ‖‖h‖ = sup
t∈S
|h(t)| = sup

t∈S
〈U(t), y〉 ≤ sup

t∈S
‖U(t)‖‖y‖.

Hence, from Riesz theorem, there is a unique element x0 ∈ H such that for all y ∈ H,
we have g(y) = 〈x0, y〉 or µt〈U(t), y〉 = 〈x0, y〉.
Theorem 2.3. [15] If µ is a mean on C(S) and x0 is an element of H such that for
all y ∈ H,

µt〈U(t), y〉 = 〈x0, y〉.
Then, x0 ∈ co{U(t) : t ∈ S} ⊂ C.

In particular, if S = {Tt : t ∈ S} is a continuous representation of S as mappings
on C such that {Tt : t ∈ S} is bounded for some x ∈ C and U(t) = Ttx for all t ∈ S,
then there exist a unique element x0 ∈ co{Ttx : t ∈ S} ⊂ H such that

µt〈Ttx, y〉 = 〈x0, y〉, ∀y ∈ H.

We denote such x0 by Tµx.
The following theorem will be used in the Section 3.

Theorem 2.4.[17]. Let S, C(S) and H be as above. Let U : S → H be a function
such that {U(s) : s ∈ S} ⊂ C is bounded and let µ be a mean on C(S). If g : C → R
is defined by

g(z) = µs‖U(s)− z‖2, ∀z ∈ C.
Then there exists a unique z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.

Theorem 2.5.[15] Let C be a closed convex subset of H and let S be a semitopo-
logical semigroup such that C(S) has a left invariant mean. If S = {Tt : t ∈ S} is
nonexpansive semigroup on C. Then, the following statements are equivalent:

(i) {Ttx : t ∈ S} is bounded for some x ∈ C,
(ii) {Ttx : t ∈ S} is bounded for every x ∈ C,

(iii) F (S) 6= ∅.
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Theorem 2.6.[15] Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has an invariant mean µ. If S = {Tt : t ∈ S} is a
nonexpansive semigroup on C such that F (S) 6= ∅. Then, Tµ satisfies the following
properties:

(i) TµTt = TtTµ = Tµ, for all t ∈ S,
(ii) Tµ is a nonexpansive retraction of C onto F (S), i.e., for all x, y ∈ C,

‖Tµ(x)− Tµ(y)‖ ≤ ‖x− y‖,

(iii) Tµ(x) ∈ co{Ttx : t ∈ S}, for all x ∈ C.

The following theorem generalize nonlinear ergodic Theorem of Baillon’s type for
nonexpansive semigroups in Hilbert spaces.
Theorem 2.7.[15]Let C be a closed convex subset of H and let S be a commutative
semitopological semigroup with identity. Let S = {Tt : t ∈ S} be a nonexpansive
semigroup on C and F (S) 6= ∅. If {µα}α∈I is a net of asymptotically invariant means
on C(S), then {Tµαx} converges weakly to a point x0 ∈ F (S), for all x ∈ C. If, we
put Qx = x0 for all x ∈ C, then Q is a nonexpansive retraction of C onto F (S) such
that QTt = TtQ = Q for all t ∈ S and

⋂
t co{Tstx : s ∈ S}

⋂
F (S) = {Qx}, for all

x ∈ C.

3. Existence of nonspreading retraction

Definition 3.1. Let C be a nonempty subset of H and S be a semitopological
semigroup. Let F = {ft}t∈S be a net of mappings of C into itself and α = {αt}t∈S
be a net of real numbers in [0, 1). A continuous representation S = {Tt : t ∈ S} of S
as mappings on C is called an (α,F)-semigroup on C if

‖Tt(x)− ft(y)‖2 ≤ αt‖Tt(x)− y‖2 + αt‖x− ft(y)‖2 + (1− 2αt)‖x− y‖2,

for all x, y ∈ C and t ∈ S.
Remark 3.2. Notice that by the first condition of continuous representation, (α,F)-
semigroup is closed in the compounds of the mapping.

The set of common fixed points of S and the set of common fixed points of F are
denoted by F (S) and F (F), respectively, i.e.,

F (S) =
⋂
t∈S

F (Tt), F (F) =
⋂
t∈S

F (ft).

Lemma 3.3. Let C be a closed convex subset of H and let S be a semitopological
semigroup. If S = {Tt : t ∈ S} is an (α,F)-semigroup on C, then F (F) = F (S), and
F (S) is closed and convex.
Proof. If F (F) = ∅ and F (S) = ∅, then F (F) = F (S). So, we assume that F (F) 6= ∅
or F (S) 6= ∅. Now, let x ∈ F (F) and t ∈ S, then ft(x) = x. Since S is an
(α,F)−semigroup on C, we can get

‖Tt(x)− x‖2 = ‖Tt(x)− ft(x)‖2

≤ αt‖Tt(x)− x‖2 + αt‖x− ft(x)‖2 + (1− 2αt)‖x− x‖2

= αt‖Tt(x)− x‖2. (3.1)



658 HOSSEIN PIRI AND MOSTAFA GHASEMI

Since αt ∈ [0, 1), from (3.1) we get Tt(x) = x, and then x ∈ F (S). Therefore,
F (F) ⊂ F (S). Again let y ∈ F (S), and t ∈ S, then Tt(y) = y. Also, since S is an
(α,F)-semigroup on C, we can obtain

‖y − ft(y)‖2 = ‖Tt(y)− ft(y)‖2

≤ αt‖Tt(y)− y‖2 + αt‖y − ft(y)‖2 + (1− 2αt)‖y − y‖2

= αt‖y − ft(y)‖2. (3.2)

On the other hand, since αt ∈ [0, 1), from (3.2), we get ft(y) = y, and y ∈ F (F).
Therefore F (S) ⊂ F (F). Now, we show F (S) is closed. Let {xn} ⊂ F (S) and
xn → x∗, then x∗ ∈ C. For t ∈ S, we have

‖xn − ft(x∗)‖2 = ‖Tt(xn)− ft(x∗)‖2

≤ αt‖Tt(xn)− x∗‖2 + αt‖xn − ft(x∗)‖2 + (1− 2αt)‖xn − x∗‖2

= (1− αt)‖xn − x∗‖2 + αt‖xn − ft(x∗)‖2.
It follows that

‖xn − ft(x∗)‖2 ≤ ‖xn − x∗‖2 → 0.

Thus, x∗ ∈ F (F) = F (S), and it illustrates F (S) is closed. Finally, let 0 ≤ α ≤ 1,
u, v ∈ F (S) and z = αu + (1 − α)v. Since F (S) = F (F), for all t ∈ S, from Lemma
2, we have

‖z − Ttz‖2 = ‖αu+ (1− α)v − Tt(z)‖2

= α‖u− Tt(z)‖2 + (1− α)‖v − Tt(z)‖2 − α(1− α)‖u− v‖2

= α‖ft(u)− Tt(z)‖2 + (1− α)‖ft(v)− Ttz‖2 − α(1− α)‖u− v‖2

≤ α[αt‖ft(u)− z‖2 + αt‖u− Tt(z)‖2 + (1− 2αt)‖u− z‖2]

+ (1− α)[αt‖ft(v)− z‖2 + αt‖v − Tt(z)‖2 + (1− 2αt)‖v − z‖2]

− α(1− α)‖u− v‖2

≤ α[αt‖u− z‖2 + αt‖u− z‖2 + (1− 2αt)‖u− z‖2]

+ (1− α)[αt‖v − z‖2 + αt‖v − z‖2 + (1− 2αt)‖v − z‖2]

− α(1− α)‖u− v‖2

= α‖u− z‖2 + (1− α)‖v − z‖2 − α(1− α)‖u− v‖2

= α(1− α)2‖u− v‖2 + (1− α)α2‖u− v‖2 − α(1− α)‖u− v‖2

= α(1− α)(1− α+ α− 1)‖u− v‖2

= 0,

This implies z ∈ F (S). So, we conclude that F (S) is convex.
Theorem 3.4. Let C be a closed convex subset of H and S be a semitopological
semigroup such that C(S) has a left invariant mean. If S = {Tt : t ∈ S} is an
(α,F)-semigroup on C, then, the following statements are equivalent:

(i) {Ttx : t ∈ S} is bounded for some x ∈ C,
(ii) {Ttx : t ∈ S} is bounded for every x ∈ C,
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(iii) F (S) 6= ∅.
Proof. (i) ⇒ (iii). Let µ be a left invariant mean on C(S), x ∈ C and {Ttx : t ∈ S}
be a bounded. By Theorem 2, there exists a unique member x0 ∈ C such that

µt‖Tt(x)− x0‖2 = min
z∈C

µt‖Tt(x)− z‖2. (3.3)

Since S is an (α,F)-semigroup on C, for all s ∈ S, we have

‖Tst(x)− fs(x0)‖2 = ‖TsTt(x)− fs(x0)‖2

≤ αs‖TsTt(x)− x0‖2 + αs‖Tt(x)− fs(x0)‖2

+ (1− 2αs)‖Tt(x)− x0‖2.

It follows that

µt‖Tst(x)− fs(x0)‖2 ≤ µt(αs‖TsTt(x)− x0‖2) + µt(αs‖Tt(x)− fs(x0)‖2)

+ µt((1− 2αs)‖Tt(x)− x0‖2).

Since µ is left invariant, we have

µt‖Tt(x)− fs(x0)‖2 ≤ αsµt‖Tt(x)− x0‖2 + αsµt‖Tt(x)− fs(x0)‖2)

+ (1− 2αs)µt‖Tt(x)− x0‖2.

It follows that

µt‖Tt(x)− fs(x0)‖2 ≤ µt‖Tt(x)− x0‖2. (3.4)

Since fs(x0) ∈ C, from (3.3) we can get

µt‖Tt(x)− x0‖2 ≤ µt‖Tt(x)− fs(x0)‖2. (3.5)

Now, from (3.4 ) and (3.5) we obtain

µt‖Tt(x)− fs(x0)‖2 = µt‖Tt(x)− x0‖2.

The uniqueness of x0 in (3.3) implies that fs(x0) = x0. Hence, x0 ∈ F (fs), and we
conclude that x0 ∈ F (F). So, by Lemma 3, we have x0 ∈ F (S).

(iii)⇒ (ii). Let x∗ ∈ F (S). By Lemma 3, x∗ ∈ F (F). So, we have

‖Ts(x)− x∗‖2 = ‖Ts(x)− fs(x∗)‖2

≤ αs‖Ts(x)− x∗‖2 + αs‖x− fs(x∗)‖2 + (1− 2αs)‖x− x∗‖2

= αs‖Ts(x)− x∗‖2 + αs‖x− x∗‖2 + (1− 2αs)‖x− x∗‖2,

for all x ∈ C and s ∈ S. It follows that ‖Ts(x)−x∗‖2 ≤ ‖x−x∗‖2. Hence {Tsx : s ∈ S}
is bounded for every x ∈ C. (ii)⇒ (i). It is obvious.
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Example 3.5. Let S = (0, 12 ], C = [−1, 1], H = R, and for each t ∈ S, we set

αt = 1
2 t. Let Tt and ft are defined as follows:

Tt : C −→ C, ft : C −→ C,

Ttx =

 tx, 0 < x < 1,
0, x ∈ {−1, 0, 1},
−tx, −1 < x < 0,

ftx =

{
tx, 0 < x < 1,
0, x ∈ [−1, 0]

⋃
{1}.

Let α = {αt}t∈S and S = {Tt : t ∈ S}. Obviously, S is a semitopological semigroup
and S = {Tt : t ∈ S} is a continuous representation of S as mappings on C. Since Tt
is not continuous for all t ∈ S, hence S is not a nonexpansive semigroup. Now, we
prove that S is an (α,F)-semigroup on C. For t ∈ S and x, y ∈ C, we consider the
following cases:

• If 0 < x < 1 and 0 < y < 1, then

|Ttx− fty|2 = t2|x− y|2

≤ (1− t)2|x− y|2

≤ (1− t)|x− y|2

≤ 1

2
t|tx− y|2 +

1

2
t|x− ty|2 + (1− t)|x− y|2

= αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2.

• If 0 < x < 1 and y ∈ [−1, 0]
⋃
{1}, then

|Ttx− fty|2 = t2|x|2 ≤ 1

2
t|x|2

≤ 1

2
t|tx− y|2 +

1

2
t|x− 0|2 + (1− t)|x− y|2

= αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2.

• If −1 < x < 0 and 0 < y < 1, then

|Ttx− fty|2 = t2(x2 + y2 + 2xy) ≤ t2(x2 + y2)

≤ 1

2
t(x2 + y2)

≤ 1

2
t(x2 + y2) +

1

2
t3(x2 + y2) + (1− t)|x− y|2

=
1

2
t| − tx− y|2 +

1

2
t|x− ty|2 + (1− t)|x− y|2

= αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2.

• If −1 < x < 0 and y ∈ [−1, 0]
⋃
{1}, then

|Ttx− fty|2 = t2| − x|2 ≤ 1

2
t| − tx− y|2 +

1

2
t|x− 0|2 + (1− t)|x− y|2

= αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2
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• If x ∈ {−1, 0, 1} and 0 < y < 1, then

|Ttx− fty|2 = t2|y|2 ≤ 1

2
t|0− y|2 +

1

2
t|x− ty|2 + (1− t)|x− y|2

= αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2

• If x ∈ {−1, 0, 1} and y ∈ [−1, 0]
⋃
{1}, then

|Ttx− fty|2 = 0 ≤ αt|Ttx− y|2 + αt|x− fty|2 + (1− 2αt)|x− y|2

Therefore, S is an (α,F)-semigroup on C. Obviously {Ttx : t ∈ S} is bounded for
every x ∈ C and F (F) = F (S) = {0}.
Remark 3.6. In the proof (i)⇒ (iii) in Theorem 3, we put x0 = Tµ(x).
Theorem 3.7. Let C be a closed convex subset of a Hilbert space H and let S be a
semitopological semigroup such that C(S) has an invariant mean µ.

If S = {Tt : t ∈ S} is an (α,F)-semigroup on C and F (S) 6= ∅, then, Tµ satisfies
the following properties:

(i) TµTt = TtTµ = Tµ, for all t ∈ S,
(ii) Tµ is a nonspreading retraction of C onto F (S), i.e., for all x, y ∈ C,

2‖Tµ(x)− Tµ(y)‖2 ≤ ‖Tµ(x)− y‖2 + ‖Tµ(y)− x‖2, and T 2
µ = Tµ,

(iii)
⋂
s∈S co{Ttsx : t ∈ S}

⋂
F (S) = {Tµ(x)}, for all x ∈ C.

Proof. (i). By the proof of Theorem 3, it is obvious that Tµ is a mapping of C onto
F (S), so

TtTµ = Tµ, ∀t ∈ S.

Since µ is a right invariant mean, for all s ∈ S and x ∈ C, we have

〈TµTs(x), y〉 = µt〈TtTs(x), y〉 = µt〈Tts(x), y〉 = µt〈Tt(x), y〉 = 〈Tµ(x), y〉,

for all y ∈ H. Hence, TµTsx = Tµx, for all s ∈ S and x ∈ C.
(ii). Let x, y ∈ C. From Lemma 2, we can get

‖Tµ(x)− Tµ(y)‖2 = 〈Tµ(x)− Tµ(y), Tµ(x)− Tµ(y)〉
= µt〈Tt(x)− Tt(y), Tµ(x)− Tµ(y)〉

=
1

2
µt(‖Tt(x)− Tµ(y)‖2 + ‖Tt(y)− Tµ(x)‖2

− ‖Tt(x)− Tµ(x)‖2 − ‖Tt(y)− Tµ(y)‖2)

≤ 1

2
µt(‖Tt(x)− Tµ(y)‖2 + ‖Tt(y)− Tµ(x)‖2). (3.6)

Since Tµ(x) ∈ F (S) and Tµ(y) ∈ F (S). By Lemma 3, we have Tµ(x) ∈ F (F) and
Tµ(y) ∈ F (F). Therefore, for t ∈ S, we have

ft(Tµ(x)) = Tµ(x), and ft(Tµ(y)) = Tµ(y).
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Since S is an (α,F)-semigroup on C, so we have

‖Tt(x)− Tµ(y)‖2 = ‖Tt(x)− ft(Tµ(y))‖2

≤ αt‖Tt(x)− Tµ(y)‖2 + αt‖x− ft(Tµ(y))‖2

+ (1− 2αt)‖x− Tµ(y)‖2

= αt‖Tt(x)− Tµ(y)‖2 + αt‖x− Tµ(y)‖2

+ (1− 2αt)‖x− Tµ(y)‖2.
It follows that

µt(‖Tt(x)− Tµ(y)‖2 ≤ ‖x− Tµ(y)‖2. (3.7)

By using similar method as used in the proof of relation (3.7), we can prove that

µt(‖Tt(y)− Tµ(x)‖2 ≤ ‖y − Tµ(x)‖2. (3.8)

Now, from (3.6), (3.7) and (3.8), we obtain that

2‖Tµ(x)− Tµ(y)‖2 ≤ ‖Tµ(x)− y‖2 + ‖Tµ(y)− x‖2.
Next, we will show T 2

µ = Tµ. For this purpose , for x ∈ C and y ∈ H, from (i) we
have

〈T 2
µx, y〉 = µt〈TtTµx, y〉 = µt〈Tµx, y〉 = 〈Tµx, y〉.

Hence, T 2
µ = Tµ.

(iii). By Theorem 2, we have

Tµ(x) ∈ co{Tt(x) : t ∈ S}, ∀x ∈ C.
So by using (i), we get

Tµ(x) = TsTµ(x) = TµTs(x) ∈ co{Tts(x) : t ∈ S}, ∀s ∈ S.
By Theorem 3, Tµ(x) ∈ F (S). Now, it is sufficient to show that Tµ(x) is the only
unique member in ⋂

s∈S
co{Tts(x) : t ∈ S}

⋂
F (S).

Assume that
z1 ∈

⋂
s∈S

co{Tts(x) : t ∈ S}
⋂
F (S).

We define a function g : F (S)→ R as follows:

g(z) = µs‖Ts(x)− z‖2, ∀z ∈ F (S).

Since F (S) is closed and convex, by Theorem 2, there exists a unique z0 ∈ F (S) such
that

g(z0) = min{g(z) : z ∈ F (S)},
and

µs〈Ts(x), y〉 = 〈z0, y〉, (3.9)

for all s ∈ S and y ∈ H. From Lemma 2, for all s ∈ S, we have

2〈z1 − z0, Ts(x)− z1〉 = ‖Ts(x)− z0‖2 − ‖z1 − z0‖2 − ‖Ts(x)− z1‖2.
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It follows that

‖z1 − z0‖2 = µs‖Ts(x)− z0‖2 − µs‖Ts(x)− z1‖2 − 2µs〈z1 − z0, Ts(x)− z1〉
≤ µs‖Ts(x)− z1‖2 − µs‖Ts(x)− z1‖2 − 2µs〈z1 − z0, Ts(x)− z1〉
= −2µs〈z1 − z0, Ts(x)− z1〉
= −2µs〈z1, Ts(x)〉+ 2〈z1, z1〉+ 2µs〈z0, Ts(x)〉 − 2〈z0, z1〉.

So, from (3.9) we get

‖z1 − z0‖2 ≤ −2µs〈z1, Ts(x)〉+ 2〈z1, z1〉+ 2µs〈z0, Ts(x)〉 − 2〈z0, z1〉
= −2〈z1, z0〉+ 2〈z1, z1〉+ 2〈z0, z0〉 − 2〈z0, z1〉
= −2〈z1 − z0, z0 − z1〉.

Hence, z1 = z0. Therefore⋂
s

co{Ttsx : t ∈ S}
⋂
F (S) = {Tµ(x)}.

Definition 3.8. Let C be a nonempty subset of H and let S be a semitopological
semigroup. Let α = {αs}s∈S be a net of real numbers in [0, 1) and S = {Tt : t ∈ S}
be a continuous representation of S as mappings on C. Then, S is called an α-
nonexpansive semigroup on C if

‖Ts(x)− Ts(y)‖2 ≤ αs‖Ts(x)− y‖2 + αs‖x− Ts(y)‖2 + (1− 2αs)‖x− y‖2,

for all x, y ∈ C and s ∈ S.
Theorem 3.9. Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has a left invariant mean. If S = {Tt : t ∈ S} is an
α-nonexpansive semigroup on C. Then, the following statement are equivalent:

(i) {Ttx : t ∈ S} is bounded for some x ∈ C,
(ii) {Ttx : t ∈ S} is bounded for every x ∈ C,

(iii) F (S) 6= ∅.
Proof. By taking S = F in Theorem 3 the proof is completed.
Theorem 3.10. Let C be a closed convex subset of H and S be a semitopological
semigroup such that C(S) has an invariant mean µ. If S = {Tt : t ∈ S} is an α-
nonexpansive semigroup on C such that F (S) 6= ∅, then, Tµ satisfies the following
properties:

(i) TµTt = TtTµ = Tµ, for all t ∈ S,
(ii) Tµ is a nonspreading retraction of C onto F (S), i.e., for all x, y ∈ C,

2‖Tµ(x)− Tµ(y)‖2 ≤ ‖Tµ(x)− y‖2 + ‖Tµ(y)− x‖2, and T 2
µ = Tµ,

(iii)
⋂
s∈S co{Ttsx : t ∈ S}

⋂
F (S) = {Tµ(x)}, for all x ∈ C.

Proof. By taking S = F in Theorem 3 the proof is completed.
Definition 3.11. Let C be a nonempty subset of H. Let S be a semitopological
semigroup and S be a continuous representation of S as mappings on C. Then, S is
called:
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(1) r-firmly nonexpansive semigroup on C if there exist a net r = {rs}s∈S of real
numbers in [0, 1) such that for all x, y ∈ C and s ∈ S,

‖Ts(x)− Ts(y)‖ ≤ ‖(1− rs)(x− y) + rs(Ts(x)− Ts(y))‖.

(2) Nonspreading semigroup on C if for all x, y ∈ C and s ∈ S,

2‖Ts(x)− Ts(y)‖2 ≤ ‖Ts(x)− y‖2 + ‖x− Ts(y)‖2.

(3) Hybrid semigroup on C if for all x, y ∈ C and s ∈ S,

3‖Ts(x)− Ts(y)‖2 ≤ ‖Ts(x)− y‖2 + ‖x− Ts(y)‖2 + ‖x− y‖2.

(4) TJ-1-semigroup on C if for all x, y ∈ C and s ∈ S,

2‖Ts(x)− Ts(y)‖2 ≤ ‖Ts(x)− y‖2 + ‖x− y‖2.

(5) TJ-2-semigroup on C if for all x, y ∈ C and s ∈ S,

3‖Ts(x)− Ts(y)‖2 ≤ 2‖Ts(x)− y‖2 + ‖x− Ts(y)‖2.

Remark 3.12. By Remark 1, obviously, Theorem 3 and Theorem 3 are also true for
nonexpansive semigroup, r-firmly nonexpansive semigroup, nonspreading semigroup,
hybrid semigroup, TJ-1-semigroup and TJ-2-semigroup.

4. Convergence and nonlinear ergodic theorems

Theorem 4.1. Let C be a closed convex subset of H and S be a semitopological
semigroup with identity such that C(S) has an invariant mean µ. Let S = {Tt : t ∈ S}
be an (α,F)-semigroup on C such that F (S) 6= ∅. If {µn} is a strongly asymptotically
invariant sequence of means on C(S) and for given x1 ∈ C, {xn} is a sequence
generated by

xn+1 = αnxn + (1− αn)Tµn(xn), ∀n ∈ N;

where {αn} is a sequence of real numbers in [0, 1] and lim infn→∞ αn(1 − αn) > 0.
Then, the sequence {xn} converges weakly to z ∈ F (S) and z = limn→∞ Pxn, where
P is the metric projection of H onto F (S).
Proof. By Lemma 3, F (S) = F (F). Let v ∈ F (S). By Theorem 3, Tµn(v) = v. Since
Tµn is a nonspreading retraction, then Tµn is quasi-nonexpansive. Then for all n ∈ N,
we have

‖Tµn(xn)− v‖ ≤ ‖xn − v‖. (4.1)

It follows that

‖xn+1 − v‖2 = ‖αnxn + (1− αn)Tµn(xn)− v‖2

≤ αn‖xn − v‖2 + (1− αn)‖Tµn(xn)− v‖2

≤ αn‖xn − v‖2 + (1− αn)‖xn − v‖2

= ‖xn − v‖2.
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Therefore {‖xn − v‖2} is a decreasing sequence of nonnegative real numbers and
therefore convergent. Hence, {xn} is bounded. So by Lemma 2, we have

‖xn+1 − v‖2 = ‖αnxn + (1− αn)Tµn(xn)− v‖2

= αn‖xn − v‖2 + (1− αn)‖Tµn(xn)− v‖2

− αn(1− αn)‖Tµn(xn)− xn‖2

≤ αn‖xn − v‖2 + (1− αn)‖xn − v‖2 − αn(1− αn)‖Tµn(xn)− xn‖2

= ‖xn − v‖2 − αn(1− αn)‖Tµn(xn)− xn‖2.

It follows that

αn(1− αn)‖Tµn(xn)− xn‖2 ≤ ‖xn − v‖2 − ‖xn+1 − v‖2.

Since lim
n→∞

‖xn − v‖2 exists and lim inf
n→∞

αn(1− αn) > 0, we have

lim
n→∞

‖Tµn(xn)− xn‖ = 0. (4.2)

Since {xn} is bounded, so there exists a subsequence {xni} of {xn} such that xni ⇀ z.
Now, by relation (4.2) we have

Tµnixni ⇀ z. (4.3)

From Lemma 2, for all y ∈ C and s, t ∈ S, we have

2〈Tstxn − fs(y), y − fs(y)〉 − ‖fs(y)− y‖2 = ‖Tstxn − fs(y)‖2 − ‖Tstxn − y‖2.

By applying µn to both sides of the recent equality, we have

2(µn)t〈Tst(xn)− fs(y), y − fy〉 − ‖fs(y)− y‖2

= (µn)t(‖Tst(xn)− fs(y)‖2 − ‖Tst(xn)− y‖2)

= (µn)t(‖Tst(xn)− fs(y)‖2)− (µn)t(‖Tst(xn)− y‖2)

Since µn is a left invariant mean, so we have

2(µn)t〈Tt(xn)− fs(y), y − fs(y)〉 − ‖fs(y)− y‖2

= (µn)t(‖Tt(xn)− fs(y)‖2)− (µn)t(‖Tt(xn)− y‖2). (4.4)

On the other hand since S is an (α,F)-semigroup on C, we have

‖Tstxn − fs(y)‖2 ≤ αs‖Tstxn − y‖2 + αs‖Ttxn − fs(y)‖2

+ (1− 2αs)‖Ttxn − y‖2.

Now, by applying µn to both sides of the recent inequality, we have

(µn)t‖Tstxn − fs(y)‖2 ≤ αs(µn)t‖Tstxn − y‖2 + αs(µn)t‖Ttxn − fs(y)‖2

+ (1− 2αs)(µn)t‖Ttxn − y‖2.

Since µn is a left invariant mean, we have

(µn)t‖Ttxn − fs(y)‖2 ≤ αs(µn)t‖Ttxn − y‖2 + αs(µn)t‖Ttxn − fs(y)‖2

+ (1− 2αs)(µn)t‖Ttxn − y‖2.
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It follows that

(µn)t‖Ttxn − fs(y)‖2 ≤ (µn)t‖Ttxn − y‖2. (4.5)

From (4.4) and (4.5), we can get

2〈Tµn(xn)− fs(y), y − fs(y)〉 − ‖fs(y)− y‖2 ≤ 0.

Using the last inequality and (4.3), we can get

2〈z − fs(y), y − fs(y)〉 − ‖fs(y)− y‖2 ≤ 0.

Putting y = z, we have z ∈ F (fs). Therefore z ∈ F (F), so z ∈ F (S). The rest of the
proof is similar to the proof of Theorem 3.1 from [4], so we omit it.
Example 4.2. Let S = ((0, 12 ] ∪ {1}) ∩ Q. Since S is countable, it can be assumed
S = {t0, t1 · · · , }. Let t0 = 1 and C, S, F and α be as in Example 3 and Tt0x =
ft0x = 1 for each x ∈ C. Obviously, S = {Tt : t ∈ S} is an (α,F)-semigroup on C
and F (S) 6= ∅. Suppose for given x1 ∈ C, {xn} be a sequence generated by:

xn+1 = δnxn + (1− δn)
1

n

n−1∑
k=0

Ttkxn, ∀n ∈ N,

where {δn} is a sequence of real numbers in [0, 1] and lim inf
n→∞

δn(1 − δn) > 0. Then,

{xn}∞n=1 converges weakly to z ∈ F (S). For g = (xt0 , xt1 , xt2 , ...) ∈ C(S), we define

µn(g) =
1

n

n−1∑
k=0

xtk ;

for all n ∈ N. We first show that {µn}∞n=1 is an asymptotically invariant sequence of
means on C(S). It is obvious that for all n ∈ N, µn is linear. Also, we have

|µn(g)| ≤ 1

n

n−1∑
k=0

|xtk | ≤
1

n

n−1∑
k=0

‖g‖ = ‖g‖,

for all g ∈ C(S). Hence, ‖µn‖ ≤ 1. Also, we have

µn(1) =
1

n

n−1∑
k=0

1 = 1,

hence ‖µn‖ = µn(1) = 1, i.e., µn is a mean. For g = (xt0 , xt1 , xt2 , ...) ∈ C(S) and
m ∈ S, we have

|µn(g)− µn(rmg)| =

∣∣∣∣∣ 1n
n−1∑
k=0

xtk −
1

n

n−1∑
k=0

xtk+m

∣∣∣∣∣
=

∣∣∣∣∣ 1n
(
m−1∑
k=0

xtk −
n+m−1∑
k=n

xtk

)∣∣∣∣∣
≤ 1

n
2m‖g‖ → 0, (n→∞).
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Then, {µn} is asymptotically invariant. Furthermore, we have

〈Tµnx, y〉 = (µn)k〈Ttkx, y〉 =
1

n

n−1∑
k=0

〈Ttkx, y〉 =

〈
1

n

n−1∑
k=0

Ttkx, y

〉
,

for all x ∈ C and y ∈ H. Hence Tµnx = 1
n

n−1∑
k=0

Ttkx. Finally, by using Theorem 4, xn

converges weakly to z ∈ F (S) as n→∞.
Before proving Baillon’s nonlinear ergodic theorem, we need the following Lemma.

Lemma 4.3. Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has an invariant mean. If S = {Tt : t ∈ S} is an (α,F)-
semigroup on C such that F (S) 6= ∅. Then, Tλ = Tµ for both invariant means µ and
λ on C(S).
Proof. By part (iii) of Theorem 3, the proof is completed.
Now, by using Theorem 3 and Lemma 4, we prove generalized Baillon’s nonlinear
ergodic theorem for the proposed semigroups.
Theorem 4.4. Let C be a closed convex subset of H and let S be a semitopological
semigroup with identity. Let S = {Tt : t ∈ S} be an (α,F)-semigroup on C and
suppose F (S) 6= ∅. If {µα}α∈I is a net of asymptotically invariant means on C(S),
then, {Tµαx}α∈I converges weakly to a point x0 ∈ F (S), for all x ∈ C. In this case,
putting Qx = x0 for all x ∈ C, then, Q is a nonspreading retraction of C onto F (S)
such that, QTt = TtQ = Q for all t ∈ S and

⋂
t co{Tstx : s ∈ S}

⋂
F (S) = {Qx}, for

all x ∈ C.
Proof. Since {µα}α∈I is a net of means on C(S), it has a cluster point µ in the weak∗

topology on C(S)∗. By Banach- Alaoglu Theorem, {µ ∈ C(S)∗ : µ(1) = ‖µ‖ = 1} is
compact in the weak* topology, it follows that µ is a mean on C(S). Since {µα}α∈I
is a net of asymptotically invariant means on C(S), for any ε > 0 there exists α0 ∈ I
such that for all α ∈ I and α � α0, we have

|µα(g)− µα(lsg)| ≤ ε

3
, ∀g ∈ C(S), s ∈ S.

Since µ is a cluster point of {µα}α∈I , we can choose β � α0 such that

|µβ(g)− µ(g)| ≤ ε

3
and |µβ(lsg)− µ(lsg)| ≤ ε

3
.

It follows that

|µ(g)− µ(lsg)| ≤ |µ(g)− µβ(g)|+ |µβ(g)− µβ(lsg)|+ |µβ(lsg)− µ(lsg)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

As ε > 0 is arbitrary, we have

µ(g) = µ(lsg), ∀g ∈ C(S), s ∈ S.

Similarly, we can show that

µ(g) = µ(rsg), ∀g ∈ C(S), s ∈ S.



668 HOSSEIN PIRI AND MOSTAFA GHASEMI

Hence µ is an invariant mean on C(S). Now, Theorem 3 implies that Tµ is a non-
spreading retraction of C onto F (S) and⋂

t

co{Tstx : s ∈ S}
⋂
F (S) = {Tµ(x)}, ∀x ∈ C. (4.6)

Let x ∈ C. Since F (S) 6= ∅, Theorem 3 implies that {Tt(x) : t ∈ S} is bounded in C.
On the other hand S has an identity element, so, from Theorem 3 we get

{Tµα(x)}α∈I ⊂ co{Tt(x) : t ∈ S}.

Therefore {Tµα(x)}α∈I is a bounded net in C and hence, there exists a sub net
{Tµαβ (x)}β∈I of {Tµα(x)}α∈I converging weakly to some x0 ∈ C. If λ is a cluster

point of {µαβ} in the weak∗ topology, then λ is a cluster point of {µα}, too. So, λ is
an invariant mean on C(S). From Tµαβ x ⇀ x0, we also have λt〈Ttx, y〉 = 〈x0, y〉 for

all y ∈ H, i.e., Tλx = x0. Since Tλ = Tµ, from Lemma 4, by putting Q = Tµ, we have
x0 = Qx and hence Tµαx ⇀ Qx, and the proof is completed.
Theorem 4.5. Let C be a closed convex subset of H and let S be a semitopological
semigroup with identity such that C(S) has an invariant mean. Let S = {Tt : t ∈ S}
be an (α,F)-semigroup on C such that F (S) 6= ∅. Let {µn} be an asymptotically
invariant sequence of means on C(S). Let {αn} be a sequence of real numbers such

that 0 ≤ αn ≤ 1, αn → 0 and
∞∑
n=1

αn = ∞. Suppose that u ∈ C and {xn} be a

sequence generated by x1 = x ∈ C and

xn+1 = αnu+ (1− αn)Tµnxn, ∀n ∈ N.

Then, the sequence {xn} converges strongly to z ∈ F (S) and z = limn→∞ Pxn, where
P is the metric projection of H onto F (S).
Proof. Let q ∈ F (S). As the proof of Theorem 4, we have

‖Tµnxn − q‖ ≤ ‖xn − q‖. (4.7)

Therefore,

‖xn+1 − q‖ = ‖αnu+ (1− αn)Tµnxn − q‖
≤ αn‖u− q‖+ (1− αn)‖Tµnxn − q‖
≤ αn‖u− q‖+ (1− αn)‖xn − q‖.

By mathematical induction, we have

‖xn − q‖ ≤ max{‖u− q‖, ‖x1 − q‖}

for all n ∈ N. Thus {xn} is bounded. From (4.7), {Tµnxn} is also bounded. Let
{Tµnixni} be a subsequence of {Tµnxn} such that Tµnixni ⇀ v for some v ∈ C. As

the proof of Theorem 4, we have v ∈ F (S). The rest of the proof is similar to the
proof of Theorem 4.1 from [4], so, we omit it.
Remark 4.6. By taking S = F , Theorem 4, Theorem 4 and Theorem 4 are true for
α-nonexpansive semigroup. Also by Remark 1, obviously Theorem 4, Theorem 4 and
Theorem 4 are true for nonexpansive semigroup, r-firmly nonexpansive semigroup,
nonspreading semigroup, hybrid semigroup, TJ-1-semigroup and TJ-2-semigroup.
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5. Applications

In this section, by using Theorem 4 and Theorem 4 , we prove some famous theo-
rems in nonlinear ergodic theory.
Theorem 5.1. Let C be a nonempty closed convex subset of H and T be an α-
nonexpansive mapping on C such that F (T ) 6= ∅. Then, for all x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx;

converges weakly to some x0 ∈ F (T ) as n→∞.
Proof. Let S = {0, 1, 2, ...}. For g = (z0, z1, z2, ...) ∈ C(S), we define

µn(g) =
1

n

n−1∑
k=0

zk;

for all n ∈ N. Then, by [15], {µn}∞n=1 is an asymptotically invariant sequence of
means on C(S). Also,

Tµnx = Snx =
1

n

n−1∑
k=0

T kx.

Then, by using Theorem 4, Snx converges weakly to some x0 ∈ F (T ) as n → ∞.
This complete the proof.
Theorem 5.2. (Baillon’s nonlinear ergodic theorem [15]) Let C be a nonempty closed
convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into
itself such that F (T ) 6= ∅. Then, for all x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx;

converges weakly to some x0 ∈ F (T ) as n→∞.
Proof. Since every 0-nonexpansive mapping is a nonexpansive mapping. So, by using
Theorem 5, Snx converges weakly to some x0 ∈ F (T ) as n→∞.
Remark 5.3. It is obvious that Theorem 5 is also true for nonspreading mappings,
hybrid mappings, TJ-1 mappings, TJ-2 mappings and r-firmly nonexpansive map-
pings.

Let C be a nonempty subset of H. Let S = R+ = {t ∈ R : 0 ≤ t < ∞}. Then a
family S = {S(t) : t ∈ R+} of mappings of C into itself is called an one-parameter
α-nonexpansive semigroup on C if S satisfies the following:

(1) S(t+ s)x = S(t)S(s)x, ∀t, s ∈ S and x ∈ C;
(2) S(0)x = x ∀x ∈ C;
(3) for all x ∈ C, the mapping t 7→ S(t)x from R+ into C is continuous;
(4) for all t ∈ R+, S(t) is α-nonexpansive mapping.

Similarly, we can define one-parameter nonexpansive semigroup (see [4]), one-
parameter nonspreading semigroup, one-parameter hybrid semigroup, one-parameter
TJ-1 semigroup, one-parameter TJ-2 semigroup and one-parameter r-firmly nonex-
pansive semigroup.
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Theorem 5.4. Let C be a closed convex subset of a Hilbert space H and let

S = {S(t) : t ∈ R+}
be an one-parameter α-nonexpansive semigroup on C such that F (S) 6= ∅. Then, for
all x ∈ C,

Sλx =
1

λ

∫ λ

0

S(t)xdt;

converges weakly to some x0 ∈ F (S) as λ→∞.
Proof. Let S = R+. For f ∈ C(R+), we define

µλ(f) =
1

λ

∫ λ

0

f(t)dt;

for all 0 < λ < +∞. Then, {µλ}λ>0 is an asymptotically invariant net of means

on C(R+) see, [15, Theorem 3.5.2]. Also, Tµλx = Sλx = 1
λ

∫ λ
0
S(t)xdt. Now, by

Theorem 4, 1
λ

∫ λ
0
S(t)xdt converges weakly to some x0 ∈ F (S) as λ→∞.

Theorem 5.5. [15, Theorem 3.5.2] Let C be a closed convex subset of H and

S = {S(t) : t ∈ R+}
be a one-parameter nonexpansive semigroup on C such that F (S) 6= ∅. Then, for all
x ∈ C,

Sλx =
1

λ

∫ λ

0

S(t)xdt;

converges weakly to some x0 ∈ F (S) as λ→∞.
Proof. Since one-parameter 0-nonexpansive semigroup is an one-parameter nonex-
pansive semigroup. Hence by Theorem 5, the proof is completed.
Remark 5.6. It is obvious that Theorem 5 is also true for one-parameter nonspread-
ing semigroups, one-parameter hybrid semigroups, one-parameter TJ-1 semigroups,
one-parameter TJ-2 semigroups and one-parameter r-firmly nonexpansive semigroups.

The following theorem is concluded from Theorem 5 and Theorem 4.
Theorem 5.7. [12] Let C be a closed convex subset of H and S = {S(t) : t ∈ R+} be
an one-parameter nonexpansive semigroup on C such that F (S) 6= ∅. Let u ∈ C and
for given x1 ∈ C, {xn} be a sequence generated by

xn+1 = αnu+ (1− αn)
1

λn

∫ λn

0

S(t)xndt,

where 0 < λn < +∞, λn → ∞, 0 ≤ αn ≤ 1, αn → 0 and
+∞∑
n=1

αn = ∞. Then, the

sequence {xn} converges strongly to z ∈ F (S), where z = PF (S)(u).
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