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Abstract. In the present paper, some new type of semigroups of mappings are introduced. Then,
by using the theory of invariant means, fixed point theorem, and existence of nonspreading retraction
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1. INTRODUCTION

Let N, Q and R be the set of positive integer numbers, the set of rational numbers,
and the set of real numbers, respectively. Also let H be a real Hilbert space with
inner product (.,.) and ||.|| be a norm from inner product (.,.) and C' be a nonempty
subset of H. The closed convex hull of C' is denoted by ¢oC'. Furthermore, the weak
convergence is denoted by — and strong convergence is denoted by —. Let T be a
mapping of C' into itself, and the set of fixed point of T, i.e., {x € C : Tz = z} is
denoted by F(T). A mapping T: C' — C is said to be nonexpansive, if

[Tz =Tyl < [l —yl,

for all z,y € C. A self mapping T on C with F(T) # () is called quasi-nonexpansive
if |z — Ty|| < ||z =y, for all z € F(T), and y € C. Now, the definitions of several
classes of nonlinear mappings are recalled:

Definition 1.1. A mapping T: C' — C' is said to be:

(1) r—firmly nonexpansive, if there exist r € [0,1) such that for all z,y € C,
[Tz =Tyl < |(1=r)(z —y) +r(Tz - Ty)|.
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(2) Nomnspreading, if for all z,y € C,

2|Tz —Ty|? < |Tx - y)? + [l= — Ty|*.
(3) Hybrid, if for all z,y € C,

3Tz — Ty||* < ||Tx —y||* + [l — Ty[* + [l — y[*.
(4) TJ-1, if for all z,y € C,
2|Tz —Ty|? < ||Tx - y|* + ||z — yl*.

(5) TJ-2, if for all z,y € C,

3Tz — Tyl* < 2T —y|? + [lz — Ty

Recently, Aoyama and Kohsaka [1] have introduced a new class of nonexpansive
mappings, namely a—nonexpansive mappings as follows:
Definition 1.2. A mapping T: C — C' is said to be an a—nonexpansive if for all
z,y € C and a € (—0o0, 1)

1T = Tyl* < a| Tz - y|* + alla = Tyl* + (1 - 20)|lz — y*.

They have obtained the fixed point theorem for the introduced mapings in the
Definition 1. It is obvious that each a—nonexpansive mapping, which has a fixed
point is quasi-nonexpansive.

Remark 1.3. In [2], Ariza-Ruiz et al. showed that the concept of a—nonexpansive
mapping is trivial for o < 0.

Remark 1.4. [2] Every nonexpansive mapping is 0-nonexpansive, and every non-
spreading mapping is %—nonexpansive. Every hybrid mapping is %—nonexpansive,
and every T'J-1 mapping is i—nonexpansive. Every T'J-2 mapping is nonspreading
and hence is %-nonexpansive. Finally, every r-firmly nonexpansive mapping is a-
nonexpansive with o = LTH.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a € S the mappings s — a.s and s — s.a from S to S
are continuous. A family § = {T} : ¢ € S} of mappings of C into itself is called a
continuous representation of S as mappings on C' if the following propertis hold:

(1) Tys(z) = T1Ts(x), Vs,t € S and = € C
(2) for each = € C, the mapping t — Tz is continuous.

Let S be as above, S is said to be a nonexpansive semigroup on C if

1Ti(z) = T ()|l < llz =y,

forall z,y € Candt € S.

In this paper, we first introduce some new type semigroups of these mappings.
Then motivated by [7] and [15], we prove a fixed point theorem for semigroups. After
that, we show the existence of nonspreading retraction for the fixed point set of these
semigroups. Morever, motivated and inspired by [10], [4], [14], [17], and [15], we
prove weak convergence theorem of Mann’s type and generalized nonlinear ergodic
theorem for the introduced semigroups in Hilbert spaces. Finally, we deduce strong
convergence theorem of Halpern’s type for these semigroups. The presented results
in this paper generalize and improve several results of the topics in the literature.
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2. PRELIMINARIES

Recall that the (nearest point) projection P from H into C assigning to z € H is
the unique point Px € C which satisfy the following property

— Pz |= inf — .
le—Pall= inf | z—yll

If x € H and z € C, then z = Px is equvalent to
(x—z,y—2y>0, yeC. (2.1)

For more details we refer readers to [6] and [15].
Lemma 2.1. [10] If z,y,z,w € H and o € R, then

(i) [loz+ (1= a)yll? = alz]* + (1 = ) [lyl]* — a(l — a)|lz — yl*;

(i) 2z —y, 2 —w) = lz —w|> + lly — 2 = ]z — 2[> — [ly — w]*.
Lemma 2.2. [16] Let D be a nonempty closed convex subset of H. Let P be a metric
projection of H onto D and {x,,} be a sequence in H. If |xnr1 — u| < ||wn — ul|, for
allu € D and n € N, then {Px,} converges strongly.

Let [*° be the Banach space of bounded real number sequences with supremum
norm. Let p be an element of (I°°)* ( the dual space of [ ), the value of u at
f = (x1,29,23,...) € I® is denote by u(f). Sometimes, we denote it by un(zy).
w € (1°°)* is called Banach limit on [*° if p(e) = ||p|| = 1, where e = (1,1,1,...) and
tn (Tne1) = pn(zy). I pis a Banach limit on {*°, then for f = (1, 22,23,...) € [,
we have

liminf 2, < py,(x,) < limsupz,.
n—00 n—oo

In particular, if f = (x1,22,23,...) € {* and lim, .oz, = a € R, then we can
deduce p(f) = pn(x,) = a. For the proof of existence of a Banach limit and its other
properties, see [15].

Let B(S) be the Banach space of all bounded real-valued functions on S with
supremum norm and let C(S) be the subspace of B(S) of all continuous functions
on S. Let p be an element of C'(S)* (the dual space of C(S)). The value of p at
f € C(S) is denote by p(f). Sometimes, we denote it by u:(f(t)). For each s € S
and f € C(5), we define two functions Isf and rsf as follows:

(s f)(t) = f(st) and (rsf)(t) = f(ts), te€S.
An element p of C(S)* is called a mean on C(S) if u(e) = ||p|| = 1, where e(s) =1
for all s € S. We know that u € C'(S)* is a mean on C(S) if and only if
inf f(s) < p(f) <sup f(s), VfeCO(S).
ses ses

A mean p on C(S) is called left invariant if p(lsf) = p(f) for all f € C(S), and
s € S. Similarly, a mean p on C(S) is called right invariant if p(rsf) = p(f), for all
feC(S),and s € S. A left and right invariant mean on C(S) is called an invariant
mean on C(S). A net {p14} of means on C(S) is said to be asymptotically invariant if

for each f € C(S) and s € S,
lim(pa(f) = pallsf)) =0 and  lim(ua(f) = pa(rsf)) = 0.
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A net {us} of means on C(S) is said to be strongly asymptotically invariant if for
each s € §
llsta — pall =0 and ||r5pa — pall — 0,

where [* and r¥ are the adjoint operators of I; and rg, respectively ( For more details
see [15]). We know that for a commutative semitopological semigroup, there exists
an invariant mean on C(S) ( see [15]). If S = N, an invariant mean on C(S)=B(S) is
a Banach limit on [*°. Let C be a closed convex subset of H and let U : S — C be
a continuous function such that sup,cg ||U(s)|| < +oo. For any y € H, a real valued
function h defined by

h(t) = (U(t),y),
for all t € S, is in C(S). Let p be a mean on C(S), and

g(y) = u(h) = e (U(t),y), Vye H.

Then, g is a linear functional on H and
l9(W)l = [u()] < [lullip] = sup |h(t)] = sup(U(£),y) < sup [U(#)]][|y[l-
tes tes tes

Hence, from Riesz theorem, there is a unique element xg € H such that for all y € H,

we have g(y) = (xo,y) or u(U(t),y) = (zo,y).
Theorem 2.3. [15] If p is a mean on C(S) and xq is an element of H such that for
ally € H,
(U (1), y) = (2o, y)-
Then, zo € co{U(t) : t € S} C C.
In particular, if S = {T} : t € S} is a continuous representation of S as mappings

on C such that {7} : t € S} is bounded for some x € C and U(¢t) = Ty« for all t € S,
then there exist a unique element g € co{Tix : t € S} C H such that

pie(Tiw, y) = (xo,y), Yy € H.

We denote such xo by T),x.
The following theorem will be used in the Section 3.
Theorem 2.4.[17]. Let S, C(S) and H be as above. Let U : S — H be a function
such that {U(s) : s € S} C C is bounded and let p be a mean on C(S). If g: C - R
is defined by
9(2) = nsl|lU(s) — 2], VzeC.

Then there exists a unique zg € C such that
9(z0) = min{g(z) : z € C}.

Theorem 2.5.[15] Let C' be a closed convexr subset of H and let S be a semitopo-
logical semigroup such that C(S) has a left invariant mean. If S = {1} : t € S} is
nonexpansive semigroup on C. Then, the following statements are equivalent:

(i) {Tix : t € S} is bounded for some x € C,

(ii) {Tix : t € S} is bounded for every x € C,

(i) F(S) # 0.
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Theorem 2.6.[15] Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has an invariant mean p. If S = {T; : t € S} is a
nonexpansive semigroup on C such that F(S) # 0. Then, T, satisfies the following
properties:

(i) T,y =T,T, =T,, foralltes,

(i) T, is a nonexpansive retraction of C onto F(S), i.e., for all x,y € C,

1T (x) = Tu(y) < llz —yll,

(i) Tyu(z) eco{Tixz : t € S}, forallz € C.

The following theorem generalize nonlinear ergodic Theorem of Baillon’s type for
nonexpansive semigroups in Hilbert spaces.
Theorem 2.7.[15]Let C be a closed convex subset of H and let S be a commutative
semitopological semigroup with identity. Let S = {1} : t € S} be a nonexpansive
semigroup on C and F(S) # 0. If {pa }acr s a net of asymptotically invariant means
on C(S), then {T,, x} converges weakly to a point xo € F(S), for all x € C. If, we
put Qxr = xg for all x € C, then Q is a nonexpansive retraction of C onto F(S) such
that QT = T,Q = Q for allt € S and (), co{Tsx : s € S} F(S) = {Qz}, for all
xeC.

3. EXISTENCE OF NONSPREADING RETRACTION

Definition 3.1. Let C be a nonempty subset of H and S be a semitopological
semigroup. Let F = {f:}+cs be a net of mappings of C' into itself and o = {@+}tes
be a net of real numbers in [0,1). A continuous representation S = {7} : t € S} of S
as mappings on C is called an («, F)-semigroup on C if

ITe(2) = fe)I* < el Telx) — yl* + eelle = fe(@)II* + (1 = 204) [lz — ylI?,

forall z,y e C'andt € S.
Remark 3.2. Notice that by the first condition of continuous representation, («, F)-
semigroup is closed in the compounds of the mapping.

The set of common fixed points of S and the set of common fixed points of F are
denoted by F(S) and F(F), respectively, i.e.,

F(S)=()F(T), F(F)=()F(f)
tes tes
Lemma 3.3. Let C be a closed convex subset of H and let S be a semitopological
semigroup. If S = {T, : t € S} is an (a, F)-semigroup on C, then F(F) = F(S), and
F(S) is closed and convex.
Proof. If F(F) =0 and F(S) = 0, then F(F) = F(S). So, we assume that F(F) # ()
or F(S) # 0. Now, let x € F(F) and ¢t € S, then fi(z) = z. Since S is an
(a, F)—semigroup on C, we can get
ITe(x) = 2]|* = | Te(2) — fe(@)]?
wlT(w) ~ 2l + aqlla — Fu@)? + (1~ 20z —
|| Ty(z) — || (3.1)

IN
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Since oy € [0,1), from (3.1) we get Ty(z) = z, and then x € F(S). Therefore,
F(F) C F(S). Again let y € F(S), and t € S, then T;(y) = y. Also, since S is an
(o, F)-semigroup on C, we can obtain

ly = feI* = T2 (y) — fe(w)l®
< @l Te(y) = yl* + aully = fe@)* + (1 = 2a)[ly — gl
= arlly — fu(y)|I*. (3.2)

On the other hand, since oy € [0,1), from (3.2), we get fi(y) =y, and y € F(F).
Therefore F(S) C F(F). Now, we show F(S) is closed. Let {z,} C F(S) and
T, — ¥, then z* € C. For t € S, we have

[z = fe(@*)|I? = | Te(wn) — fela™)[I
< | Ti(wn) — 2P + adllen — fi(a)|? + (1 = 200) |2 — 2*|?
= (1= a)on — 2| + agllzn — a1
It follows that
2 = fe(@)I? < zn — 2" = 0.
Thus, z* € F(F) = F(S), and it illustrates F(S) is closed. Finally, let 0 < o < 1,

u,v € F(S) and z = au+ (1 — a)v. Since F(S) = F(F), for all t € S, from Lemma
2, we have

Iz = Tiz|* = lau+ (1 — a)v — Ty(2)||?
= allu = T,(2)|* + (1 = a)llv = To(2)[|* — a(l — @) |Ju — v||?
= all fi(u) = T(2)|” + (1 = a)|| fo(v) = T[> = a(1 = @) lu — v]|?
< afa|fi(u) = 2|* + aullu = Ty(2) |1 + (1 = 200) |lu — 2|”]
+ (1= )l fi(v) = 2]* + aullv = T (2)]I” + (1 = 2a) [[o — 2[1*]
—a(l = a)fu—o|?
< alagflu—z[* + auflu — 2]|* + (1 = 2a0) Ju — %]
+ (1= a)agflo = 2|* + auflo — 2[* + (1 = 2a4) o — =[]
—a(l = a)fu—wv|?
=allu—z|*+ (1 —a)llv—z]* —al - a)|u— |
=a(l = a)?fu—olf’ + (1 - a)a®[u—v]? = a(l - a)|u - |
=a(l-a)1l—a+a—1)u—v|?
=0,

This implies z € F(S). So, we conclude that F(S) is convex.
Theorem 3.4. Let C be a closed conver subset of H and S be a semitopological
semigroup such that C(S) has a left invariant mean. If S = {T; : t € S} is an
(a, F)-semigroup on C, then, the following statements are equivalent:

(i) {Tix : t € S} is bounded for some x € C,

(ii) {Tix : t € S} is bounded for every x € C,
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(i) F(S) # 0.
Proof. (i) = (iii). Let p be a left invariant mean on C(S), z € C and {Tyz : t € S}
be a bounded. By Theorem 2, there exists a unique member zy € C such that

el T() — ol = muim Ty () — =% (3.3)
Since S is an («, F)-semigroup on C, for all s € S, we have
[ Tse(x) = fo(zo)lI* = ITsTe(2) — fi(o)|®
< | TsTy () — wol|* + || Ty () — filwo) |
+ (1= 2a,)||I T (2) — a0l
It follows that

pel| Toe (@) = fi(20)|1* < pe(sl| T Ty () — wol®) + pe(aus | Te(a) — filo)lI)
+ (1 = 205) [ Te(2) = @ol?).-

Since p is left invariant, we have

pel| Te(w) = fo(@o)lI” < aspel| Te(@) = woll® + sl Ti () = fi(wo) )
+ (1 = 200) | Ty () — ol

It follows that
1| Te(x) — fo(@o) I < pel| To(x) — o (3.4)

Since fs(xg) € C, from (3.3) we can get

el Te(2) — oll* < pe|| Te() — fo(o)l[>- (3.5)
Now, from (3.4 ) and (3.5) we obtain
plT3(@) — Fu(wo) | = plTe) = o
The uniqueness of xg in (3.3) implies that fs(z¢) = x9. Hence, z¢ € F(fs), and we
conclude that z¢ € F'(F). So, by Lemma 3, we have z¢ € F(S).
(#7i) = (i1). Let z* € F(S). By Lemma 3, z* € F(F). So, we have
I (@) = 2*[|* = | Ts () — fo(=™)]?
< | Ts(z) — 2 |* + aslla — fo(@)]]* + (1 = 2a,)[|lz — 2™
= || (@) — 2*|* + o [lw — 27 |* + (1 = 2a) o — 27|,

forallz € C and s € S. It follows that || Ts(z)—2*||*> < ||lz—2*||>. Hence {Tsz : s € S}
is bounded for every x € C. (ii) = (i). It is obvious.
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Example 3.5. Let S = (0, %], C = [-1,1], H = R, and for each t € S, we set
oy = %t. Let T; and f; are defined as follows:
T,:C —C, fi: C— C,
tx O<zr<l1
’ ’ tx, O<z<l,
Tix =< 0, x € {-1,0,1}, fix = { 0, e [-1,0]U{1}.

—tz, —-1l<ax<0,

Let o = {at }ies and S = {T; : t € S}. Obviously, S is a semitopological semigroup
and § = {T; : t € S} is a continuous representation of S as mappings on C. Since T}
is not continuous for all ¢ € S, hence § is not a nonexpansive semigroup. Now, we
prove that S is an (a, F)-semigroup on C. For t € S and z,y € C, we consider the
following cases:

e [f0<z<1land0<y<1,then
‘Ttx - fty|2 = t2|x - y|2
< (1 —t)*|lz —y|?
< (1—t)z—y|?
1 2 1 2 2
< gtlte =yl + Stle —ty[" + (1 = t)z — 9|
= | Tor — y* + aulz — fry]? + (1 — 2a) |z — y*.

e If0<x<1landye[-1,0]U{1}, then

1
|Tyx — fuy* = t|zf* < §t\x|2

IN

%t\tm P+ %t|x _ 0P+ (1= ) —yP?
= a|Tyx — y|* + el — fey)® + (1 — 2a4) |z — y|*.
o If -1<x<0and0<y<1,then
Tix — foy* = t(2® + y* + 20y) < (2 + )

1
< it(x2 +4?)

1 1
< 5t(x2 +9°) + 5t?’(x? +y) + (1 —t)|z —y|?

1 1
§t| —tr —y|? + it\x —ty]? + (1 = b))z —y|?
= ay|Tix — y|* + sz — foy|> + (1 — 200) |z — y|*.
o If -1 <z <0andye [-1,0]U{1}, then
1 1
Tix = fiy]* = 8| —a]* < St = tw —y* + Stz = O + (1 = )|z — y*

= o|Tix — y* + aulz — fry> + (1 = 2a¢) |z — y|?
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o If x € {-1,0,1} and 0 < y < 1, then

(T — gl = 2lyl? < S0~y + Stle — tyl? + (1~ D)o — y?
= a|Tyx — y|*> + ol — fry® + (1 — 2a4) |z — y|?
o If x € {—1,0,1} and y € [-1,0]|U{1}, then
Tox — foyl® = 0 < au|Tyw — y* + aulz — feyl* + (1 — 20|z — y|?

Therefore, S is an (a, F)-semigroup on C. Obviously {T;z : t € S} is bounded for
every € C and F(F) = F(S) = {0}.
Remark 3.6. In the proof (i) = (iii) in Theorem 3, we put zo = T),(z).
Theorem 3.7. Let C be a closed convex subset of a Hilbert space H and let S be a
semitopological semigroup such that C(S) has an invariant mean .

If S={T; :t € S} is an (o, F)-semigroup on C and F(S) # 0, then, T, satisfies
the following properties:

(i) T,Ty = T,T, =T,, forallt €S,
(ii) T, is a nonspreading retraction of C onto F(S), i.e., for all x,y € C,

2| Tu(@) = Tu@)II” < |1 Tu(@) =yl + | Tu(y) — 2l®,  and T3 =T,,

(iii) NyegCo{Tisw :t € S} F(S) = {Tu(x)}, for allx € C.

Proof. (i). By the proof of Theorem 3, it is obvious that T}, is a mapping of C onto
F(S), so

T, T, =T,, VYteS.

Since p is a right invariant mean, for all s € S and = € C, we have

<T;th(m)7y> = :ut<Tth(I)a y> = ,ut<rfts(x)v y> = ﬂt<Tt(m)7y> = <TH(I)’ y>7

for all y € H. Hence, T, Tz = T,z, forall s € S and z € C.
(ii). Let z,y € C. From Lemma 2, we can get

1T (2) = Tu(y)|I? = (Tu(x) — Tu(y), Tu(z) — Tu(y))
= pe(Ti(x) — Ti(y), Tp(w) — Tyu(y))
1

= 51T (@) = T W) + [ Ti(y) = (=)
= Te(@) = Tu(@)|I* = I Te(y) = Tu()I?)

< Sue(ITi(@) = Tu@)I* + 1 Ti(y) — Tu()]?)- (3.6)

DN | =

Since T,,(z) € F(S) and T,,(y) € F(S). By Lemma 3, we have T,,(z) € F(F) and
T,(y) € F(F). Therefore, for t € S, we have

fi(Tu(2)) = Tu(), and fi(Tu(y)) = Tu(y)-
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Since S is an (a, F)-semigroup on C, so we have
1T (2) = TuW)II* = 1Te(x) = fe(Tu(w)]?
< | Tu(x) = Tu()|1? + eellz — fo(Tu ()|
+ (1200l = Tu(y)|I?
= | T (x) = T,(W)|* + cullz — Tu(y)|”
+ (1= 2a0) |z = Tu(y)lI*.
It follows that

eI T(z) = Tu()|1? < lle = Tu(y)|1*. (3.7)
By using similar method as used in the proof of relation (3.7), we can prove that
pe(IT2(y) = Tu(@)|1* < lly = Tu(2)|1*. (3.8)

Now, from (3.6), (3.7) and (3.8), we obtain that

201 T(x) = TuW)II* < 1 Tu(x) = yll* + 1T (y) — 2>
Next, we will show Tf = T,. For this purpose , for x € C and y € H, from (i) we
have
(TP, y) = (T Tm,y) = pe(Tpx, y) = (T, y).
Hence, Tﬁ =1T,.
(iii). By Theorem 2, we have
T,(z) eco{Ti(z): t € S}, VexeC.
So by using (i), we get
T,(x) =TT, (x) = T,Ts(x) € co{Tis(x) : t € S}, VseS.
By Theorem 3, T,,(xz) € F(S). Now, it is sufficient to show that 7),(x) is the only
unique member in

() @{Tis(x) : t € S} F(S).
sES
Assume that

21 € [ @{Tis(x) : t € SH O F(S).
ses
We define a function g : F(S) — R as follows:

9(2) = wsl|Ts(z) — 21>, ¥z € F(S).
Since F(S) is closed and convex, by Theorem 2, there exists a unique zg € F(S) such
that
9(20) = min{g(2) : z € F(5)},
and
ps(Ts(2),y) = (20,9), (3.9)

for all s € S and y € H. From Lemma 2, for all s € S, we have
2(21 — 20, T5(2) — 1) = | Ts(2) — 201> = [|21 = 201> — | T (2) — 2]
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It follows that

21 = 20l|* = pslTe() = 20ll* = psl| To() = 21lf* = 2p1s (21 — 20, Ti (@) — 21)
< sl To(@) = 21l” = psl| T (@) — 211 = 2ps(21 = 20, Tu(2) — 21)
= —2u4(z1 — 20, Ts(x) — 21)
= —2u4(z1, Ts(x)) + 2(z1, 21) + 2pus {20, Ts(x)) — 2{20, 21)-

So, from (3.9) we get

llz1 — 20> < —2mus (21, Ts(2)) 4 2(21, 21) + 25 (20, Ts(2)) — 2(20, 21)
= —2(z1, 20) + 2(21, 21) + 2(20, 20) — 2(20, 21)

= —2(21 — 20,20 — 21)-

Hence, z1 = z9. Therefore

(eo{Tisz - t € S} F(S) = {Tpu(2)}.
Definition 3.8. Let C' be a nonempty subset of H and let S be a semitopological
semigroup. Let o = {as}ses be a net of real numbers in [0,1) and S = {T; : t € S}
be a continuous representation of S as mappings on C. Then, § is called an a-
nonexpansive semigroup on C' if

ITs(2) = Te@)II* < sl To(z) = yl* + aslle = Te@)I* + (1 = 2as) & = ylI?,

forall z,y € C and s € S.

Theorem 3.9. Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has a left invariant mean. If S = {T; : t € S} is an
a-nonexpansive semigroup on C. Then, the following statement are equivalent:

(i) {Tix : t € S} is bounded for some x € C,
(ii) {Tix :t € S} is bounded for every x € C,
(iii) F(S) # 0.
Proof. By taking & = F in Theorem 3 the proof is completed.
Theorem 3.10. Let C' be a closed convexr subset of H and S be a semitopological
semigroup such that C(S) has an invariant mean p. If S = {1} : t € S} is an a-
nonezpansive semigroup on C such that F(S) # 0, then, T, satisfies the following
properties:
(i) T, Ty =T,T, =T,, forallt €S,
(ii) T, ts a nonspreading retraction of C onto F(S), i.e., for all x,y € C,

2| Tu(@) = TP < |1 Tu(@) =yl + | Tuy) — 2l®,  and T3 =T,,

(iii) NyegCo{Tisw:t € S} F(S) = {Tu(x)}, for allz € C.
Proof. By taking S = F in Theorem 3 the proof is completed.
Definition 3.11. Let C be a nonempty subset of H. Let S be a semitopological

semigroup and S be a continuous representation of S as mappings on C. Then, § is
called:
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(1) r-firmly nonexpansive semigroup on C' if there exist a net r = {rs}scg of real
numbers in [0, 1) such that for all z,y € C and s € S,

1Ts(z) = Ta)ll < (1 =r)(@ = y) + rs(Ts(x) = Ts(y))]]-

(2) Nonspreading semigroup on C if for all z,y € C and s € S,

2| Ts(2) = To(y)|* < I Ts(2) = ylI* + [l — Tu(y)[I.
(3) Hybrid semigroup on C if for all ,y € C and s € S,

3| Ts(x) = Ts(w)[1* < 1 Ts(2) = ylI? + [l = To()[I” + llz -yl
(4) TJ-1-semigroup on C'if for all z,y € C and s € S,
2| Ts(2) = Ts(y)* < | Ts(2) = ylI* + [l — yl*.

(5) TJ-2-semigroup on C if for all z,y € C and s € S,

3| Ts(2) — Ts(y)||* < 2||Te(x) =yl + llz — T (y) ]|

Remark 3.12. By Remark 1, obviously, Theorem 3 and Theorem 3 are also true for
nonexpansive semigroup, r-firmly nonexpansive semigroup, nonspreading semigroup,
hybrid semigroup, T'J-1-semigroup and 7T'J-2-semigroup.

4. CONVERGENCE AND NONLINEAR ERGODIC THEOREMS

Theorem 4.1. Let C be a closed convex subset of H and S be a semitopological
semigroup with identity such that C(S) has an invariant mean u. Let S = {T; : t € S}
be an (a, F)-semigroup on C such that F(S) # 0. If {un} is a strongly asymptotically
invariant sequence of means on C(S) and for given x1 € C, {x,} is a sequence
generated by

Tp41l = QpTp + (1 - an)Tun (xn)v Vn € N;
where {a,} is a sequence of real numbers in [0,1] and liminf, . a,(1 — ay,) > 0.
Then, the sequence {x,} converges weakly to z € F(S) and z = lim,,_, oo Pz, where
P is the metric projection of H onto F(S).
Proof. By Lemma 3, F(S) = F(F). Let v € F(S). By Theorem 3, T}, (v) = v. Since
T,., is a nonspreading retraction, then 7}, is quasi-nonexpansive. Then for all n € N,
we have

[T, (zn) — 0|l < flzn —ol|. (4.1)
It follows that
[#nt1 = vl* = llanzn + (1 — an) Ty, (z0) — v|?
< apllen = vl + (1 = an)|| Ty, (22) — o|?
< apllz, — U”2 + (1 —an)llzn — UH2

= Jlan - ]2
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Therefore {||z,, — v||?} is a decreasing sequence of nonnegative real numbers and
therefore convergent. Hence, {x,} is bounded. So by Lemma 2, we have

[Zn41 = 0l* = [lanzn + (1 = @) Ty, (z0) — o|®
= agllzn — ol + (1 = an)l| T, (2a) — ol?
—an(l = an)|[Ty, (zn) — mnHQ
< anllag = v]* + (1= an)llzn = 0l* = an(l = an)| Ty, (x0) — 2nl®
= [lzn = v]|* = an (1 = @) [Ty, (2n) — z|*.
It follows that
(1 = @) [Ty (@) = @0ll2 < 2 = 02 = [2nss — ol
Since lim |z, — v||* exists and lim inf an(1 = ay) > 0, we have
i |17, () = all =0. (42)
Since {x,} is bounded, so there exists a subsequence {x,,} of {z,} such that z,, — z.
Now, by relation (4.2) we have
Ty, Ty — 2. (4.3)
From Lemma 2, for all y € C and s,t € S, we have
2Tstxn — fs(y),y — fs(y) — I fs(y) — y”2 = [|Tstzn — fS(y)||2 — | Tstn — yHQ'
By applying u,, to both sides of the recent equality, we have
2(un)e(Tot(xn) = f5(y),y = fy) = 1fs(v) — yII?
= ()t (| Tste(xn) = FsWI* = | Tse(wn) — yl?)
= ()t (| Tst(2n) = Fs)I?) = () e (| Tst () = y1I*)
Since p, is a left invariant mean, so we have
2(ptn)(Te(wn) = fs(y)sy = fs () — I fs(y) — ylI?
= ()e(ITe(@n) = Fs W) = (n)e (| Te(@n) =yl (4.4)
On the other hand since S is an (a, F)-semigroup on C, we have
| Tsewn — Fs@)I° < sl Ton — ylI* + as | Tewn — fo(y)|1?
+ (1 = 204) | Tewn — yl>.
Now, by applying u.,, to both sides of the recent inequality, we have
(tn)el| Tsewn — fs(y)||2 < as(pn )il Tstzn — y||2 + s (pn )il Tewn — fs(y>||2
+ (1= 204) ()| Tewn — y1*.
Since ., is a left invariant mean, we have
()i Tewn = FsWI* < as(pn) el Tewn = yl1* + s ()i T — fo(w)|1?
+ (1 = 20) (pn) e | Tewr, — yH2
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It follows that

()il Tizn = Fs@)I* < (n)el| Tezn =yl (4.5)
From (4.4) and (4.5), we can get

2Ty, (n) = fs(v),y — [ () = |1 fs(v) —ylI* < 0.
Using the last inequality and (4.3), we can get

2<Z — fsW)y — fs(v)) — Hfs(y) - y||2 <0.

Putting y = z, we have z € F(fs). Therefore z € F(F), so z € F(S). The rest of the
proof is similar to the proof of Theorem 3.1 from [4], so we omit it.

Example 4.2. Let S = ((0,4] U{1}) N Q. Since S is countable, it can be assumed
S = {to,t1---,}. Let to = 1 and C, S, F and « be as in Example 3 and T,z =
ftox = 1 for each € C. Obviously, S = {T; : t € S} is an (a, F)-semigroup on C
and F(S) # (). Suppose for given 21 € C, {z,,} be a sequence generated by:

n—1

1
Tng1 = Onn + (1= 6n) > Tyan, VneN,
k=0

where {4, } is a sequence of real numbers in [0, 1] and liminf ,,(1 — J,,) > 0. Then,
n—oo

{zn}52, converges weakly to z € F(S). For g = (4y, %1, , Tty, ...) € C(S), we define

1 n—1
pnl(g) =~ >
k=0

for all n € N. We first show that {u,}52, is an asymptotically invariant sequence of
means on C(S). It is obvious that for all n € N, p,, is linear. Also, we have

= =
(@) < = > o] < = gl = lgll
k=0 k=0
for all g € C(S). Hence, ||uy] < 1. Also, we have
n—1
doi=1,
k=0

hence ||| = pn(1) = 1, ie., p, is a mean. For g = (x4, %1, , Tt,, ...) € C(S) and
m € S, we have

pn(1) =

S|

1 n—1 1 n—1
b (9) — pin (rmg)| = n Z Lo = Z LTtiym
k=0 k=0
1 m—1 n+m—1
k=0 k=n

1
< —2m||g|| — 0, (n — o).
n
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Then, {p,} is asymptotically invariant. Furthermore, we have
=
(o) = o) = & ST = (3 ).
k=0

forall z € C and y € H. Hence T),, x = % i . Z. Finally, by using Theorem 4, z,,

converges weakly to z € F'(S) as n — o0.

Before proving Baillon’s nonlinear ergodic theorem, we need the following Lemma.
Lemma 4.3. Let C be a closed convex subset of H and let S be a semitopological
semigroup such that C(S) has an invariant mean. If S = {T; : t € S} is an (a, F)-
semigroup on C' such that F(S) # 0. Then, T\ =T, for both invariant means p and
A on C(S5).

Proof. By part (iii) of Theorem 3, the proof is completed.

Now, by using Theorem 3 and Lemma 4, we prove generalized Baillon’s nonlinear
ergodic theorem for the proposed semigroups.

Theorem 4.4. Let C be a closed convex subset of H and let S be a semitopological
semigroup with identity. Let S = {T; : t € S} be an («, F)-semigroup on C and
suppose F(S) # 0. If {patacr s a net of asymptotically invariant means on C(S),
then, {T,, x}acr converges weakly to a point xg € F(S), for all x € C. In this case,
putting Qx = xq for all x € C, then, Q is a nonspreading retraction of C onto F(S)
such that, QT; = T,Q = Q for allt € S and (), co{Tsx : s € S} F(S) = {Qx}, for
allz e C.

Proof. Since {ft facr is a net of means on C(S), it has a cluster point y in the weak*
topology on C(S)*. By Banach- Alaoglu Theorem, {y € C(S)* : u(1) = ||p|| = 1} is
compact in the weak* topology, it follows that p is a mean on C(S). Since {pq tacr
is a net of asymptotically invariant means on C(S), for any e > 0 there exists o € T
such that for all & € I and a = «ag, we have

€
1a(9) = pallsg)| < 5, Vg€ C(9), s €8,

Since p is a cluster point of {iq tacr, We can choose 5 > ag such that

1(9) ~ (@) < 5 and us(lag) — plleg)| < .
It follows that
l1(g) — ullsg)l < lulg) — ps(9)l + lns(g) — pe(lsg)| + lus(lsg) — p(lsg)|

<z+z+

Wl o
wl o
Wl

As € > 0 is arbitrary, we have

w(g) = u(lsg), VgeC(S),seS.

Similarly, we can show that

w(g) = u(rsg), VYge C(S),s€S.
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Hence p is an invariant mean on C(S). Now, Theorem 3 implies that T}, is a non-
spreading retraction of C onto F(S) and

(eo{Tua : s € SYF(S) = {Tu(x)}, VzecC. (4.6)

Let 2 € C. Since F(S) # 0, Theorem 3 implies that {T}(z) : t € S} is bounded in C.
On the other hand S has an identity element, so, from Theorem 3 we get

{T,.(x)}acr CCo{Ti(zx):t € S}.
Therefore {7}, (x)}aer is a bounded net in C and hence, there exists a sub net

{T#aﬁ () }per of {T,, (x)}acr converging weakly to some zo € C. If X is a cluster
point of {f1a,} in the weak™ topology, then A is a cluster point of {y}, too. So, A is
an invariant mean on C(S). From Ty, @ — 20, we also have M(Tix,y) = (zg,y) for
ally € H,ie., Thx = zg. Since T\ = T},, from Lemma 4, by putting @ = T},, we have
2o = Qx and hence T, x — Qz, and the proof is completed.

Theorem 4.5. Let C be a closed convex subset of H and let S be a semitopological
semigroup with identity such that C(S) has an invariant mean. Let S = {1} : t € S}
be an (a, F)-semigroup on C such that F(S) # 0. Let {un} be an asymptotically
invariant sequence of means on C(S). Let {a,} be a sequence of real numbers such

that 0 < o, < 1, o, — 0 and Z an = 00. Suppose that u € C and {x,} be a
sequence generated by x1 = x € C and
Tpt1 = apu+ (1 — )Ty, xn, YneN

Then, the sequence {x,} converges strongly to z € F(S) and z = lim,,_, o Px,, where
P is the metric projection of H onto F(S).
Proof. Let ¢ € F(S). As the proof of Theorem 4, we have

[Ty, an — all < llzn — 4. (4.7)
Therefore,

|Zns1 —qll = [Janu + (1 - an)Tunxn — ¢
< aplu—ql + (1 - an)||Tunxn —q|
< apllu—qf + (1 —an)llzn —ql|-

By mathematical induction, we have

[en — gll < max{|lu —ql, |21 — qll}

for all n € N. Thus {z,} is bounded. From (4.7), {T},,x,} is also bounded. Let
{Ty,, n; } be a subsequence of {71}, x,} such that T}, w,, — v for some v € C. As
the proof of Theorem 4, we have v € F(S). The rest of the proof is similar to the
proof of Theorem 4.1 from [4], so, we omit it.

Remark 4.6. By taking & = F, Theorem 4, Theorem 4 and Theorem 4 are true for
a-nonexpansive semigroup. Also by Remark 1, obviously Theorem 4, Theorem 4 and
Theorem 4 are true for nonexpansive semigroup, r-firmly nonexpansive semigroup,
nonspreading semigroup, hybrid semigroup, T'J-1-semigroup and 7'.J-2-semigroup.
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5. APPLICATIONS

In this section, by using Theorem 4 and Theorem 4 , we prove some famous theo-
rems in nonlinear ergodic theory.
Theorem 5.1. Let C' be a nonempty closed convex subset of H and T be an a-
nonezxpansive mapping on C such that F(T) # 0. Then, for all x € C,

n—1
1
Spr = — Tk;
z n;} T

converges weakly to some xo € F(T) as n — 0.
Proof. Let S ={0,1,2,...}. For g = (20, 21, 22, ...) € C(S), we define

1 n—1
Mn(g) = g kz_()zk;

for all n € N. Then, by [15], {u,}52; is an asymptotically invariant sequence of
means on C(S). Also,

n—1
1 k
Ty, x = Spx = - kZ_OT x.

Then, by using Theorem 4, S,z converges weakly to some zy € F(T) as n — 0.
This complete the proof.

Theorem 5.2. (Baillon’s nonlinear ergodic theorem [15]) Let C be a nonempty closed
convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into
itself such that F(T) # (0. Then, for all x € C,

1 n—1

Spr = — Try,
converges weakly to some xg € F(T) as n — 0.
Proof. Since every 0-nonexpansive mapping is a nonexpansive mapping. So, by using
Theorem 5, S,z converges weakly to some zg € F(T) as n — oo.
Remark 5.3. It is obvious that Theorem 5 is also true for nonspreading mappings,
hybrid mappings, TJ-1 mappings, TJ-2 mappings and r-firmly nonexpansive map-
pings.

Let C be a nonempty subset of H. Let S =Rt ={t € R: 0 <t < co}. Then a
family S = {S(t) : t € R*} of mappings of C into itself is called an one-parameter
a-nonexpansive semigroup on C' if § satisfies the following:

(1) S(t+ s)x = S(t)S(s)x, Vt,s €S and z€C}

(2) S(0)xz == vz € C;

(3) for all x € C, the mapping ¢ — S(t)z from R* into C is continuous;

(4) for all t € RT, S(¢) is a-nonexpansive mapping.
Similarly, we can define one-parameter nonexpansive semigroup (see [4]), one-
parameter nonspreading semigroup, one-parameter hybrid semigroup, one-parameter
TJ-1 semigroup, one-parameter TJ-2 semigroup and one-parameter r-firmly nonex-
pansive semigroup.
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Theorem 5.4. Let C be a closed convex subset of a Hilbert space H and let
S=1{S(t):teR"}

be an one-parameter a-nonexpansive semigroup on C such that F(S) # (0. Then, for
all x € C,

1
Sz = f/ S (t)xdt;
AJo

converges weakly to some xg € F(S) as A — 0.
Proof. Let S =R*T. For f € C(RT), we define

A
n=5 | s

for all 0 < A < 4o00. Then, {ux}r>o is an asymptotically invariant net of means
on C(RT) see, [15 Theorem 3.5.2]. Also, T,z = Sz = 5 fo t)zdt. Now, by

Theorem 4, 5 fo t)xdt converges weakly to some zg € F(S) as )\ — 00.
Theorem 5.5. [15 Theorem 3.5.2] Let C be a closed convex subset of H and

S={S(t):teR*"}

be a one-parameter nonexpansive semigroup on C such that F(S) # 0. Then, for all
zeC,

1 A
S)\Iif/ S(t)xdt;
AJo

converges weakly to some xg € F(S) as A — oo.

Proof. Since one-parameter 0-nonexpansive semigroup is an one-parameter nonex-

pansive semigroup. Hence by Theorem 5, the proof is completed.

Remark 5.6. It is obvious that Theorem 5 is also true for one-parameter nonspread-

ing semigroups, one-parameter hybrid semigroups, one-parameter TJ-1 semigroups,

one-parameter TJ-2 semigroups and one-parameter r-firmly nonexpansive semigroups.
The following theorem is concluded from Theorem 5 and Theorem 4.

Theorem 5.7. [12] Let C be a closed convex subset of H and S = {S(t) : t € RT} be

an one-parameter nonexpansive semigroup on C such that F(S) # 0. Let uw € C' and

for given z1 € C, {x,} be a sequence generated by

Tpt1 = Qptt+ ( )\ / S(t)zpdt,

where 0 < A\, < 400, A\, = 00, 0 < o, <1, anHOandZanfoo Then, the

n=1

sequence {x,} converges strongly to z € F(S), where z = Pp(s)(u).
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