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Abstract. In this paper, by applying the fixed point theorem of Krasnosel’skii, we prove the
existence and compactness of the set of solutions for a 2-order nonlinear integrodifferential equation
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1. INTRODUCTION

The integral and integrodifferential equations usually have attracted many inter-
ests of scientists, because these equations can be used to model many problems of
science and theoretical physics such as engineering, mechanic, electrostatics, popula-
tion dynamics, economics, and other fields of science. They occur in a natural way in
the description of many physical phenomena, for example, see the books written by
Corduneanu [5], Deimling [7].

In this paper, we consider the following nonlinear integrodifferential equation in N
variables

w(z) = ga)+ / K (2, y: u(y), D1 Dau(y), DsDyu(y))dy (L1)

+ / H(a y; u(y), Dy Dyuy), DaDyu(y))dy,
Q
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where (z1,--- ,on5) €Q=[0,1]N and g: Q — E, K, H: Q x Q x E> — E are given
functions, (E, ||-||z) is an arbitrary Banach space. Denote by

0%u 0%u
——, Di1Dsu =
8m18x2’ 12t 3x28x17

the 2-order partial derivatives with respect to the variables x1, zo of a function
u:Q)— F.

It is well known that many types of Eq. (1.1) are studied by many different
methods, in which the fixed point theorems are often applied, see [1]-[19] and the
references therein.

In [4], Bica et al. used Perov’s fixed point theorem to obtain the existence, the
uniqueness and the global approximation of the solution of the following neutral
Fredholm integro-differential equation

D2D1u =

b
2(t) = g(t) + / F(t, 5, 2(s), 27 ())ds, t € [a,b],

where E is an arbitrary Banach space, f € C([a,b] X [a,b]x EX E; E), g € C*([a,b]; E)
and f(-,s,u,v) € C([a,b]; E) for any s € [a,b], u,v € E. In the case E = R%
motivated by the results in [4], based on the application of the Banach fixed point
theorem coupled with a Bielecki-type norm and a certain integral inequality with
explicit estimates, B.G. Pachpatte [16] proved the uniqueness and other properties of
solutions of the following Fredholm type integrodifferential equation

b
x(t) = g(t) —l—/ f(t,s,z(s),2'(s), - ,w("_l)(s))ds, t € [a,b],

where x, g, f are real valued functions and n > 2 is an integer. By the same methods,
B. G. Pachpatte [17] studied the existence, the uniqueness and some basic properties
of solutions of the Fredholm type integral equation in two variables as the following

a b
u(z,y) = f(x,y)—i—/o /0 g (z,y, s, t,u(s,t), Diu(s,t), Dau(s,t)) dtds.

In [2], M.A. Abdou et al. considered the existence of an integrable solution of
a nonlinear integral equation of Hammerstein-Volterra type of the second kind by
using the technique of measure of weak noncompactness and the Schauder fixed point
theorem.

In [3], A. Aghajani et al. studied the Fredholm type integro-differential equation
in two variables of the form

b d
w(w,y) = flz,y) + / / 9 (2,95 t,u(s, 1), Dyu(s, t), Dou(s, 1)) dtds,

where g, f are given real valued functions, u is the unknown function to be found,
Diu(zy,22) = %(l’l,wg), 1 = 1,2. By using the concept of generalized metric and
Perov’s fixed point theorem, the authors in [3] proved some results on the existence,
the uniqueness, and the estimation of the solutions of the equation considered.
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In [11]-[13], by using tools of functional analysis and a fixed point theorem of
Krasnosel’skii type, the solvability and the asymptotic stability of nonlinear functional
integral equations in one variable, two variables, and N variables were investigated.

In [6], [8], [14], the fixed point theorems of Banach, Schauder and Krasnosel’skii
type were also applied to obtain the existence result. On the other hand, the sets
of solutions are compact (as in [6], [8]) or a continuum (i.e. nonempty, compact and
connected, as in [14]). Such a structure of the solutions set for differential equations
and integral equations have been studied by many authors, for examples, we refer to
[7], [9], [10], [15] and references therein.

Because of mathematical context, motivated by the above mentioned works, we
study the existence and compactness of the set of solutions for Eq. (1.1). This paper
is organized as follows. Section 2 is devoted to preliminaries, where we present the
definition of an appropriate Banach space (Lemma 2.1) and a sufficient condition for
relatively compact subsets (Lemma 2.2). In Section 3, by applying the fixed point
theorem of Krasnosel’skii, we prove the Theorem 3.1. It follows that the solution
set is nonempty. Furthermore, the solution set is compact. In order to illustrate the
results obtained here, in Section 4, we give an example.

2. PRELIMINARIES

First, we construct an appropriate Banach space for (1.1) as follows.
Let X = C(Q; E) be the space of all continuous functions from Q = [0,1]" into E
equipped with the usual norm

l[ull x = sup [[u(z)]| 5, veX. (2.1)
z€Q

Put
X1 = {U € X : Diu, Dou, DyDiu, D1Dsu € X} (22)

Remark 1. In order to solve Eq.(1.1), the space X; chosen as above is rather natural
and, in general, it is very efficient by the following properties.
(i) C*(%HE) S X1 S CHYE) if N =2
(i) X1 N CUQ B) Z 6, X\CHQ E) # 6, CHQ E\Xy # 6, if N > 3.
Indeed, let e; € E, ey # 0.
(i) Case N =2.
Proof of X1 & C'(Q; E). Consider u(x) = u(x1,z2) = ®(x1,22)e1, where

(21— 5) (w2 — 3)?

(= 32+ (22— 5)Y

x = (x1,22) € A

We have u € C*(Q; E), but u ¢ X, it is proved below. Note that

5, T = (21,12) € Q.
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Similarly
2w — 3)(x1 — 3)*
(21— 3)2 + (22 — 1))
it follows that Dou = (Dy®) e; € X. Therefore u € C1(Q; E).
On the other hand,

Dy®(z) = x = (x1,22) € £,

8(x1 — 5)* (22 — 3)°
(o1 = 92+ (2= 7]
it follows that there is no the limit 3 lim Dy D1 ®(x1,x2), which implies that

(m17r2)_>(%7%)
(DQqu)) €1 ¢ X. Thus u ¢ Xl.
Proof of C*(; E) G X;. Considering

Dng(I)(CCl,.’EQ) = T = ((El,(EQ) € Q,

3

172 1 1172 1
3 (zl - > e1, Dow(z) = 3 (:cg - 2) e1.
Moreover Dy Dyw(z) = D1 Dow(x) = 0, it follows that w € X;.
(ii) Case N > 3.

we have w € X1, but w ¢ C%(Q; E), it is proved below. We have:
Drw(w) =5 |o =5 > 57273
On the other hand, Dw(z) = z |zy — %|71/2 e1, which implies that D?w ¢ X. Thus
w ¢ C*E).
Proof of X1 NCY(Q; E) # ¢. It is obvious that C?(; E) € X1 N CYQ; E).
Proof of C1(Q; E)\X; # ¢. Consider

N
u(z) =u(zy, - ,on) = (@(xl,xg) + Zeﬂ“) er,
i=3
where the function ®(z,z2) as in (i), we have u € CY(Q; E), u ¢ X;.
Thus C1(Q; E)\ X1 # ¢.
Proof of X1\C(); E) # ¢. Considering
1132

1'175 +

1
x27§

u(z) =u(xy, - ,zN) = (

we have u € X1, u ¢ CY(Q; E). Thus X;\CY(Q; E) # ¢.
In particular, the space X; have the following useful property.
Lemma 2.1. X3 is a Banach space with the norm defined by

ullx, = llullx + [Drullx + | D2ull x + [|D2Drul x + [[D1Doul x , u € X1 (2.3)
Proof. Let {u,} C X1 be a Cauchy sequence in X1, it means that
Hup - uq”x1 = ”up - UqHX + HDlup - Dluq”x + ||D2up - DZUqHX
+ ||D2D1U,p — D2D1Uq||X —+ ||D1D2up — DnguqHX — 0 as P, g — Q.
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Then {u,}, {Diup}, {Daup}, {D2D1u,} and {D1Dauy} are also Cauchy sequences
in X.

Since X is complete, there exist u, v1, vo, V21, v12 € X such that

We shall show that Diu = vy, Dou = vg, Do Diu = vo1, D1 Dou = v1s.

We have

x1
up (w1, 22,2") — uy(0,22,2") = / Dyuy(s, xa, 2" )ds, V(xy,z2,2") € Q, (2.5)
0

where (and in what follows) 2’ = (z3,--- ,zn) € [0, 1]V 72
By [|up — ul|y — 0, we get

up (@1, 22, 7" )—uy (0, 22, 2") = u(z1, 22, 2")—u(0, 22,2") in E, V(z1,22,2") € Q. (2.6)

On the other hand, it follows from | Dyu, — v1]| — 0 that

T 1
/ Diuy(s, x2,2")ds —>/ v1(s, z2,2")ds, V(z1,22,2") € Q (2.7)
0 0

z1
< / | Drup (s, z2, ") — vi(s, x2,2") || ds
0

< ||D1up — UlHX — 0.

since

T 1
/ Diuy(s, 2, 2")ds 7/ v1(s, 22,2’ )ds
0 0

E

Combining (2.5)-(2.7) leads to
Ty
u(zy, e, 2’) —u(0,20,2") = / v1(s, z2,2")ds, V(z1,x2,2") € Q. (2.8)
0

It implies that Dyu = v; € X. Similarly Dou = v € X.
By the same argument, it follows from

xr2
Diuy(x1, 2, 2") — Dyuy(xq,0,2") = / Doy Dyuy (a1, t,2’)dt, ¥(z1,22,2") € Q,
0
and [|[DyDyuy — va1]| — 0, that
T2
Dyu(zy,z2,2") — Dyu(z1,0,2") :/ vo1(z1,t,2')dt, V(xq1,x0,2") € Q.
0

It implies that Dy Dyu = w91 € X. Similarly Dy Dou = v1 € X.

Therefore u € X; and up, — v in X;. Lemma 2.1 is proved. O
Next, for our purpose related to solving Eq.(1.1), it is very useful to propose a sufficient
condition for relatively compact subsets of X; as follows.
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Lemma 2.2. Let F C X;. Then F is relatively compact in Xy if and only if the
following conditions are satisfied

(i) Ve e Q, F(x) = {u(z) 1w € F}, D1F(x) = {D1u(z) : u € F},
Dy F(z) = {Dau(z) : uw € F}, DoaD1F(x) = {DaD1u(z) : uw € F},
and D1DoF(x) = {D1Dou(z) : u € F}, (2.9)
are relatively compact subsets of E;
(if) Ve > 0,30 > 0:Vz, 2 € Q, |v — F| < d = sup [u(z) —u(T)]s <e,
ueF

where

[w(@) —u(@)]. = |lu(z)—w@)| g+ |Diu(r) — Diu(@)|lp + [[D2u(z) — Dau(z)| 5
+[[D2D1u(x) — D2D1u(Z)|| g + || D1 D2u(z) — D1D2u()|| g -

Proof. (a) Let F be relatively compact in Xj.

First, we show that (2.9) (i) is true.

We begin by considering F(z) = {u(z) : uw € F}. To prove that F(z) is relatively
compact in FE, let {u,(z)} be a sequence in F(z), we show that {u,(z)} contains
a convergent subsequence in E. Because F is compact in X;, we have {up,} ¢ F
contains a convergent subsequence {uy, } in X;. Then, there exists u € X; such that

lup, — ullx, — 0as k — oo.

By [up, (2) = u(2)|| g < llup, —ully < llup, —ully, = 0. Hence up, (z) = u(z) in
E. Thus F(x) is relatively compact in E.
By the same argument, by

[D1up, () = Dru(@)| g < [|Drup, — Drully < lJup, —ullx, =0,

we have Dy F(z) is also relatively compact in E.
Similarly, we have also Dy F () is also relatively compact in E.
On the other hand, by

[D2D1up, (x) = Do Dru(z)|| g < |DaDiup, — DoDrullx < [lup, —ullx, =0,

it gives Do Dqup, (x) = Do Dyu(z) in E. Thus Dy D, F(x) is relatively compact in E.
Similarly, we have also Dy Do F () is also relatively compact in E.
It implies that (2.9) (i) is true.
Next, we show that (2.9) (ii) is also true.
For every € > 0, considering a collection of open balls in X; centered at u € F
g

with radius {, as the following

B(u, Z) —{ae X :u—ly, < z}, weF.

It is clear that F C |J B(u, 7). Because F is compact in X;, the open cover
ueF
U B(u, 5) of F contains a finite subcover and there are uy,---,uq € F such that
ueF
.7 C U?:l B(Uj, %)
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By the functions u;, Dyuj, Douj, DoDyuj, DiDouj, j = 1, ¢ are uniformly contin-
uous on 2, there exists § > 0 such that

Vo, 2 €Q, |o—7| <6 = [u;(z) — uy (7)) < g vj=T1q.

For all u € F, u € B(uy,, §) for some jo = 1,q. Thus, forall 2, z € Q, if [z — 2| <
then we obtain

(@) u(@)s < fe) i (@) + 30 ) — 5o (2] + [, (7) — w(a).
< 2wyl + i) — i@ < 24 S =

It implies that (2.9) (ii) is true.

(b) Conversely, let (2.9) be correct.

To prove that F is relatively compact in X7, let {u,} be a sequence in F, we show
that {u,} contains a convergent subsequence.

Put o = {u, : p € N}. By (2.9), Fo(z) = {up(x) : p € N} is a relatively compact
subset of F, for all x € Q and Fy is equicontinuous in X. Applying the Ascoli-Arzela
theorem to Fy, it is relatively compact in X, so there exists a subsequence {u,, } of
{up} and v € X such that

lup, —ully — 0as k — oco.

Similarly, 71 = {Diu,, : k € N} is also relatively compact in X. We obtain the
existence of a subsequence of {Dqu,, }, denoted by the same symbol, and v; € X such
that

| D1y, —vi]lx — 0 as k — oc.

Since
xr1
Upy (T) = up, (0, z2,2") = / Diuy, (s, 22,2 )ds, Vo = (21, 29,2") € Q,
0
furthermore, since [|up, —ully — 0 and |[Dyup, —v1]|y — 0, we obtain
z1
w(x) —u(0,z2,2') = / v1(s, xa, 2")ds, Vo = (z1,22,2") € Q.
0

It gives Diu =v; € X.
Similarly, Fo = {Dsu,, : k € N} is also relatively compact in X. We obtain the
existence of a subsequence of {Dyu,, }, denoted by the same symbol, such that

|| Doy, — Daully — 0 as k — oo.

By the same argument, by Fao1 = {D2Diu,, : k € N} is also relatively compact
in X, we obtain the existence of a subsequence of {DyDquy, }, denoted by the same
symbol, and v9; € X such that

| Do D1y, — va1]ly — 0 as k — oo.

Since

To
Diuy, (z) — Diuy, (z1,0,2") = / DyDyuy, (z1,t,2")dt, Vo = (z1,22,2") € Q,
0
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furthermore, since || Dyup, — Dyuly — 0 and [[DaDiuyp, — va1| — 0, we obtain
x2
Diu(z) — Dyu(z1,0,2") = / vo1(z1,t, 2")dt, Vo = (1, x2,2") € Q.
0
It gives Do Diu = v91 € X.

Similarly, by F12 = {D1Dsu,, : k € N} is also relatively compact in X. We obtain
the existence of a subsequence of {D1Dsuy, }, denoted by the same symbol, such that

HDngupk — D1D2U||X — 0 as k — oo.

Therefore u € X; and up, — u in X;. Lemma 2.2 is proved. 0
For convenient, we now recall the fixed point theorem of Krasnosel’skii in the
following.

Theorem 2.3. (see [5], [10]). Let B be a nonempty bounded closed conver subset of
a Banach space (X, ||-||). Suppose that U : B — X is a contraction and C : B — X s
a completely continuous operator such that U(xz)+ C(y) € B, Va,y € B. Then U+ C
has a fixzed point in B.

3. THE EXISTENCE AND COMPACTNESS OF THE SET OF SOLUTIONS

We make the following assumptions.
(A1) g€ Xy,
(A2) KeC(QxQxE*E)
such that DlK, DQK, DngK, D2D1K S C(Q x €) X E3;E),
and there exist nonnegative functions kg, k1, ko, ko1, k12 : © x @ — R with the
following properties
(1) HK(x,y;u,v,w) - K(x,y;ﬁ,z‘;,w)HE
< ko(z,y) ([lu—all g+ lv =0l g + [lw -0 ),
(11) ||DiK(J:,y;u,v,w) - DiK(J?,y;ﬂ,T},’J})HE
< ki(z,y) (v —allg + [lv =0l g + lw — @l ),
(iii) || D1 D2 K (2, y; u, v, w) — D1 D2 K (2, y; 4, 0,0)||
< ka(z,y) (lu —ullg + v =2l g + [w —wllg),
(iv) |D2D1 K (2, y; u,v,w) — DoD1 K (x,y; 4, U, 0)|
<kar(z,y) (Ju—allg + llv =0l g+ [w— ol g),
V(x,y) € Q x Q, Y(u,v,w), (4,v,w) € E>;
(A3) H € C(Q xQx E%E) such that
D1H,DyH,D1D2H, DD H € C(Q2 x Q x E3 E),
and there exist nonnegative functions hg, hi, ha, hot, hia : Q x Q — R with the
following properties
() [ H e,y 0,0l < hole,y) (1 + ull 5 + o]+ i)
() [1DaH (2,30, v, 0) g < halary) (4 [l + ol + [l ) 2 = 1.2,
(iif) | D1 D2 (2, y;u, v, w)|| g < haa(z,y) (1 + [lullg + [[oll g + [[wllg)
(iv) |D2D1 H(z, y;u,v,w)|| 5 < hor(@,y) (L+ [[ull g + vl 5 + wllg)
V(x,y) € Q x Q, V(u,v,w) € E3;
(A4) H,DlH,DgH,DngH,DngH Q) x QX% E3 — F
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are completely continuous such that for any bounded subset J of E2, for all € > 0,

there exists § > 0 satisfying
Ve, z€Q, |z —Z| <6

= [[H(z,y;u, v, w) — H(Z, y;u,v,w)||

+ | D1H (z, y; u,0,w) = D1 H(Z,y;u,0,w) | g

+ | D2H (2, y;u,v,w) — Do H (2, y;u,0,w)]||

+ | D1 Do H (2, y; u, v, w) — Dy Do H (Z, y; u, v, w)||

+||D2D1H (2, y;u, v, w) — DoD1H(Z,y;u,v,w)|| 5 < &,
Yy € Q, V(u,v,w) € J;

(A5) B7 + B3 < 1, where

2

Bt > sup ki@,y)dy +sup | ka(@,y)dy +sup | ko(e,y)dy,

=0 20 zeQ Ja zeQ Ja

B3 Zi Osup/ (,y) dy+sup/ han (z, y)dy+sup/ haa(,y)dy.
Q

=V zeQ z€Q TEQ

Theorem 3.1. Let the functions g, K, H in Eq. (1.1) satisfy the assumptions
(A1) — (A5). Then Eq. (1.1) has a solution in Xi. Furthermore, the set of solutions

18 compact.

Proof of Theorem 8.1. We rewrite (1.1) as follows
u(z) = (Au)(z),

where

(Au)(z) = ( )() (Cu)(z),

(UU)( )+ Jo K (z,y;u(y), DiDyu(y), D2 Dyu(y))dy,
(Cu)(x fQ (7, y;u(y), D1D2u(y), D2aDiu(y))dy,
T € Q u € Xy.

A simple verification shows that Uu, Cu € X1, Vu € X3.
For p > 0, we consider a closed ball in X; as follows

By ={ue Xi:|luly, <p}

We will show that there exists p > 0 such that
(t1) Uu+ Cv € B,, for every u, v € B,,
and the operators U, C satisfy the conditions (i) — (iv) below.

(ii) U : B, = X; is a contraction map,
(ili) C : B, — X is continuous,

(iv) F = C(B,) is relatively compact in X;.

(3.2)

(3.3)
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Proof of (i). Let p > 0. For every u € B,, for all z € ), we have

[(Tu)(@)| g < llg@)ll g + [ 1K (x,y;uly), D1D2u(y), D2Diu(y))|| g dy
<gllx + [ 1K (2,4;0,0,0)| 5 dy
+ fQ ||K($, Y; u(y), DlDQU(y)a DQDlu(y)) - K(fB, Y; 07 Oa O)HE dy
<llglx + fo 1K (2,4;0,0,0)|| ; dy (3.4)
+ Jo ko(@,y) (lu)l g + D1 D2u(y)| g + [ DaDru(y)ll g) dy
<llglx + [o 1K (2,4;0,0,0)|| z dy + [ull x, Jq ko(z,y)dy
<lgllx + Jo 1K (x,4;0,0,0)|| ; dy + p [o, ko(z,y)dy,
SO

Uulx < gl +sup [ 1KG3:0.0.0) g dy+ psup [ hale)s. (35)
zeQ JQ zeQJQ
On the other hand, for all z € (), we have
(Dr(Uw)(@) = Dig(e) + | DiK(@.ysu(u). DaDyu(s). DaDuls))dy.
Similarly, with Dy (Uu), Da(Uu), DaDy(Uuw), D1D2(Un), we get
[D1(Uu)|lx < [D1gllx +Sup/ [ D1K(2,y;0,0,0)| 5 dy+psup/ k1(z,y)dy, (3.6)
zeQ JQ zeQ JQ
[D2(Uu)llx < [[D2gllx + sup Jo ID2K (,930,0,0)| 5 dy + p sup Jo k2 (,y)dy,
S xe
[ D2D1(Uu)|lx < [|D2D1gll x + sup Jo ID2D1 K (2,30,0,0)|| 5 dy

+p sup Jo ka1 (x y)dy,
D1 D2(Uu)ly < ||D1D29||X + sup Jo ID1D2K (2,30,0,0)| 5 dy

+p sup [q, k12(x y)dy
e

(3.7)
From (3.5), (3.6) and (3.7), it gives
Uullx, <llgllx, + a1 +pBi, (3.8)
where
af = sup Jo 1K (2,9:0,0,0)|| 5 dy + Sug)Z Jo ID1K (2, 30,0,0)|| 5 dy
TE
+sup fQ | D2K (,930,0,0)|| 5 dy
(3.9)

+sup Jo ID2D1 K (2,45 0,0,0) |  dy + sup Jo ID1D2K (2,95 0,0,0)| & dy,
61 = Zz 0 SUD Jo ki, y)dy + sup Jo k'21 (z,y)dy + sup Jo kr2(z, y)dy.

On the other hand, for every v € B,, for all x € €2, we have

[(Cv) (@)l g < [ 1H (2, y;0(y), D1D2v(y), D2Div(y)) | 5 dy

< Joho(z,y) 1+ lv@)llg + D1 D2v(y)]l g + | D2Drov(y) | ) dy

< (T+llv)llx,) fo holz,y)dy (3.10)
<(1+p) sup Jo ho(z, y)dy.
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Thus

[Collx < (14 p) sup /Q oo, ) dy. (3.11)

Similarly, we have

[D1(Co)|lx < (14 p) sup Jo hi(z,y)dy,
[D2(Cv)|l 5 < (14 p) Sup fg ha(z, y)dy,

3.12
ID2DACOly < (14 ) up fo s (), (312
zeQ
[D1D:(Co)| x < (1+ p) sup Jo ha(z,y)dy.
It implies from (3.11) and (3.12) that
1Cv]lx, < (1+p) B3, (3.13)

where

2 —
By = o sup/ (z,y) dy+sup/ ho1(x, y)dy+sup/ hia(z,y)dy.  (3.14)
g Q

e EASY) €N
From (3.8) and (3.13), we obtain
10w+ Collx, < gllx, + a7 + B2 + (B + 52) p- (3.15)
lgllx, +ai + 55
1=p1 =55

Proof of (ii). In view of (A2), U : B, — X is a contraction map, if we show that

Choose p > , then Uu + Cv € B, for every u, v € B,.

[Uu—Uv|x, <B7llu—2ly,, Yu,v € B, (3.16)
For every u, v € B, for all x € Q, using (A2,1), (3.2) leads to
u)(z) — (Uv)(2)| g

/ 5,95 uly), Dy Dauly), DaDyu(y))~ K (2,5 v(y), Dy Davly), DaDro(y))l s dy
< [ koG pllu(s) = v@)lls + 1D Do) = Dr Do)
+ [D2D1u(y) — D2 D1v(y)|| gldy
< Ju= vl sup | bola )
Thus

U= Urlly < u=vlx, sup [ Fo(e.g)dy (3.17)
S
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Similarly, we also have
D1 (V) = DU < llu =l sup i b o).
I1D2(Un) = DaU) | < llu =l sup i ba(o ).
|DaD1(Uu) — DaD1(Uv)|| x < |lu— vy, sup Jq ka1 (z,y)dy,
|D1D2(Uu) — D1 D2 (Uv)|| x < [lu— vy, sup Jo Frz(z,y)dy.

(3.18)

From (3.17) and (3.18), obviously, (3.16) holds.
Proof of (iii). To prove (iii), let {un} C By, uo € By, [[um — uol|x, — 0, as m — oo,
we have to prove that

|Cup, — Cuollx — 0,

[D1(Cum) = D1(Cuo)| x — 0,

| D2(Cr,) — Da(Cug)l| x — 0, (3.19)
||D2D1(C'um) — D2D1(O’LL0)||X — 07

||D1D2(C’um) — DlDQ(CUO)”X — 0.

Remark that
[(Cum ) (@) — (Cuo) (@) 5

S fQ HH(.’K, Y; um(y)a D1D2um(y); D2D1um(y)) (320)
—H (x,y;u0(y), D1D2uo(y), D2D1uo(y))||2dy.

Put
St ={un(y) :y€eQ, m=0,1,2,---},
Sy ={D1Dstun(y) :y €Q, m=0,1,2,---}, (3.21)
S3 ={DaD1un(y) :y €Q, m=0,1,2,---}.
We prove that Si, Sz, S3 are compact in £, because of [um — uollx, — 0.
(j) S1 is compact in E.
Indeed, let {u,(y;)}; be a sequence in ;. We can assume that jlggo y; = yo and

_]li>nolo H“mj — uOHX1 = 0. We have

(|t (43) = w0 (Wo)|| p < ||wm, (w5) — wo(y)]| 5 + luo(ys) — o (yo)ll (3.22)

<, —uol| ., + [[uo(y;) — uo(yo)llz — 0 as j — oo, '

which shows that lim u,,,(y;) = uo(yo) in E. This means that S; is compact in E.
j—o0

(jj) Similarly Ss, S5 are also compact in E.
For given € > 0, since H is uniformly continuous on 2 x  x S x Sy x S3, there
exists § > 0 such that

V(u,v,w), (4,0,@) € S1x8x 83, |u—ilg+|v—0lp+w-wlg<s
= ||H(z,y;u,v,w)—H(z,y;0,0,0)| 5 <e, Y(z,y) € Qx Q.
We have ||u,, —uol|y — 0, ||D1Datty, — D1Dougl|y — 0 and

||D2D1um — D2D1UO||X — O7
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so with § > 0 as above, there exists mg € N such that, Ym € N, if m > mg then it
gives
||um — UO”X + ||D1D2’U,m — D1D2UO||X -+ ||D2D1Um — D2D1U0HX < 0.
It implies that there exists mg € N as above such that Vm € N, if m > mg then the
following inequality is fulfilled
HH(.’IJ, Y; Um<y), DIDQU/m(y)a D2Dlum(y)) _H($7 Y; U’O(y)7 D1D2U0(y>7 DQD]_UO(:U)) ||E
<e, Y(z,y)e QxN.
Consequently
[(Cum)(z) = (Cuo)(@)||p < € Vo € Q, Ym = my.

It means that

|Ctir, — Cug|| x < € Ym > my, (3.23)

ie., [|Cup — Cupl|x — 0 as m — oo.
By the same argument, we obtain that

[D1(Cum) — D1(Cuo)| x — 0,
[ D2(Cim) — D2(Cuo)| x — 0,
||D1D2(C’um) — DlDQ(CUQ)”X — O7
|D2D1(Ctmn) — D2 D1(Cug)l|y — 0, as m — oo.
The continuity of C' is proved.
Proof of (iv). To prove (iv), we use Lemma 2.2.
The condition (2.9) (i) holds, i.e., the sets
C(B )(x) = {Cu(z) : u € By},
C(By)(x) = {D1(Cu)(x) : uw € By},
20(By)(x) = {D2(Cu)(x) : u € By}, (3.25)
D1D2C( p)(@) ={D1D>(Cu)(x) : u € By},
and Dy D1C ( p)( )— {Dng(CU)( ) u e Bp},

are relatively compact in F.
Indeed, put

(3.24)

Ry ={u(y) 1y €Q, ue B,},
Ry ={D:1Dsu(y) :y € Q, u € B,}, (3.26)
R3 ={DyDyu(y) :y € Q, u € B,}.

Then R, Rs, R3 are bounded in E.

Since H : Q x Q x E3 — E is completely continuous, H (2 x Q x Ry X Ry x R3)
is relatively compact in E. It implies that H (Q x X Ry X Ry X R3) is compact in
E. Sois conv (H (2 x Q X Ry X Ry x R3)), where conv (H (2 x Q x Ry X Ry X R3))
is the convex closure of H (2 x  x Ry X Ry X R3).

For every x € Q, for all u € B,,, it follows from

H(J:,y,u(y),Dngu(y),Dngu(y)) € H(Q X € x Rl X R2 X RS)a Vy € 97 (327>
that

C(B,)(x) |9 comw (H (2 x Q x Ry x Ry x R3))
=

2
H (2 xQx Ry X Ry X Rg)). (3.28)
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Hence, the set C(B,)(x) is relatively compact in E.
Similarly,

D.C(B,)(z) C conv (D1H (2 x Q x Ry X Ry X Rg)),
DQC(Bp)(J}) C W(DQH (Q X Q) X Ry X Ry X R3)),
DlDQC(Bp)({L‘) C m(DlDQH (Q x Q) x Ry x Ry X Rj)),
DngC(B,,)(x) C W(DngH (Q X QX Ry X Ry x Rg)) .

Hence the sets D1C(B,)(x), D2C(B,)(x), D1D2C(B,)(x), Do D1C(B,)(x) are rela-
tively compact in F.

The condition (2.9) (ii) also holds.

Indeed, let € > 0 be given. By (Ay4), there exists §; > 0 such that Vz, T € Q, if
|z — Z| < §1 then

(3.29)

[H(l'v Yy u, v, w) - H(.’E, Yy u, v, U))]*
= ||H(z,y;u,v,w) — H(Z,y;u,v,w)| g
+ || D1 H (x, y;u,v,w) — D1 H(Z, y; u,v,w)|| 5
+||D2H(x,y;u,v,w) _DQH(j7y;u7an)”E (330)
+||D2D1 H (2, y; uy v, w) — DoaDyH(Z, y3u,v,w)|| g
+ ||D1D2H(.T, ysu,v, U)) - DlDZH(f7 yiu,v, w) ”E
<e, Vy € Q7 V(U,U,U}) S R1 X R2 X Rg.
Hence
[(Cu)(z) — (Cu)(@)].
< JolH (2, y;u(y), D1Dau(y), DaDyu(y)) — H(Z, y; u(y), D1 Dau(y), D2 Diu(y))].dy
<e.
(3.31)
Using Lemma 2.2, it implies that 7 = C(B,) is relatively compact in X;.
Applying the Krasnosel’skii fixed point theorem (Theorem 2.3), the existence of a
solution for (1.1) is proved.
Now, we show that the set of solutions for (1.1),

S={ue B,:u=Au},

is compact in X;.
It is clear that

S={ueB,:u=Uu+Cu}={u€B,:u=(-U)""Cu}, (3.32)

so S=(I-U)"tC(9).

Therefore, from the compactness of the operator C' : B, — B, and the continuity
of (I —U)~': B, — B,, we only show that S is closed.

Let {um} C S, u€ Xy, |[um — ullx, = 0. The continuity of (I —U)~'C leads to

|lu— (- U)_lCuHX1 < lu—umllx, + (|t — (I — U)_lCuHX1

= l[u = uml x, + [|(T = U) 7 Ctpyy = (I = U)"1Cuf| ., =0, (3.33)

sou= (I —U)"'Cu € S. Theorem 3.1 is proved. O
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4. AN EXAMPLE

In this section, we illustrate the results obtained in Section 3 by the following
example.

Let E = C([0,1]; R) be the Banach space of all continuous functions v : [0,1] = R
equipped with the norm

vl = sup |v(t)], veEE. (4.1)
0<t<1

Let X = C(£2; E) be the space of all continuous functions from Q = [0, 1] x [0, 1] into
E equipped with the following norm

[ully = sup [lu(z)|lp, veX. (4.2)
zeQ
Put
X1 ={u € X : Dyu, Dou, DyDyu, DiDyu € X}. (4.3)
Then, for all u € X; and = € Q, u(x) is an element of E and we denote
u(z)(t) = u(z;t), 0 <t <1. (4.4)

Remark that C*(Q; E) & X1 & C'(Q; E). We consider (1.1) with the functions K,
H:QxQx E*— E, g:Q— E, as the following
(i) Function K : Q x Q x B3 - FE

(z,y;u,v,w) — K(z,y;u,v,w),
K 5,0, 0)(1) = (1) [ (1) sin (5205 (4.5)
(y192)° cos ey ) + (wi92) cos ()|

0<t<1, (2,y5u,v,w) € Qx N x E3 with

k 90 Q—>E )
k(i) = e (’xl—7‘71+}x2—§|72+e“+‘"”2),Ogtgl,er, (4.6)
Oo(z;t) = (|x1 — 5’71 + |x2 — %Pz + e“*“) ,0<t <1,z e,

where a1, a9, as, 71, V2, 91, Y2 are positive constants, with v1, v2, 41, 72 € (1, 2).
(ii) Function H : Q x Q x E3 - F

(z,y;u,v,w) — H(z,y;u,v,w),
H(z,y;u,v,w)(t)

B (s 1/3
= h(x;t) [(yly2)a1 Jo d3+ (192)% [ (W) ds
1/5
o)™ Iy (525 d‘”}vOStsL(sc,y;u,v,w)eﬂxﬂxE:”,

(4.7)

u(s
0o (y;s)

with
h:Q— F,

h(]},t) = e—t (‘1’1 _ iryl 4 ’.’1,'2 _ %"72 + 63?1"1‘:82) , 0 S t S 17 = Q’ (48)

where as, as, 71, 72 are positive constants, with 31, 72 € (1, 2).
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(ii) Function g : Q@ — E,

. . 3 k(x3t) h(w;t)
glwst) =bo@it) = > (8 + 1% ), 0<t< 1 ze @ (49)
The above positive constants aq, asg, asz, a1, &, as, 1, Y2, Y1, Yo satisfying

4me (2 + Y1 + Y2 + Se ) Ez 1 (1+1al) (4.10)
+e1/2(2+’71+’72+56)2?1(1+a)2<1 |

We now prove that (A;), (Az) hold.

It is obvious that (A1) holds by 6y, k, h € X;.

Assumption (Asz) holds, it is proved below.

First, we show that K Q2 x Q2 x B> — E is continuous. For all (z,y;u, v, w),

;1)] [(ylyz) sin (%) + (y132)2 cos (Df#ff()yt))

o Arw(t
+(y112)* cos (Wg@w }

k(@) ()™ [sin (g ) — sin ()|
TR ) [(192)* — (152) ) sin (55500 ) (4.1)
+k(2; 1) (y1y2)*2 {COS (leﬂ;f()y t)) cos (D fi;’éﬁ?y t))}
+k(2:1) [(y192)*2 — (192)?] cos (le;;zgt()y t)>
s o R e
k(Z: 1) [(y192)** — (5172)] COS( ‘};’Z“éo(y,t)
We have

Oo(x;t) = e (|:c1 — %Pl + |1’2 — l|’y2 + e“*“) ,
D16y(z;t) = et (71 |m1 — %‘7172 (;Ul — 7) + eIl‘”‘?) , (4.12)
DoD10o(x5t) = D1Dafg(z5t) = e te®1 22 0 <t <1, z €1,
so 6y, D1 D20y, D2D16y € X and 6y(x;t) > }, D1 Dy0y(z;t) > }, Dy D1 6y(z;t) > 1
it follows that ¢ ¢

@

[ s, 0, w) (1) = K (2, 37,5, @) 1)

< 3[k(@) — k(&) + k(@) | [sin (g7 ) —sin (a7t )|

e [ (yry2)® = (152)* | (4.13)
+ k(@) 5 ‘cos (#ﬁt&,;t)) — cos (Df#&;;t))‘

i |(n92)°* = (@172)
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F k@) 5 [(y192)** — (5152)"|

K@)

3 . Ny
< 3[k@) — k@) + M@ Y 10)™ — i)™
T u(t) u(t) ’
+= |[k(Z -
2 1K@l Oo(y;t)  Bo(y;t)
_ v(t) o(t) ‘
+27 ||k(Z — —
1K@l D1Dyby(y;t)  D1D26o(7;t)
~ w(t) w(t) ‘
+47 ||k(Z - — .
1@l DyD10o(y;t)  DaD16o(y;t)
We have
u(t) _a(t) | _ | [u@®)—ua()]0o(g;t)+u(t)[0o (F5t) —0o (ys;t)]
Oo(yst)  0o(st) 0o (y;t)00 (73t)
< e [100(@)l [ — all; + ll; 160 (@) — o(v) ] (4.14)
< e [[16ollx, llu—allg + llall g [160(7) — Oo(y) 5] -
Similarly
o(t) _ B(t)
D1 D36 (yst) D1 D260 (%;t)
< ez [I1D1D200(9)| g lv — 0|l g + [|9]| g | D1D260(7) — D1D200(y)|| ]
< e [[|6ollx, llv = o[l g + 18]l g 1D1 D200(5) — D1D26o(y) |l ] » (4.15)
w(t) o(t) :
’D2D1‘90(y§t) o D2D190(Z7;t)‘
< ez [1D2D160(y)| g |w — @l g + ||| g [[D2D160(§) — D2D16o(y) || ]
< e [[|6olly, llw =@ 5+ [[@]l g [|D2D160(5) — DaD16o(y)l ] -
This gives
HK(I, yiu, v, ’LU) - K(ja ga 1_1‘7 1_}7 ?)“E
<3 ||2k(93) — k@) g+ Ikl x, 251 [(1y2)* — (§152)*|
e _ _ _
+5 1kl x, [[16ollx, lu—allg + llall g [160() — 6oy £]
+27e? ||kl x, [I6ollx, llv = ol g + 9]l & | D1 D260 (5) — D1Dabo(y)l ]
+ame? |kl x, 0ol x, llw— ?D||E3+ @]l [|1D2D160(3) — D2 D166 (y) |l 5]
=3[k(x) = k(@) g + [kl x, 2i=1 [(W1y2)* — (5192)* (4.16)

1 _ _ )
+me? [kl [00llx, |5 llu—allg +2]v = ollp + 4w -l

1 _ _
+ome? [[kllx, 1l 190(7) = Oo(y)]l
+2me? ||kl x, [19]l g | D1D260(7) — D1Dabo(y)ll
+Ane? ||kl ., 1@ [|D2D100(7) — D2D16o(y) | 5 -
and the continuity of K is proved.
Similarly, we also have D1 K, DoK, DiDoK, DoD1K : Q x Q x E? — E are
continuous.
Next, the assumption (As, (i), (ii), (¢i1), (iv)) is true by the following,.
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For all (z,y;u,v,w), (z,y;u,0,w) € A x QA x B3, 0<t <1,
|K(z,y;u,v,w)(t) - K(iﬂ,y;ﬂ,’l—}, w)(t”
< s s () s (%)

+k(z;t)(y1y2)*? |cos % — cos Df#ﬁ()y;t)
a : 4rw(t A (t
+I€(It)(yly2) 3 |cos Wﬁg‘/@ — COS W%E()y;t)
«a u(t a(t
(mat)(ylyQ) ! 90((%)” - 90(('!;;)t)

v(t) o(t)
+27rk(:c,t)( Yy2)*? D1D20o(y;t)  D1D20o(yst) (4.17)

w(t w(t
Ak (2:6) (1152)** | 5B — DDy oD
< *k( i 0 (y1y2)® u(t) — a(t)| + 2mek(x; t) (y1y2)*? Ju(t) — 0(1)]
+47T6/€( 1) (y1y2)® |w(t) —w(t)]
S 3 k(@) 5 (1y2)2 1w — all 5 + 2me k(@) 5 (Wry2)°2 [Jv — 5]
+ame ||k(z)| g (ylyz)% lw —wl 5

< dme k()] p S0, (y1y2)™ |

lu—1tllp+[lv =2+ [w— g
Hence
||K(x,y; u7v7w) - K(‘T7y; fL?’Dvw)”E < ko(l’,y) [”u - a“E‘ + HU - EHE + ”w - wHE] )

(4.18)
in which

3
Fo(w,y) = dme k(@) Y (1y2)™ (4.19)
Similarly, because of
DiK(x7 y;u, v, T,U)(t)
DzDgK(x»y»Uaan)(t>

Dik(x; 6) Ky (2, y; u,v,w)(t), i =1,2;
D¢Djk‘(.7;;t)K1(.T,y;u7v,w)(t), (17]) € {(172)’ (2, 1)};

where

Ky (z, g3 u,0,w)(t) = [(ylyz) sin (200(55)0) F (4192)° cos <%) (4.20)
4rw(t) >:| '

+(Y1y2)** cos (m

we have

|D; K (x,y; u,v,w) — D; K(x,y; @, 0,0)|

< ki(@,y) [lu —allg + [lv =0l g + [lw — @] 5],

|DiD; K (z,y;u,v,w) — D;D; K (x,y;4,0,0)| 5

< kij(xvy) [Hu - ﬂHE + ”U - ’EHE + ||w - wHE] ) (Za.]) € {(17 2)’ (2a 1)}7
with

ki(x7y) = dme ||D1k( )”E Zz 1(5391:92) Li=1,2, (422)
kij(:ﬂay) = 4me HDZD k( )”E Zz:l(ylyQ)aiv (Z,]) € {(172)3 (27 1)}
Thus, assumption (As) holds.

Assumption (As) also holds, the proof is as below.
Indeed, we first show that H : Q x Q x E3 — E is continuous.

(4.21)
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H(x,y;u,v,w)(t) -

= (hast) — (@ )] [@m o ft

)1/3 ds

g

1/2

v(s)
D1 D260 (y;s)

+(y1y2)*? fot (
)

+h(Z; 1) (7172) J (

yl yz

u(s)
D)

'U
D1D290(y7 )

+h(2; ) (§152)™ |, (

+h(T;5t) [(y1y2) ™ — ] [y

(

_w(s)
D2 D10o(y;s)

By

it follows that

||H($7y;u7v7w) — 11(Z,Y; U, 0, w
)l [fo (o)

< (=) Bolu:s)

— (1192
1/2

@) g [(y1y2)*

u(s) u(s)

1
ds—!—fo ‘Dl

)2 for

1/2
ds

u(s)
0o (y3s)

w(s)

& t
+ (11y2)* [, (m

1/2
ds

1/2
) ds

)1/3 ds

)1/3 ds

'U
D1D29o(y75)

)1/5 ds

_ w(s)
D2D100(y;9)

u(s)
0o (y;s)

u(s)
0o (7;s)

'U
D1D290 Y3$)

v(s)
D1 D260 (y;s)

1/3 (
D2D190 (yss)

s (o
o (o
)
o (o
)" - (ke

v(s)
D200 (y;s)

1
+Io |5

1/2
ds

0o (y;s)
1/2
ds

_ 1
@ e fo o] — |7ore

FR@) g | (9192)% = (G252)72] fy

v(s)

1/3
+ ”h D1D290(y;s))

2)ls Jo

(

-

)

1/3

‘ » v(s) ds

D260 (y;s)

o(s) )1/3
D1 D260 (y;s)

, DaD10y(z; 5)

1/3

ds

ds

)1/3‘

)1/5'

w(s)
D100 (y;s)

)1/5 ds]

(4.23)

ds

v
m\)—l

1/5
ds}

(4.24)
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( ) 1/5
+|1R(@) | 5 | (y192)** = (F152)" 7D2D190( ] ds
+[|h(@)| /1 (w(s))l/s <_())1/5 ds
E Jo |\ D2D16o(y; s) D3yD16y(y; s)
< h(@) = h@)lg [ Tullf + e ol + e/ o7
Al [B1y2)™ = G52)% | e Jul )
1 1/2 _ 1/2
il [ 72 wls) |7 g
Yo 16o(yss)|  60(7;s)
Bl [@192)% = @152)%2 | €2 (o]l
iy, [ (”(5) ) () s
1 /o D1 D20 (y; s) D1 D50y(5; )
+ Bl | 1y2)% = G52)% | e/ w1
L e
X1 0 D5 D10y(y; s) D5 D100(y; s)
< 2 [Jullif? + ol + ol ]
3 _ __a |
W) = @l 10, 357 1 ne)™ — ™|
1 1/2 _ 1/2
il [ 72 wls) |7 g
o {160(y;s) 00(7; s)
whal, [ (5o )1/3 (5o )1/3 d
v O )
X D1 D50 (y; s) D1 D20y (5; s)
+lbl, [ 1 ((5’ )1/5 ((5> )1/5 ds
1 Jo D5 D10y(y; s) D5 D100(7; s)

Ri 4+ Ry + R3 + Ry.

We estimate the terms on the right - hand side of (4.24) as follows.
Estimating R;. It is easy to see that

Ry = e"2(||ull f* + |loll 3 + ||wu”5>
x([B(x) = B(@)| 5 + 7]l 5, S5

—0,as |z —Z|+|g—y| —= 0.

11 (W1y2)® = (9192)

Estimating Rs. We have
u(s) a(s) | _ | [8o(#;8) =00 (yss)]u(s)+00(y;s)[u(s)—

6o (y;s) — Bolw;s) | — 00(y;s)8o(Tss)
e [160(7) — bW & lull g + 160l , lu

a(s)]

O_zi)

(4.25)

(4.26)
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Applying the following inequalities

lla|* = [ < la—b]* Va,b € R, Vg € (0,1],
(a+0b)? <a?+b?Va,b>0,Yq € (0,1],

we obtain
u(s) |72 als) 7P e e V2
fo(y: ) bo(gis)| |~ 1Po0e) ~ Bolie)
_ _ 1/2
< e[1160(5) — 80(®) s lull  + 180llx, l1u — 7| ]
_ 2 1/2 2 — 2
< e {160(@) — BoI5 Inull 3 + 1160137 Ilu — )
Thus
1/2 _ 1/2
|| _uls) a(s)
Bo=lxdo o~ ol |*

_ 1/2 1/2 1/2 —n1/2
< ellnlx, [1196(@) — Bl Iullf + 160l llu — al}f*] — 0

as | =yl + lu—ul g — 0.
Estimating Rs. Similarly
v(s) _ (s)
Dy D20o(y;s)  D1D20o(7;s)
< e® [|D1D200 () — D1D2bo(y) | IVl 5 + 160l x, lv — 9]l ] -

Applying the following inequalities
‘|a|q*1 a—[p|7" b‘ < 21=4]q — b|? Ya,be R, Vg € (0,1],
(a+b)? <a?+b?Va,b>0, Vg€ (0,1],
we obtain
o(s) 1/3 5(s) 1/3
(DlDQGQ(y;S)) - (DlDQG()(g;S))

v(s)
D1 D260 (y;s)

—2/3 ( o(s) )
D1 D260 (y;s)

—2/3 (s) (s
(DlDzeo(y;s)) N ‘DlDzeo(y;s)
1/3

2/3 v(s) o(s)
S 2 / ’Dngeo(y;S) - DlDQQO(Q;S)

< 2%/3¢2/3 [HDIDZGO@) — D1 D200(y)|| HUHE + HQOHX1 v — 77||E]

1/3

< 22/362/3 [|| Dy Dafo () — D1 Dabo(w) 1 ol* + 1601 llo = o113°] -

It implies that

1/3 _ 1/3
_ 1 v(s) v(s)
R3 - ||hHX1 fO <D1D290(y;s)> - (D1D290(§;5)> ds

627

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

_ 1/3 1/3 3 — 3
< 223¢2/3 ||, [1D1D200(5) — D1 Dao)IL 1oll3 + 160137 1o — w13%| = 0,

as | —y| + [lv — vl g = 0.

(4.33)
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Estimating Ry. Similarly

< 245625 ||, [I1D2D160(5) — DaD1bo(w)1}” lwllif” + 1817 I — all}f” |
—0, as|ly—y|+ ||lw—w|z—0.

ds

(4.34)
It follows from (4.25), (4.29), (4.33), (4.34) that

| H (, y; u, v, w) — H(Z,5; 4, 0,0)|| 5 < Z R; — 0, (4.35)

as |t — Z|+ g —y| + |lu— 1| g+ ||v — || p + ||w — @| ; = 0, and the continuity of H
is proved.

Similarly, we also have D1H, DoH, DiDyH, D;D1H : Q x Q x E2 — E are
continuous.

Now, (As, (1), (1), (i), (iv)) holds by the following.

Applying the inequality a? < 1+ a Va > 0, Vq € (0, 1], we obtain

|H (@, 5w, v,w) (1)
A 1 A 1
< 0@l [(rv2) e ) u(s)] /2 ds + (yrye)®2e /2 [ fos)[? ds
F(yry2)% eV [y ()] ds]

< 2 |h(@)ll g [(y;yg)é‘l (1 + lull ) + (11y2)®2 (1 + [[v|lg) + (y1y2)®® (1 + [|Jwl z)]
<& |h(@)llp Sy (rp2)* (U ull g + ol + el

(4.36)
It leads to
1H (2, y; u,v,w) || 5 < holz,y) (1 + [lull g + vl + [[wll ), (4.37)
in which
_ 3 _
— 1/2 (673
ho(z,y) = 2 (@)l Y. ()™ (4.38)
Similarly,
IDuH (g, v, )| < Fal,y) U+ ully + ol + el ), i = 1,2,
|DiDjH (z,y; u,v,w)|| g < hij(z,y) (1+ [lullg + vl + Hw”E)v (4.39)
(4,5) € {(1,2), (2, 1)}
where
hua,y) = 2 D@l Ly (o)™, i =12 (0
hij(x,y) = 2| DiDjh(z)l| g 3o (v1y2)™, (i) € {(1,2), (2,1)}.
We have

Jo ko, y)dy < 4me (2 + 62) 233:1 m;
Jo Ki xydy<47re(’y,+e )Z:z 1(1+a e =12% (4.41)
Jo Kij(z,y)dy < 4me? ZZ ) 1+a = (i,5) € {(1,2), (2,1)};
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7 3
Jo holz, y)dy < e'/? (2+€2) 37, 7(1_&%)2;
o hilm, y)dy < /2 (3, +€2) 0, (14;1 =12 (4.42)
3
fQ ij x,y)dy S 65/2 Zi:l m7 (Z7j) € {(172)a (25 1)}

It is easy to see that

2

B = > sup | Ki(@y)dy +sup | ko (@, y)dy +sup | kia(e,y)dy
=0 2c0 zeQ Jq zeQ Ja

3
A 1
< 4re (2""}/1 +")/2+5€ )Zli a2’
* 2 - —

By = > sup [ hi(xz,y)dy+sup h21 (z,y)dy +sup | hia(x,y)dy

=0 zc0 Jo zeQ zeQ Jo

IN

(247 + 32 +56%) Y i

Hence
By + B3 <47re(2+71+72+56 )Zz 1ﬁ

Vet o \ (4.43)
+e (2+71+72+5€)Zz 1(1+a)2<1

Thus, assumption (A4s) holds. Assumption (A4) also holds, the proof is as below.
(a) Prove H : Q x Q x E® — E is completely continuous.

By H € C(Q x Q x E3; E), we have to prove that H : Q x Q x E3 — E is compact.
Let B be bounded in 2 x 2 x E3. We have

1H (2, 30,0, w) || p < ho(@,y) (1 + [lullg + vl g + [lwlp)

< sup  ho(z,y) 1+ lullg + ol g + [[wll )
(2. psu0,w0)EB oE F (4.44)

<32 |hllx,  sup (14 ullg +lvlg + wllg) = M.
(z,y;u,0,w)EB

for all (x,y;u,v,w) € B, which implies that H(B) is uniformly bounded in E.
For all ¢, ¢ € [0,1], for all (x,y;u,v,w) € B, put

2 o [t v(s) /3
ds + (y1y2)*? fo (m) ds

~ a, t| _u(s) Y
i (ys, o)) = ()™ o |74

- . 1/5
+(y2)* o (#O)(y;s)) ds,
(4.45)
we have

|H (x,y; u,v,w)(t) — H(z,y;u,v,w)(t)]
_ ‘h(x;t)H(y; u,v,vi)(t) = ha; ) H (y; u, v, w)(1) (4.46)
< [h(est) - A(e DAy 0,0, 0)0)

(s B[ H (y; u, 0, w) (1) — H(y; u, 0,w) ()]
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On the other hand
h(a; )] < (2+€%);
|h(a;t) — bz D)] < (2+€) [t =1

Iy I 1/2 1/3 1/5 I
[ (50, 0,0) () = 30,0, 0) B)] < /2 (Jull i/ + ol + ol ) 16— 11

[ (w0, w)(®)] < V2 (lull? + ol + ] ).
(4.47)
Thus
|H(x7y;u,v,w)(t) - H(%y;u,v,w)(m
<2 (2+e2) e/ (lul? + ol + wlf*) 1t (4.48)
< Clt -1 for all (z,y;u,v,w) € Band t, t € [0,1].
Consequently, H(B) is equicontinuous.
(b) Similarly, we also have D1H, DoH, DiDoH, DoD1H @ Q x Q x E> — E are
completely continuous.
(c) Finally, for all bounded subset J of E3, for all € > 0, there exists § > 0 such that

Ve, z€Q, |z —z| <d = ||H(z,y;u,v,w) — H(Z,y;u,v,w)| 5
+ ”DlH(‘Ta Yy, u,, ’LU) - DlH(a_jv Yy u,v, w)”E
+ || D2H (z,y; u,v,w) — Do H(Z, y;u,0,w)| g
+||D1D2H (2, y; u, v, w) — D1 Do H(Z, y; u, v, w)||
+||D2D1H (2, y; u,v,w) — DoDyH(Z,y;u, v, w)|| 5 <&,
Yy € Q,V(u,v,w) € J.
(4.49)
Indeed, we get the above property since

|H(z,y;u,v,w) — H(Z, y; u,v,w)|| 5

+ || D1 H(z,y;u,v,w) — D1 H(Z, y; u, v, w)||

+||D2H (z,y; u,v,w) — Do H(Z, y; u, v, w)|| g

+||D1 Do H (z, y; u, v, w) — D1 Do H(Z, y;u,v,w)|| g

+ ||D2D1H($7 y,u, v, w) - D2D1H(ja ysu,v, w)”E

< e/ (Il + ol + lli®) [ 1A@) = (@)l

+[[D1h(z) — D1h(Z)| 5 + | D2h(x) — D2h(Z)]|

+[|D1D2h(x) — D1Dah(2)|| p + [[D2Dih(z) — D2 D1h(Z)| 5 |

< C|Mz) = @)l g + [ID1h(x) — D1h(Z)|| g + || D2h(z) — D2h(Z)]| 5

+ [|D1D2h(z) — D1Dah(Z)||  + [[D2Dih(z) — D2 D1h(Z)| ]
Yy € Q, Y(u,v,w) € J, Vo, T € Q, where h, Dih, Dyh, D1Dsh, DoD1h : Q — E are
uniformly continuous on 2.

The assumptions from Theorem 3.1 are fulfilled and we see that 6, € X; is a
solution of the corresponding integral equation (1.1). O

(4.50)
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