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1. Introduction

This article is devoted to solve (via fixed point methods) the problem

x(t) =

n∏
i=1

Hix(t)

in general Banach spaces need not be Banach algebras, where Hi, i = 1, · · · , n are
general known operators.

The existing results of such kinds of problems were discussed on Banach algebras
([18]). This method leads to some extra restrictive assumptions on the growth of stud-
ied operators. We exceed these difficulties by considering two cases. First, when the
operators are contractions concerning to some measures of noncompactness. Second,
at least one of the studied operators should be a contraction concerning the measure
of uniform integrability c, which is a general condition.

In particular, we apply our fixed points in finding the solutions to the equation

x(t) =

n∏
i=1

(
gi(t) + λi ·

∫ b

a

Ki(t, s)fi(s, x(s)) ds

)
, t ∈ [a, b] (1.1)
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in some ideal spaces such as Lebesgue spaces Lp, 1 ≤ p <∞ and Orlicz spaces whose
generating functions satisfy ∆2-condition ([1, 9, 11, 12, 21, 23] for some particular
cases).

It is worth noting that, for n = 2, equation (1.1) arises in the study of the spread
of an infectious disease that does not induce permanent immunity ([6, 17]). In [22]
the authors discussed the existence and uniqueness of a continuous solution to the
following integral equation

x(t) =

n∏
i=1

(
gi(t) +

∫ t

a

Ki(t, s, x(s)) ds

)
, t ∈ [a, b]

and the existence of integrable solution was studied in [5] for the equation

x(t) = f(t, x(t)) +

n∏
i=1

fi

(
t,

∫ t

a

Ki(t, s, x(s)) ds

)
, t > 0.

This article is motivated by extending the previous studies by proving some fixed
point theorems for the product of n-operators in arbitrary Banach spaces and apply
such results to discuss the solvability of equation (1.1) in ideal spaces (Orlicz spaces
and Lebesgue spaces).

2. Notation and auxiliary facts

Let R be the field of real numbers, R+ = [0,∞), and I = [a, b] ⊂ R.
We will recall some concepts of ideal spaces (or: Köthe function spaces).

Definition 2.1. [25] A normed space (X, ‖ · ‖) of (classes of) measurable functions
x : I → U (U is a normed space) is called pre-ideal if for each x ∈ X and each
measurable y : I → U the relation |y(s)| ≤ |x(s)| (for almost all s ∈ I) implies y ∈ X
and ‖y‖ ≤ ‖x‖. If X is also complete, it is called an ideal space.

Remark 2.2. An ideal normed space X is called regular if all singletons in X have
equicontinuous norm, i.e. limδ→0 supmeasD≤δ ‖x · χD‖ = 0, where χD is the charac-
teristic function of a measurable set D.

Remark 2.3. The Lebesgue spaces, the Orlicz spaces, or the Lorentz spaces (with
suitable norms) are examples of regular ideal spaces. While the space of continuous
functions C(I) is not ideal, although it is a closed subspace of an ideal space ([24]).

Next, we will present some concepts of an important example of ideal spaces namely
Orlicz spaces ([19]).

A continuous, convex function, M : R→ R+, is called N -function if it is even and

if it satisfies both limu→0
M(u)
u = 0 and limu→∞

M(u)
u =∞.

Equivalently, M is N -function if and only if it takes the form

M(u) =

∫ |u|
0

p(t) dt, ∀u ∈ R,

where p : R+ → R+ is a nondecreasing, right-continuous function and positive for
t > 0, which satisfies the conditions p(0) = 0, limt→∞ p(t) =∞.
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If q : R+ → R+ be the right-inverse of p, that is, if q(s) = sup{t : p(t) ≤ s}, ∀s ∈
R+, then N : R→ R+ given by N(v) =

∫ |v|
0

q(s) ds, ∀v ∈ R, is also N -function, and
M and N are called mutually complementary.

The Orlicz class, denoted by OM , contains measurable functions x : I → R for
which

ρ(x;M) =

∫
I

M(x(t))dt <∞.

Denote by LM (I) the Orlicz space of all measurable functions x : I → R for which

‖x‖M = inf
ε>0

{∫
I

M

(
x(s)

ε

)
ds ≤ 1

}
.

Let EM (I) be the closure in LM (I) of the set of all bounded functions. Moreover,
EM spaces be a class of functions from LM having absolutely continuous norms.

Note that EM ⊆ LM ⊆ OM . The inclusion LM ⊂ LP holds if, and only if, there
exists positive constants u0 and a such that P (u) ≤ aM(u) for u ≥ u0.

Moreover, we have EM = LM = OM if M satisfies the ∆2-condition, i.e.

Definition 2.4. [19] The N -function M is said to satisfy ∆2-condition if there exist
ω, t0 ≥ 0 such that for t ≥ t0, we have M(2t) ≤ ωM(t).

The N -function M(u) = expu2 − 1 satisfies this condition, while the function
M(u) = exp |u| − |u| − 1 does not.

Definition 2.5. [19] Assume that a function f : I ×R → R satisfies Carathéodory
conditions i.e. it is measurable in t for any x ∈ R and continuous in x for almost
all t ∈ I. Then to every function x(t) being measurable on I we may assign the
function

Ff (x)(t) = f(t, x(t)), t ∈ I.

The operator Ff in such a way is called the superposition operator generated by the
function f .

Lemma 2.6. [19, Theorem 17.6] Assume that a function f : I × R → R satisfies
Carathéodory conditions. The superposition operator Ff maps EM1

(I) → LM2
(I) =

EM2
(I) is continuous and bounded if and only if

|f(s, x)| ≤ a(s) + bM−12

(
M1(x)

)
,

where b ≥ 0 and a ∈ EM2
(I) in which the N-function M2(x) satisfies the ∆2-condition.

We will say that a set T in an ideal space E is compact in measure if it is compact in
the topology of convergence in measure, i.e. as a subset of the space of all measurable
functions L0(I) (see [15, 8]).

Lemma 2.7. [10] Assume, that a bounded set U is a subset of the regular ideal space
E of real-valued functions over a bounded interval I such that all the functions from
U are a.e. monotonic. Then this set is compact in measure in the space E.

For Orlicz spaces LM (I) we have the following:
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Lemma 2.8. [11] Let X be a bounded subset of LM (I). Assume that, there is a family
of subsets (Ωc)0≤c≤b−a of the interval I such that meas Ωc = c for every c ∈ [0, b−a],
and for every x ∈ X,

x(t1) ≥ x(t2), (t1 ∈ Ωc, t2 6∈ Ωc).

Then X is compact in measure in LM (I).

Lemma 2.9. [20, Theorem 6.2] The operator K0x(t) =
∫
I
K(t, s)x(s) ds preserves

the monotonicity of functions if and only if∫ l

0

K(t1, s) ds ≥
∫ l

0

K(t2, s) ds

for t1 < t2, t1, t2 ∈ I and for any l ∈ I.

For the product of n-operators in Orlicz spaces, we have the following theorem:

Lemma 2.10. [16, Theorem 2.1] Let n ≥ 2. If ϕ and ϕi are arbitrary N -functions
for i = 1, 2, · · ·n, then the following statements are equivalent:

(1) For every ui ∈ Lϕi
(I), then

∏n
i=1 ui ∈ Lϕ(I).

(2) There exists a constant k > 0 such that∥∥∥∥ n∏
i=1

ui

∥∥∥∥
ϕ

≤ k
n∏
i=1

‖ui‖ϕi
,

for every ui ∈ Lϕi(I), i = 1, 2, · · ·n.
(3) There exists a constant C > 0 such that

n∏
i=1

ϕ−1i (t) ≤ Cϕ−1(t)

for every t ≥ 0.
(4) There exists a constant C > 0 such that for all ti ≥ 0, i = 1, · · ·n,

ϕ

(∏n
i=1 ti
C

)
≤

m∑
i=1

ϕi(ti).

The Lebesgue spaces Lp(I) can be treated as Orlicz spaces LMp
(I) with N -function

Mp = tp

p , which satisfies the ∆2-condition. Further, Lp(I), 1 ≤ p < ∞ represent a

regular ideal space and we have the following corollary.

Corollary 2.11. [7, 16] Let n ≥ 2. If 1 ≤ p, pi < ∞ for i = 1, · · · , n, then the
following statements are equivalent:

(1)
∑n
i=1

1
pi

= 1
p .

(2)
∥∥∏n

i=1 ui
∥∥
p
≤
∏n
i=1 ‖ui‖pi for every ui ∈ Lpi(I), i = 1, · · · , n.

(3) For every ui ∈ Lpi(I), then
∏n
i=1 ui ∈ Lp(I).
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3. Measure of noncompactness

Assume that (E, ‖ · ‖) be arbitrary Banach spaces with zero element θ. Denote by
Br the closed ball with radius r and centered at θ. The symbol Br(E) is to point
out the space. Moreover, byME we denote the family of all nonempty and bounded
subsets of the Banach space E and by NE its subfamily consisting of all relatively
compact subsets. If X ⊂ E, then X̄ and convX indicate the closure and convex
closure of X, respectively.

Definition 3.1. [3] A mapping µ :ME ⇐⇒ [0, ∞) is called a measure of noncom-
pactness in E if it satisfies:
(i) µ(X) = 0 ⇒ X ∈ NE .
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(iii) µ(X̄) = µ(convX) = µ(X).
(iv) µ(λX) = |λ| µ(X), for λ ∈ R.
(v) µ(X + Y ) ≤ µ(X) + µ(Y ).
(vi) µ(X

⋃
Y ) = max{µ(X), µ(Y )}.

(vii) If Xl is a sequence of nonempty, bounded, closed subsets of E such that
Xl+1 ⊂ Xl, l = 1, 2, 3, · · · , and liml→∞ µ(Xl) = 0, then the set X∞ =

⋂∞
l=1 Xl

is nonempty.

The kernel of the measure µ i.e. ”ker µ” is the family of sets A with µ(A) = 0.
Let us give an example:

Definition 3.2. [3] The Hausdorff measure of noncompactness βH(X) is defined as
follows

βH(X) = inf{r > 0 : there exists a finite subset Y of E such that X ⊂ Y + Br },
where X is an arbitrary nonempty and bounded subset of E.

Let c denote the measure of uniform integrability of the set X in an ideal function
space E on the compact interval I (introduced in [2], see also [25, Definition 3.9] or
[14]):

c(X) = lim sup
ε→0

sup
mesD≤ε

sup
x∈X
‖x · χD‖E , (3.1)

where χD denotes the characteristic function of a measurable subset D ⊂ I.

Proposition 3.3. [14, Theorem 1] Let X be a nonempty, bounded, and compact in
measure subset of an ideal regular space E. Then

βH(X) = c(X).

Theorem 3.4. [3] Let Q be a nonempty, bounded, closed, and convex subset of E and
let V : Q → Q be a continuous transformation which is a contraction concerning to
the measure of noncompactness µ, i.e. there exists k ∈ [0, 1) such that

µ(V (X)) ≤ kµ(X),

for any nonempty subset X of E. Then V has at least one fixed point in the set Q
and the set FixV of all fixed points of V satisfies µ(FixV ) = 0.
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Definition 3.5. [4, 18] Let µ be a measure of noncompactness in E. We say that µ
satisfies condition (m) if

µE(N1N2) ≤ ‖N2‖ · µE1
(N1) + ‖N1‖ · µE2

(N2), N1 ⊂ E1, N2 ⊂ E2.

This definition was extended to n-product of operators as follows:

Definition 3.6. [18] Let µ be a measure of noncompactness in E satisfying condition
(m). Let {Ni}i=1,...,n be a finite sequence in ME , n ≥ 2. Then

µE

( n∏
i=1

Ni

)
≤

n∑
i=1

n∏
j=1,j 6=i

‖Nj‖ · µEi(Ni). (3.2)

4. Main results

First we prove some fixed points for product of n-operators. Let us consider appro-
priate types of measures of noncompactness µE on E, µEi

on Ei, i = 1, · · ·n satisfying
the axioms from Definition 3.1, where E,Ei, i = 1, · · ·n are arbitrary Banach spaces
not necessary Banach algebras. We will assume, that the internal operators have
values in some intermediate spaces Ei, i = 1, · · ·n and then the product will return
to the target space E.

4.1. Fixed point theorems. We discuss the existence of fixed point x ∈ Q of the
problem

x = Hx =

n∏
i=1

Hix, (4.1)

for Q 6= φ and Hi : Q→ Ei, i = 1, · · · , n, n ≥ 1 are given operators.
We have the following fixed point results.

Theorem 4.1. Let E,Ei, i = 1, · · ·n be Banach spaces. Assume that Q is nonempty,
bounded, closed, and convex subset of the Banach space E. Moreover, assume that
the operators Hi : E → Ei, i = 1, · · ·n and that:

(A1): Hi transforms continuously the set Q into Qi ⊂ Ei and HiQ is bounded
in Ei, for i = 1, · · ·n.

(A2): HQ ⊂ Q, where H =
∏n
i=1Hi.

(A3): There exists a constant k such that for arbitrary xi ∈ Ei, the product∏n
i=1 xi ∈ E and ∥∥∥∥ n∏

i=1

xi

∥∥∥∥
E

≤ k
n∏
i=1

‖xi‖Ei
.

(A4): There exist constants ki > 0 such that Hi satisfies the inequality:

µEi
(Hi(U)) ≤ ki µE(U), i = 1, · · ·n

for arbitrary bounded subset U of E,
(A5):

∑n
i=1 ki

∏n
j=1,j 6=i ‖HjQ‖Ej < 1.

Then problem 4.1 has at least one solution in Q and that the set of all fixed points of
H i.e. Fix H is relatively compact in E.
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Proof. First, since the operators Hi : E → Ei for i = 1, · · ·n, then by using assump-
tion (A3) and Lemma 2.10, we have that the operator H =

∏n
i=1Hi : E → E.

Moreover, by assumptions (A1) and (A2), the operator H : Q→ Q is bounded.
Let (xk) be an arbitrary sequence in Q convergent to x ∈ Q, then we have

‖H(xk) − H(x)‖E =

∥∥∥∥ n∏
i=1

Hi(xk) −
n∏
i=1

Hix

∥∥∥∥
E

≤
∥∥∥∥H1(xk) · · ·Hn(xk) − H1(xk) · · ·Hn−1(xk)Hnx

∥∥∥∥
E

+

∥∥∥∥H1(xk) · · ·Hn−1(xk)Hnx − H1(xk) · · ·Hn−2(xk)Hn−1xHnx

∥∥∥∥
E

+ · · · +

∥∥∥∥H1(xk)H2x · · ·Hnx − H1xH2x · · ·Hnx

∥∥∥∥
E

≤ k
n−1∏
i=1

‖Hi(xk)‖Ei
‖Hn(xk) − Hnx‖En

+ k

n−2∏
i=1

‖Hi(xk)‖Ei
‖Hnx‖En

‖Hn−1(xk) − Hn−1x‖En−1

+ · · · + k

n∏
i=2

‖Hix‖Ei
‖H1(xk) − H1x‖E1

.

From our assumptions, it follows that H is sequentially continuous, so it is continuous
from Q into E.
Now, we will investigate the contraction property for the measure of noncompactness
µE(X).
Assume that φ 6= X ⊂ Q and fix an arbitrary ε > 0, we have

µE(HX) = µE

( n∏
i=1

HiX

)

≤
n∑
i=1

n∏
j=1,j 6=i

‖HjX‖Ej
µEi

(HiX)

≤
n∑
i=1

ki

n∏
j=1,j 6=i

‖HjX‖EjµE(X)

≤
( n∑
i=1

ki

n∏
j=1,j 6=i

‖HjQ‖Ej

)
µE(X).

Then we can apply Theorem 3.4. It follows that µE(FixH) = 0, hence, FixH is
relatively compact. This accomplishes the proof. �

Remark 4.2. (1): If n = 1, then Theorem 4.1 is reduced to Theorem 3.4.
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(2): If n = 2, these results reduced to the results introduced in [4] in Banach
algebras i.e. E = E1 = E2 = C(I) = C(I,R) (k = 1) (see also [13], for
instance).

(3): If n = 2, these results reduced to the results introduced in [10, 8] for
arbitrary Banach spaces E,E1, E2 need not be Banach algebra.

(4): If n = 1, · · · , n, n ≥ 2, these results were discussed in [18] in the case of
Banach algebra E = Ei = C(I,R).

Next, we generalize the above theorem by assuming that at least one of the studied
operators is a contraction concerning the measure of uniform integrability c as in
definition (3.1).

Theorem 4.3. Let E, Ei, i = 1, · · · , n, be regular ideal spaces. Assume that Q
is nonempty, bounded, closed, convex and compact in measure subset of E, and the
operators Hi : E → Ei, i = 1, · · · , n, and that:

(B1): Hi transforms continuously the set Q into Qi ⊂ Ei and HiQ is bounded
in Ei, i = 1, · · · , n.

(B2): HQ ⊂ Q, where H =
∏n
i=1Hi.

(B3): There exists a constant k such that for arbitrary xi ∈ Ei, the product∏n
i=1 xi ∈ E and ∥∥∥∥ n∏

i=1

xi

∥∥∥∥
E

≤ k
n∏
i=1

‖xi‖Ei .

(B4): There exist constants ki > 0 such that Hi satisfies the inequality:

cEi(Hi(U)) ≤ ki cE(U), i = 1, · · · , n
for arbitrary bounded U ⊂ E.

(B5): k · kn
∏n−1
i=1 ki · ri < 1, r > 0.

Then there exists at least one fixed point for the operator H in the set Q and the set
of all fixed points of H, i.e. Fix H is relatively compact in E.

Proof. It is obvious that by assumption (B3) the operator H is well defined and by
assumptions (B1), (B2) it maps Q into itself.

The proof of the continuity of H is as in Theorem 4.1.
Now, we will investigate the contraction property for the measure of noncompact-

ness cE(X).
Assume that φ 6= X ⊂ Q and fix an arbitrary ε > 0. Then for any x ∈ X and for a
set D ⊂ I, measD ≤ ε we obtain

‖(Hx) · χD‖E =

∥∥∥∥ n∏
i=1

(Hix) · χD
∥∥∥∥
E

≤ k
n∏
i=1

‖(Hix) · χD‖Ei
.

Since for any non-negative real-valued functions f =
∏n
i=1 fi, we have supI f ≤∏n

i=1 supI fi, by definition of c(x) and by taking the supremum over all x ∈ X and
all measurable subsets D with measD ≤ ε we get

sup
measD≤ε

sup
x∈X
‖H(x) · χD‖E ≤ k ·

n∏
i=1

sup
measD≤ε

sup
x∈X
‖(Hix) · χD‖Ei

.
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Therefore,

cE(HX) ≤ k ·
n∏
i=1

cEi
(HiX) ≤

(
k ·

n∏
i=1

ki

)
cnE(X).

As in [25, p. 66], for any x ∈ X, we have

‖xχD‖E ≤ ‖x‖E · ‖χD‖∞ = ‖x‖E ≤ r, r > 0,

then we have

cE(HX) ≤
(
k · kn

n−1∏
i=1

ki · ri
)
cE(X).

Recall that under our assumptions, the operator H maps set Q being compact in
measure into itself. Because φ 6= X ⊂ Q is a nonempty, bounded and compact in
measure subset of the regular ideal space E, we can use Proposition 3.3 and then

βH(HX) ≤
(
k · kn

n−1∏
i=1

ki · ri
)
βH(X).

The inequality obtained above together with the properties of the operator H and
the set Q established before, allow us to apply Theorem 3.4. This accomplishes the
proof. �

4.2. Applications to n-product of Hammerstein integral equations. In this
section we will discuss the existence of solutions of equation (1.1) in Lp(I), 1 ≤ p <∞
and in Orlicz spaces when their generating functions satisfy ∆2-conditions i.e. in
(regular ideal spaces).

Rewrite equation (1.1) in the form

x(t) = Hx(t) =

n∏
i=1

Hix(t),

where

Hi(x) = gi(t) + λi ·Ai(x) and Ai(x)(t) =

∫ b

a

Ki(t, s)fi(s, x(s)) ds.

We shall stress on the assumptions of the considered functions to nominate the inter-
mediate spaces, in which our results are in the target spaces Lϕ(I) or Lp(I).

4.2.1. The case of Orlicz spaces. We will characterize the case, which permits us to
get more general growth conditions on the studied functions.

Theorem 4.4. Let i = 1, · · ·n, and assume, that ϕ,ϕi, are N -functions and that
Mi and Ni are complementary N -functions. Moreover, put the following set of as-
sumptions:

(N1) There exists a constant k > 0 such that for vi ∈ Lϕi
(I), i = 1, · · · , n, we

have ‖
∏n
i=1 vi‖ϕ ≤ k

∏n
i=1 ‖vi‖ϕi

.
(C1) gi ∈ Eϕi

(I), i = 1, · · · , n, are a.e. nondecreasing on I,
(C2) fi : I×R → R satisfy Carathéodory conditions and fi(t, x), i = 1, · · · , n, are

assumed to be nondecreasing with respect to both variables t and x separately,
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(C3) |fi(t, x)| ≤ bi(t) + diN
−1
i

(
ϕ
(
x
))

for t ∈ I and x ∈ R, where bi ∈ ENi(I) and

di ≥ 0 in which the N-functions Ni(x) satisfy the ∆2-condition for
i = 1, · · · , n.

(K1) s → Ki(t, s) ∈ LMi
(I) for a.e. t ∈ I and pi(t) = ‖Ki(t, ·)‖Mi

∈ Eϕi
(I),

i = 1, · · · , n.

(K2)
∫ b
a
Ki(t1, s) ds ≥

∫ b
a
Ki(t2, s) ds, i = 1, · · · , n, for t1, t2 ∈ [a, b] with t1 < t2.

(K3) Assume that for some qi > 0, there exists r > 0 on the interval I such that

k

n∏
i=1

∫
I

ϕi

(
|gi(t)|+ qi · |pi(t)|

(
‖bi‖Ni + di · r

))
dt ≤ r.

If
∏n
i=1

(
di|λi| · ‖pi‖ϕi

)
< 1

krn−1 , then there exist numbers ρi > 0 such that for all

λi ∈ R with |λi| < ρi, i = 1, · · · , n, there exists a solution x ∈ Eϕ(I) of (1.1) which
is a.e. nondecreasing on I.

Proof. Step I. Let i = 1, · · · , n. Assumptions (C2), (C3) and Lemma 2.6 imply
that the operators Ffi map continuously B1(Eϕ(I))→ ENi(I). The operators Ai are
continuous mappings from the unit ball B1(Eϕ(I)) into Eϕi

(I) by using [19, Lemma
16.3 and Theorem 16.3] (with M1 = Ni,M2 = ϕi and N1 = Mi). By assumption (C1)
the operators Hi : B1(Eϕ(I)) → Eϕi

(I) are continuous. Finally, by assumption
(N1) we can deduce that the operator H : B1(Eϕ(I)) → Eϕ(I) is continuous.

Step II. We will construct an invariant set V ⊂ B1(Eϕ(I)) for the operator H is
bounded in Lϕ(I).

Fix λi ∈ R with |λi| < ρi and let ρi = supQ, where Q is the set of all positive
numbers qi for which there exists r > 0 such that

k

n∏
i=1

∫
I

ϕi

(
|gi(t)|+ qi · |pi(t)|

(
‖bi‖Ni + di · r

))
dt ≤ r.

Let V denote the closure of the set {x ∈ Eϕ(I) :
∫ b
a
ϕ(|x(s)|) ds ≤ r − 1}. Clearly V

is not a ball in Eϕ(I), but V ⊂ Br(Eϕ(I)) ([19, p. 222]). Notice that V is a bounded
closed and convex subset of Eϕ(I).

Take an arbitrary x ∈ V . By using ([19, Theorem 10.5 with k = 1]), we obtain
that for any t ∈ I ∥∥∥∥N−1i (

ϕ (|x|)
)∥∥∥∥
Ni

≤ 1 +

∫ b

a

ϕ (|x(s)|) ds (4.2)

and then by the Hölder inequality and our assumptions we get

|Ai(x)(t)| ≤ |pi(t)|
(
‖bi‖Ni

+ di

∥∥∥∥N−1i (
ϕ(|x|)

)∥∥∥∥
Ni

)
.
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Thus for any measurable subset T of I. For arbitrary x ∈ V and t ∈ I, we have

|Hi(x)(t)| ≤ |gi(t)|+ |λi| · |Ai(x)(t)|

≤ |gi(t)|+ |λi| · |pi(t)|
(
‖bi‖Ni

+ di

∥∥∥∥N−1i (
ϕ(|x|)

)∥∥∥∥
Ni

)
≤ |gi(t)|+ |λi| · |pi(t)|

(
‖bi‖Ni + di + di

∫ b

a

ϕ (|x(s)|) ds
)

≤ |gi(t)|+ |λi| · |pi(t)|
(
‖bi‖Ni

+ di + di(r − 1)

)
.

Therefore, by using assumption (N1) and see also [16], we have∫
I

ϕ
(
H(x)(t)

)
dt ≤ k

n∏
i=1

∫
I

ϕi
(
Hi(x)(t)

)
dt ≤ k

n∏
i=1

∫
I

ϕi

(
|gi(t)|

+ |λi| · |pi(t)|
(
‖bi‖Ni

+ di · r
))

dt.

By the definition of r we get
∫
I
ϕ(H(x)(t)) dt ≤ r and then H(V ) ⊂ V . Consequently

H(V ) ⊂ H(V ) ⊂ V = V , which implies H : V → V is continuous on V ⊂ Br(Eϕ(I)).

Step III. Let Qr stands for the subset of V consisting of all functions which are
a.e. nondecreasing on I. Similarly as claimed in [9] this set is nonempty, bounded,
convex and closed set in Lϕ(I). Moreover, in view of Lemma 2.8 the set Qr is compact
in measure.

Step IV. Now, we show, that H preserve the monotonicity of functions. Take
x ∈ Qr, then x is a.e. nondecreasing on I and consequently Ffi is also of the same
type in virtue of the assumption (C2). Further, Ai(x) is a.e. nondecreasing on I
thanks for the assumption (K2). Assumption (C1) permits us to deduce that Hi is
also a.e. nondecreasing on I. Then, by assumption (N1) we have H : Qr → Qr is
continuous.

Step V. Next, we prove that H is a contraction concerning the measure of non-
compactness. Recall that for x ∈ B1(Eϕ(I)) we have∫

I

Ni

(
N−1i

[
ϕ
(
x(s)

)])
ds =

∫
I

ϕ
(
x(s)

)
ds ≤ ‖x‖ϕ.

Assume that X ⊂ Qr is a nonempty and let ε > 0 be arbitrary fixed constant.
Then for an arbitrary x ∈ X and for a set D ⊂ I, meas D ≤ ε, we obtain

‖Hi(x) · χD‖ϕ ≤ ‖gi · χD‖ϕi
+ |λi| · ‖Ai(x) · χD‖ϕi

≤ ‖gi · χD‖ϕi
+ |λi| · ‖pi‖ϕi

(
‖bi · χD‖Ni

+ di

∥∥∥∥Ni(ϕ(|x(s)|)
)
· χD

∥∥∥∥
Ni

)
≤ ‖gi · χD‖ϕi

+ |λi| · ‖pi‖ϕi

(
‖bi · χD‖Ni

+ di‖x · χD‖ϕ
)
.
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Therefore,

‖H(x) · χD‖ϕ ≤ k

n∏
i=1

‖Hi(x) · χD‖ϕi
≤ k

n∏
i=1

(
‖giχD‖ϕi

+|λi| · ‖pi‖ϕi

(
‖bi · χD‖Ni

+ di‖x · χD‖ϕ
))

.

Hence, taking into account that gi ∈ Eϕi
, bi ∈ ENi

, then

lim
ε→0

{
sup

mes D≤ε
[sup
x∈X
{‖giχD‖ϕi}]

}
= 0 and lim

ε→0

{
sup

mes D≤ε
[sup
x∈X
{‖biχD‖Ni}]

}
= 0.

Thus by definition of c(x) and by taking the supremum over all x ∈ X and all
measurable subsets D with measD ≤ ε, we get

c(H(X)) ≤ k
n∏
i=1

(
di|λi| · ‖pi‖ϕi

)
rn−1c(X).

Since X ⊂ Qr is a nonempty, bounded and compact in measure subset of an ideal
regular space Eϕ, we can use Proposition 3.3 and get

βH(B(X)) ≤ krn−1
n∏
i=1

(
di|λi| · ‖pi‖ϕi

)
βH(X).

The above inequality with
∏n
i=1

(
di|λi| · ‖pi‖ϕi

)
< 1

krn−1 allow us to apply Theorem

4.3, which fulfills the proof. �

4.2.2. The case of Lebesgue spaces. The Lebesgue spaces are interesting example of
ideal spaces which is discussed in many different monographs. Moreover, the Lp-
solutions still represent general solutions than those discussed in previous studies.

Assume that 1
p =

∑n
i=1

1
pi

and consider the following conditions:

(i) gi ∈ Lpi(I), i = 1, · · · , n be a.e. nondecreasing functions on I.
(ii) The functions fi : I × R → R satisfy Carathéodory conditions and there

exist positive constants di and functions bi ∈ Lpi(I) such that

|fi(t, x)| ≤ bi(t) + di|x|
p
pi , i = 1, · · · , n.

Moreover, fi(t, x), i = 1, · · · , n are assumed to be nondecreasing with respect
to both variables t and x separately.

(iii) The linear integral operators K0ix(t) =
∫ b
a
Ki(t, s)x(s) ds map Lpi(I) →

Lpi(I), i = 1, · · · , n.

(iv)
∫ b
a
Ki(t1, s) ds ≥

∫ b
a
Ki(t2, s) ds, i = 1, · · · , n, for t1, t2 ∈ [a, b] with t1 < t2.

Remark 4.5. Let us stress, that the condition (iii) implies that the kernels Ki(t, s)
should be of Hille-Tamarkin classes i.e.

∥∥Ki(t, ·)‖p′i
∥∥
pi

, which it is sufficient to suppose

that they are finite and being the upper bounds for ‖K0i‖p′i,pi , where 1
pi

+ 1
p′i

= 1.
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Theorem 4.6. Let the assumptions (i) - (iv) be satisfied. If
n∏
i=1

(
di|λi| · ‖K0i‖p′i,pi

)
< 1,

then there exist numbers ρi > 0 such that for all λi ∈ R with |λi| < ρi, i = 1, · · · , n,
there exists a solution x ∈ Lp(I) of (1.1) which is a.e. nondecreasing on I.

Proof. Step I’. Let i = 1, · · · , n. Assumption (ii) implies that Ffi map Lp(I) into
Lpi(I) continuously. The operators Ai map Lp(I) into Lpi(I) continuously (thanks to
assumption (iii)). Assumption (i) gives us that the operators Hi(x) map continuously
Lp(I) into Lpi(I). By using Corollary 2.11, we can deduce that, the operator

H =

n∏
i=1

Hi

maps continuously Lp(I) into itself.

Step II’. Fix λi ∈ R with |λi| < ρi, where

ρi =
α

1
n − ‖gi‖pi

‖K0i‖p′i,pi
(
‖bi‖pi + diα

p
pi

) , i = 1, · · · , n.

Let BR = {x ∈ Lp(I) : ‖x‖p ≤ R}, where R is a positive number satisfying the
inequality

n∏
i=1

(
‖gi‖pi + |λi| · ‖K0i‖p′i,pi

(
‖bi‖pi + di ·R

p
pi

))
≤ R.

Now, for x ∈ Lp(I) and by using assumptions (i) - (iii) with 1
pi

+ 1
p′i

= 1, we have

‖Hi(x)‖pi ≤ ‖gi‖pi + |λi| · ‖Aix‖pi

≤ ‖gi‖pi + |λi| ·
∥∥∥∥∫ b

a

Ki(t, s)
(
bi(s) + di · |x(s)|

p
pi

)
ds

∥∥∥∥
pi

≤ ‖gi‖pi + |λi| · ‖K0i‖p′i,pi
(
‖bi‖pi + di ·

∥∥x p
pi

∥∥
pi

)
≤ ‖gi‖pi + ρi · ‖K0i‖p′i,pi

(
‖bi‖pi + di · ‖x‖

p
pi
p

)
,

where ‖x
p
pi ‖pi = ‖x‖

p
pi
p . By using Corollary 2.11, we have

‖H(x)‖p =

∥∥∥∥ n∏
i=1

Hi(x)

∥∥∥∥
p

≤
n∏
i=1

(
‖gi‖pi + ρi · ‖K0i‖p′i,pi

(
‖bi‖pi + di · ‖x‖

p
pi
p

))

≤
n∏
i=1

(
‖gi‖pi + ρi · ‖K0i‖p′i,pi

(
‖bi‖pi + di ·R

p
pi

))
≤ R.

Then, we can deduce that H : BR → BR is continuous.
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Step III’ and Step IV’ are similar to those from Theorem 4.4 with QR ⊂ BR(Lp).

Step V’. Assume that X ⊂ QR is nonempty set and let ε > 0 be arbitrary fixed
constant. Then for an arbitrary x ∈ X ⊂ QR and for a set D ⊂ I, meas D ≤ ε, we
obtain

‖Hi(x) · χD‖pi ≤ ‖gi · χD‖pi + |λi| · ‖Ai(x) · χD‖pi

≤ ‖gi · χD‖pi + |λi| · ‖K0i‖p′i,pi
(
‖bi · χD‖pi + di · ‖x

p
pi · χD‖pi

)
≤ ‖gi · χD‖pi + |λi| · ‖K0i‖p′i,pi

(
‖bi · χD‖pi + di · ‖x · χD‖

p
pi
p

)
.

Therefore,

‖H(x) · χD‖p ≤
n∏
i=1

‖Hi(x) · χD‖pi

≤
n∏
i=1

(
‖gi · χD‖pi + |λi| · ‖K0i‖p′i,pi

(
‖bi · χD‖pi + di · ‖x · χD‖

p
pi
p

))
.

Hence, taking into account that gi, bi ∈ Lpi , then

lim
ε→0

{
sup

mes D≤ε
[sup
x∈X
{‖gi · χD‖pi}]

}
= 0 and lim

ε→0

{
sup

mes D≤ε
[sup
x∈X
{‖bi · χD‖pi}]

}
= 0.

Thus by definition of c(x) and by taking the supremum over all x ∈ X and all
measurable subsets D with measD ≤ ε, we get

c(H(X)) ≤
n∏
i=1

(
di|λi| · ‖K0i‖p′i,pi

)
c(X).

Since X ⊂ QR is a nonempty, bounded and compact in measure subset of an ideal
regular space Lp, we can use Proposition 3.3 and get

βH(B(X)) ≤
n∏
i=1

(
di|λi| · ‖K0i‖p′i,pi

)
βH(X).

The above inequality with
∏n
i=1

(
di|λi| · ‖K0i‖p′i,pi

)
< 1 allow us to apply Theorem

4.3. This fulfills the proof. �

4.2.3. Example. Finally, we illustrate an example to show the applicability of our
results.

Example 4.7. For t ∈ I = [0, 1], considers the following product of integral equations
in L2(I):

x(t) =

(
e

t
4 +

∫ 1

0

e
3(s−t)

4

(
s

1
4 +d1|x(s)| 24

))
·
(
e

t
8 +

∫ 1

0

e
7(s−t)

8

(
s

1
8 +d2|x(s)| 28

))2

. (4.3)

Let p1 = 4, p2 = p3 = 8, then we have
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• g1(t) = e
t
4 , g2(t) = g3(t) = e

t
8 , with

‖g1‖4 = 4
√
e− 1, ‖g2‖8 = ‖g3‖8 = 8

√
e− 1.

• b1(t) = t
1
4 , b2(t) = b3(t) = t

1
8 , with ‖b1‖4 = 4

√
1
2 , ‖b2‖8 = ‖b3‖8 = 8

√
1
2 .

• K1(t, s) = e
3(s−t)

4 and K2(t, s) = K3(t, s) = e
7(s−t)

8 , with∥∥‖K01‖ 4
3

∥∥
4

=
4

√
(e− 1)3(1− e−3)

3
,

∥∥‖K02‖ 8
7

∥∥
8

=
∥∥‖K03‖ 8

7

∥∥
8

=
8

√
(e− 1)7(1− e−7)

7
.

• Moreover, one can choose the constants di ≥ 0, i = 1, 2, 3, such that

3∏
i=1

(
di · ‖K0i‖p′i,pi

)
< 1.

Hence, Theorem 4.6 implies that equation (4.3) has a solution x ∈ L2(I) which is a.e.
nondecreasing on I.

Acknowledgements. The author extends his appreciation to the editor and the
referees for their valuable remarks and comments.
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[8] K. Cichoń, M. Cichoń, M. Metwali, On some fixed point theorems in abstract duality pairs,
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arXiv:1809.00788v1 (2018).

[17] G. Gripenberg, On some epidemic models, Q. Appl. Math., 39(1981), 317-327.

[18] M. Jleli, B. Samet, Solvability of a q-fractional integral equation arising in the study of an
epidemic model, Advances in Difference Equations, 21(2017), DOI: 10.1186/s13662-017-1076-7.

[19] M.A. Krasnosel’skii, Yu. Rutitskii, Convex Functions and Orlicz Spaces, Gröningen 1961.
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