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1. INTRODUCTION AND PRELIMINARIES

Modular metric spaces are the metric spaces generated by modular and their theory
was developed by Chistyakov [7, 8, 9, 10] as an extension of the theory of modular for
linear spaces founded by Nakano [16], which generalizes Lebesgue, Riesz, and Orlicz
spaces of integrable functions. In spite of the fact that Orlicz and modular linear
spaces have many applications in nonlinear functional analysis, they are restricted to
certain situations [10]. Theory of modular on arbitrary sets is consistent with the
theories of metric spaces and modular linear spaces and is important in problems
of multivalued analysis such as the definition of metric functional spaces, character-
ization of set-valued superposition operators and existence of regular selections of
multifunctions [10].

In 1969, V. M. Sehgal proved that in a complete metric space, continuous self
mappings with a contractive iterate at each point of the space have a unique fixed
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point, see [18]. Guseman [11] generalized the result of Sehgal to mappings having
a contractive iterate at each point in a subset of the space. After that, numerous
generalizations have been introduced by many authors, see for example [15, 17, 19, 2,
12, 14, 3, 13]

The aim of this paper is to extend the fixed point results for mappings with a
contractive iterate at a point in the settings of modular metric spaces. In the following
we give some preliminary results on metric modular, modular spaces and existence of
fixed points of mappings with a contractive iterate at a point in metric spaces.

We begin with the basic notion of metric modular and modular metric space in-
troduced by Chistyakov [7, 8, 9] and some of their properties.

A function w : (0,00) X X x X — [0, 00], wy(u, z) = w(\, u, z), is called a modular
metric on a nonempty set X if the following axioms are satisfied:

(m) u =z if and only if wy(u,z) = 0 for all A > 0;

(mg) wy(u,z) = wy(z,u), for all u,z € X and A\ > 0;

(m3) wryp(u,z) < wr(u,v) + wy, (v, 2), for all u, v,z € X and A, > 0.

The function w : (0,00) X X x X — (0, 00) is said to be a pseudomodular metric
on X in case that instead of (my),

(m) wa(u,u)=0for all A >0
is satisfied. Likewise, if the axiom (my) is replaced by
(m}) there exists a A > 0, such that if u = z then wy(u, z) =0,

then the modular metric w on X is called strict. If w is either modular or pseu-
domodular metric on X, for every A\,u > 0, with A > p, by (m3) we have for all
u,z € X,

w)\(ua Z) < w)\—,u(u7u) + w,u(uv Z) = wﬂ(u7z)a (11)
which means that the function A — wj(u, z) is non-increasing on (0, 00). A modular
w on X is called convex if for all A\, u > 0 and u, 2, v € X the following inequality is
satisfied

A
Wi p(u,2) < m%(uv v) + w, (v, 2).

_H
A+ p
Let ug be fixed in X. In [7, 8] the following sets, named modular spaces (around
ug) were introduced as follows.

Xy = Xyu(ug) ={u € X:wr(u,ug) = 0as A — oo}
X5 = X5(ug) = {u € X :IX = A(u) such that wy(u,up) < co}.

It was shown that the modular space X, can be endowed with a metric d,,, where
dy(u,z) =inf {A > 0: wy(u,z) < A},

for u,z € X,. Moreover, according to ([7, 8]), if the modular w on X is convex, then
X» = X, and we can equip this set with the metric defined by

d)(u,z) =inf {A > 0: wy(u,z) <1}

for any u, z € X,,.
On a modular metric space X, a sequence {u, } is
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(¢) convergent to u € X if lim,, oo wi(tn,u) =0, for all A > 0;
(by (ms), it follows that the limit of convergent sequence in X, is unique.)

(C) Cauchy if lim,,—yco wx (Un, Untm) = 0, for all m > 0 and A > 0.
A modular metric space is complete if every Cauchy sequence is convergent. If in the
above assertions, we assume that the conditions (¢) and (C) hold only for some A > 0,
not for all, we say that the sequence {u,, } is w-convergent, respectively w-Cauchy, and
if any w-Cauchy sequence is convergent, the modular space is said to be w-complete.

The contractive mapping definition and the Banach fixed point theorem is gener-
alized to the setting of modular metric spaces by Chistyakov [9, 10].

Definition 1.1. Let X be a nonempty set and w be a metric modular on X.

(i) Amap T : X} — X} is said to be w-contractive provided that there exist
0 <k <1and Ag > 0 depending on x such that

wix(Tu, Tz) < wy(u, z) (1.2)

for all 0 < A < A\p and u, z € X.
(ii) A map 7 : X} — X7 is said to be strong w-contractive provided that there
exist 0 < kK < 1 and Ay > 0 depending on « such that

wix(Tu, Tz) < kwy(u, 2) (1.3)
forall 0 < A < Ap and u, 2z € X.

Theorem 1.2. Let X be a nonempty set and w be a strict convex metric modular on
X. Let X} be a complete modular metric space induced by w and T : X}, — X' be a
w-contractive self mapping.

If for every A > 0 and all u € X} we have wy(u, Tu) < oo, then the mapping T
has a fixed point in X}, .

If in addition wy(u, z) < 0o for all u,z € X' and every A > 0, then the fized point
of T is unique.

Theorem 1.3. Let X be a nonempty set and w be a strict metric modular on X. Let
X be a complete modular metric space induced by w and T : X}, — X} be a strong
w-contractive self mapping.

If for every A > 0 and all u € X, we have wy(u, Tu) < oo then the mapping T has
a fized point in X .

If in addition wy(u,z) < oo for all u,z € X and every X\ > 0, then the fized point
of T is unique.

The following variants of Palais’s inequality for modular contractive mappings are
proved in [1].
Proposition 1.4. Let py,pus > 0 be chosen such that py + pa = (1 — K)A, where
O<k<land0 << Ag.

(i) (Fundamental modular contraction inequality). Let X be a non-empty set and
w be a convexr modular in X. If T : X)) — X is a w-contraction, i.e. (1.2)
holds for 0 < A < Ao, then for every u,z € X

H1Wp,y (’LL, Tu) + 2 Wyo (Za TZ)
A1 — k)

wy(u, 2) < . (1.4)
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(ii) (Fundamental strong modular contraction inequality). Let X be a non-empty
set and w be a modular in X. If T : X} — X} is a strong w-contraction, i.e.
(1.3) holds for 0 < A < Ay, then for every u,z € X

< H1 Wy, (ua Tu) + M2 Wy (Za TZ) .
- 1—k

wy(u, z) (1.5)
In the following, we review some fixed point results for iterative mappings in metric
spaces which will be generalized in the setting of modular metric spaces in the next
section.
Let (X*, ) be a complete metric space. In the following theorem, Bryant [6] proved
an analog of Banach’s fixed point theorem in which not the mapping itself but one of
its iterates satisfies the contractive condition.

Theorem 1.5. [6] A self-mapping T on (X*,d) admits a unique fized point £ € X, if
there exist k € [0,1) and m € N so that

d(T™u, T"2) < kd (u, 2), (1.6)
for allu,z € Xx.

Sehgal [18] improved this result by taking not a fixed but variable iterate of the
mapping under consideration.

Theorem 1.6. [18] A continuous self-mapping T on (X*,d) admits a unique fized
point £ € X, if it satisfies the condition: there exists a constant k € [0,1) such that
for each u € X, there is a positive integer p(u) such that

d(TP W, TP 2) < kd (u, 2), (1.7)
forall z € X.

Guseman [11] on the other hand, has shown that the condition of continuity of the
mapping was unnecessary.

2. FIXED POINT THEOREMS FOR CONTRACTIVE ITERATIVE MAPPINGS
IN MODULAR METRIC SPACES

This section is devoted to the extension of the existence of fixed point results given
in [9] for mappings T with the property that some iterate of 7 satisfies one of the
following generalized versions of the definitions of contractions in modular metric
spaces.

Definition 2.1. Let w be a metric modular on a non-empty set X.

(i) A mapping 7 : X, — X, is called a Sehgal w-contraction if there exist
constants k € (0,1) and Mg > 0 satisfying the condition: for each u € X,
there is a positive integer p(u) such that

wox (TP, TP 2) < wy (u, 2) (2.1)

forall z€ X, and 0 < A < Ag.
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(ii) A mapping T : X — X is called a strong Sehgal w-contraction if there
exist constants k € (0,1) and Ag > 0 satisfying the condition: for each u € X
there is a positive integer p(u) such that

won (TP, TP 2) < kawy (u, 2) (2.2)
for all z € X} and 0 < A < Ap.

We introduce the following analogues of inequalities given in Proposition 1.4 for
Sehgal w-contraction maps, which will be employed in the subsequent fixed point
theorem.

Proposition 2.2. Let uy + us = (1 — k)A, for some pq, pe > 0 with 0 < A < Ap.

(i) Let X be a non-empty set and w be a conver modular in X. If T : X} — X7
is a Sehgal w-contraction satisfying (2.1) for 0 < XA < Ao, then for every
u,z € X,

’ZU,\(U Z) < ,LL1 wul (’U/7 TP(U)U’) + :u2 w,U«2 (25 TP(U)Z) .

- A1 — &) (2:3)

(ii) Let X be a non-empty set and w be a modular in X. If T : X} — X is a
strong Sehgal w-contraction satisfying (2.2) for 0 < A < Ao, then for every
u, 2 € X

H1 Wy, (uv Tp(u)u) + 2 Wiy (Za Tp(u)z)

<
WA(U‘VZ) = 1—k

(2.4)

Proof. Let uy, s > 0, such that p1 + po = (1 — k)X and p(u) be a positive integer.

(i) Convexity of w implies that

et (1, 2) € Ela, (u, THOw) 4 R (THu, T 2) 4+ By, (77002, 2)

holds. Since 7 is a Sehgal w-contraction and A = p1 + &K\ + 2, we get

w (u, 2) < @y, (u, TP w) 4+ pga,,, (2, TP 2)
B YD) :

(2.5)

(ii) The axiom (mg3) assures that
Wiy + kA +pi2 (u’ z) < Wiy (u’ TP(U)u) + KAwix (Tp(u)uv Tp(u)z) + p2 Wy, (Tp(u)% Z)
holds. Since T is a strong Sehgal w-contraction and A = p1 + KA + g, we get

wy(u,z) < p @y, (u, THu) + N2“’M2(Z’Tp(u)z).

— (2.6)

Theorem 2.3. Let X be a nonempty set, w be a strict convexr metric modular on X
and X, be a complete modular metric space induced by w. If T : X, = X,, is a Sehgal
w-contraction, then T has a unique fized point in X, .
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Proof. Let ug be an arbitrary fixed point in X,, and the sequence {u,} be defined by
uy = TPug,ue = TP U, ..., up = TP tuy_q,
where p; = p(u;). Since the mapping 7 is a Sehgal w-contraction, by (2.1), for
U = Up—1 and z = u,, we have
wx (Un, Unt1) = W (T up_1, TP up) = wn (TP 1, TP (TP up—1))
< wa (Up—1, TP up—1) < ... < w2, (ug, TP ug). (2.7)
The definition of the modular space X,, implies lim w (ug, TP"ug) = 0 and accord-
ing to the above inequality (2.7) we get e

lim wy (4, tpy1) = 0. (2.8)

n—oo
Let n,m be positive integers and replace u by u, and z by wu,4., in the inequality
(2.3). Then by (2.8) we have

M1 Wy, (una Ten un) + M2 Wy, (un+m7 T un+m)
(1-r)A
M1 Wy, (Uny Ung1) + po Wyy (TPt Uy gy 1, TP (TP Uy 1))
(I-r)A
K1 Wy, (una Un-i—l) + H2 w“% (un—Hn—l; Tpn un—i—m—l)
(1—r)A

wx (un7 un+m) S

IN

H1Wp,y (una un-i-l) + p2 wig (Uny Uny1)
(1—-r)A

IN

— 0,

as n — oo. Thus, the sequence {u,} is w-Cauchy, hence w-convergent since the space
X, is w-complete. Let u* € X, be the limit of the sequence {u,}, that is

lim wy (up,u™) =0. (2.9)
n— oo
On one hand, by (2.1) we have

wx (TP D, up) = an (TP (TP Dy _y), TPty )
w/\/fi((Tpu* Un—lyun—l))

IN

IN 2

Wy kn (TP“* UQ, UO)

and since A/k™ — 0o as n — oo by the above inequality we get
lim oy (T Dy, uy) = 0. (2.10)
n—oo

On the other hand,

w(,ﬁz),\(u*,TP(“*)u*) < wy(u*, un) 4 wx(tn, TP D wy) + wen (TP Dy, TPEy*)
S ZU)\(U*,U”) + w)\(uvap(u )un) + ’ZUA(Un,’UJ*),
and together with (2.9) and (2.10) we get that lim,, o w(,.42) (u”, TP )y*) = 0, and
since the modular w is strict, we can conclude that 77(*)u* = v*. Finally, because

TE(Tu) = T(TH ™) = T(u"),
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it follows that 7Tu* is a fixed point of T#(*"). As a consequence of (2.3) we note

that, if there exists a fixed point u* of 774" it is unique. Hence, we conclude that
Tu* =u*.

The following result will be used in our second fixed point theorem.

Lemma 2.4. Let T : X)) — X} be a strong Sehgal w-contraction. If there exists
a point ug € X, such that wy(ug, T'ug) < oo for i € {1,2,...p(uo)} and for all
A > 0 then every element of the set L(ug) = {wx(uo, T™uo) : m € N} is finite for
each X > 0.

Proof. Let ug € X such that wA(uo,TP(UO)uO) < 00. We set pp = p(up) and oy (ug) =
wy (ug, TPug) and we consider a positive integer m € N, where m > py. Then, m can
be written m = jpg+1, where j e N;j > 1 and [ € {O7 1,2,..,m0 — 1}. Using the fact
that 7 is a strong Sehgal w-contraction, the property (1.1) and the condition (ms)
iteratively, we have

—~

g

IS P NN L S N N T

ZU)\(UO7 Tmuo) Ug, TPUU()) + ZU% (TP‘)UO, Tmuo)
uo) + WH%(TPOUO, Tro (Tm—PouO))
(wo, TP (uo))

A
2 .
+ wwy (ug, TU= D0 H )

)
)
uo) + kK [w% (uo,Tf’Uuo) + W (TFOUO, T(jfl)poJrluO)
)
)

IEVANRVANRVAN
Q 9 9

<
S

uo) + K 5 (T™ug, TP (TU2rtlys))

up) + KZQZU% (ug, TU=2rotly)
2

~~ Y~ N/~~~

VAN VANVAN
Q Q Q9

< oy (UO) + 50'2% (UO) + HQO'QA3 (U()) + ...
+rio_a (ug) + Kiw_r_(ug, Tlug)
27 +1 . o2i+1 .
<(Q4+r4-+r)o_a (u)+ K w_r_(ug, Tuog)
2 +1 27+1
1 — kIt

— J l
= O-Qj{\{—l(uo)—i_ﬁ w#(uo,Tuo)<oo,

since both o . (ug) = w a2 (ug, TPug) and w . (ug, T'ug) are finite by the as-
27 27 27
sumption. This proves that all elements of the set 3(ug) are finite for each A > 0.
In the following fixed point theorem, the convexity assumption on the modular is

replaced by the strongly contractive mapping condition.

Theorem 2.5. Let (X,w) be a complete modular metric space. A strong Sehgal w-
contraction, T : X} — X admits a fized point u* € X, presuming that there exists a
point ug € X such that wy(ug, T'ug) < oo for alli € {1,2...p(ug)} and all X > 0.
If in addition, we assume that wy(u*,z) < oo for any z € X, A > 0, then the fized
point of T is unique.

Proof. Let uy € X such that wy(ug, T'ug) < oo for all i € {1,2...p(ug)} and all
A > 0. Set ox(ug) = wy(ug, TF“ug) which is also finite.
Starting with this point ug, we build a sequence, named {u,} as follows:

uy = TPug,uz = TP U1, oy 1 = TP Up, (2.11)
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where we use the notation p; = p(u;), for every ¢ € N. Moreover, by (2.11) we have
that
Uy, = TPtz tpo,

In addition to this, we have upym = T uy,, where s = ppym—1 + ... + pny1 + pn and
n,m € N. If we replace u with w,_; and z with w,, in (2.2) and taking into account
(2.11), by (m3) we have

wﬁ)\(un, Un+1) = w;{)\(TPnilunfla Tpnun) = wli)\(Tpnilunfla Tpnil(Tp"unfl))
< Ky (Un—1, TP Up—1).

But, since for x € (0,1) we have 0 < kA < A, and then

Wi (Un, Unt1) < KwA(Un—1, TP Un—1) < Kwier (Upn—1, TP Up—1)
= Kwox (TP 2up—o, TP 2T P Uy 2)
< K2y (Up—2, TP up_2)

< K" wy (ug, TPug).

By the Lemma 2.4, wy(ug, TP ug) is bounded for each n € Ny and A > 0. Hence,
there exists a positive number M) such that

wy (ug, TP ug) < My, (2.12)
for each n € Ny and A > 0. Therefore, we get
Wx (Uny Unt1) < Wi (Un, Unt1) < KMy, (2.13)
and letting n — oo we get

lim @y (tp, tpt1) =0, for A > 0. (2.14)

n— o0
Let m > 1. According to (2.13) and using (m3) we have
WA (Un, Untm) < wa (Up, Ung1) + W (Ung1s Ung2) + o+ W (Ungom—1, Ungm)
< K'"Mx + Kln+1MA —+ ...+ Iiner*lMA

=
-
=g =m0

11—k po

Thus, limy, m—oco wWr(Un, Untm) = 0, for all A > 0, which shows that the sequence
{un} is Cauchy in X. Since this space is complete, there exists a limit, say u*, of the
sequence {u,}. We claim that u* is a fixed point of 77(*"). Indeed, we have

ZUA(TP(H*)’U,*, u*) < ZU% (7—[;(u*)u*7 Tp(u*)un) + TU% (Tp(u*)un’ Un) + ZU% (un’ U/*)

< wea (u*, up) + w) (TP Dy, uy) + w) (U, u™). (2.15)
From (2.2), we have
wy (TP, uy) < Wy (TP Dy, uy) = wsa (TP (TP D), TPty )
<
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By the (2.12) we know that wa (TP ug, up) < M and hence, from (2.15), we get
wy (TP u* u*) < wN%(u*, Up) + KMy + wy (u*, up).

Letting n — oo in the above inequality, we have wA(TF’(“*)u*,u*) = 0, thus u* is a
fixed point of 7#7(*"). Let 2* € X* be another fixed point of 77(*") with u* # z*. Then
we have

w(u*, 2%) < wex (TP 0, TP 2%) < gy (u*, 2) < wn (u*, 2%) < o0,

Therefore, wy(u*, z*) = 0 and by (my), we have u* = z*. Thus, u* is the unique fixed
point of 7#(") As a final step, since

TH)(Tu*) = T(THu) = Tu,

taking into account the uniqueness of the fixed point of 77(*"), we get that Tu* = u*.
If we replace the completeness of X with w-completeness we can state the next result.

Theorem 2.6. Let w be a strict modular on a non-empty set X such that X, is w-
complete. A strong Sehgal w-contraction T : X} — X' admits a unique fived point
presuming that there exists a point ug € X,, such that such that wy(uy, Tiuo) < oo for
alli e {1,2...p(ug)} and all 0 < X < Ag.

Proof. Let the sequence {u,} be defined as in Theorem 2.5. Then from (2.4) with
U = Uy and 2 = Up4, We get
Wy (u’ru TPn un) + Wiy (un+m7 Tpn un+m)

1—k&
Wy (Uns Upy1) + Wyin (TPrtm= Uy gy 1, TPt (Tpnunerfl))

1-k
Wy (unv un+1) + IiZl//‘% (unerfla Tpnunerfl)

11—k

wN (un; un+m) S

IN A

Wy (Uns Unt1) + K" wig (U, T uy)

IN

1-k
Wy (U Un41) + K" Wi (U, Unt1)
1—k
K wiy (ug, TP ug) + K™ w_ny (ug, TP ug)

wmtn

IN

<

1-k
We can easily see that k™" u; — oo, for ¢ = 1,2 and so, there exists ng € N, big
enough, such that k™ "u; > A. Thus,

Wy, (U0, TPrug) < wa(uo, TPrug) < My,
Wy—n—m (U0, TP ug) < wi(uo, TPrug) < My,
and hence,

K™(1 4+ £™) M),
11—k
This proves that the sequence {u,} is w-Cauchy. Since by the hypotheses X is w-
complete and the modular w is strict the sequence {u,} is w-convergent to some u*

and this limit is unique.

W (Uny Uppm ) < — 0, as n — oo.
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As in the previous Theorem, in order to prove that u* is the unique fixed point of T,

the following steps are required.

First of all, we will show that lim wy (77" )u,,u,) = 0. By (2.2) and taking into
n—oo

account (ws) we have

Z{I/{'rz)\(TP(u*)unv un) = w;{")\(TPn71 (TP(U*)unfl)’ Tpnilunfl)
< Hwnnfl)\(Tp(u*)un—lvun—l)

< K (TP ug, ug)
< K"My — 0, as n — o0,
so that,

lim wn,LA(TP(“*)un,un) =0.
n—o0

Furthermore, since 0 < k™A < \ we have wA(TP(“*)un,un) < w,inA(TP(“*)un,un) and
letting n — oo,
lim oy (T Dy, uy) = 0. (2.16)

n— oo

Next, we claim that u* is a fixed point of 77(*"). Indeed, by (m3) we have

w(,i+2)k(77’(“*)u*7u*) < wox (TP TP w4 oy (TP Dy, wn) + wa (tn, u*)
< kw(u*,u,) + w,\(TP(“*)un, Up) + wi (U, u™).

Letting n — oo and keeping in mind the fact that the sequence {u,} is w-convergent
and (2.16) we get
Wipp2)n (TP u* u*) = 0.

Therefore, since w is strict we have 774 )y* = u*,
We claim now, that u* is the only fixed point of 77(*"). We assume that, in the
contrary, there is another point z* € X such that 77(*")z* = 2* # u*. Considering
in (2.4), u = u* and z = z* we have

wyy (W, TP 4y, (25, TP 2%) g, (u*, u®) + wy, (27, 2%)

* * < — :O.
SACEERE 1—k 1—x

Thus, wy(u*, z*) = 0, that is u* = z*, because w is strict. Moreover, as we showed in
Theorem 2.5, due to the uniqueness of the fixed point of 77(*7) we obtain that u* is
the unique fixed point of 7.

3. EXAMPLES AND AN APPLICATION ON MATRIX EQUATIONS

In this section we first provide two examples of mappings which are not w-
contraction or strong w-contraction, satisfying the conditions of Theorems (2.5) and
(2.6) and thus have fixed points in the corresponding modular spaces.

Example 3.1. Let the set X = [0, 1]U[2,4+00) and the function w : (0,00) X X X X —
[0,00) defined by wy(u,z) = ‘"—;z' It can be seen that, w is a strict modular metric
on X. Let the mapping T : X)) — X, where
Su, foru e [0,1]
Tu= %, for u =2
0, foru > 2.
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It is easy to observe that, 7 is not a w-contraction. Indeed, choosing u = 2 and

z =4 we have wy (2, %) = g5 and wx (T2, TX) = wa(2,0) = 5% and then

17 5 1 17
Wi\ (T2,T8> = m > 5 = W) (2, 8)

for every k € (0,1) and A > 0. On the other hand,

30N (3)3117 for w € [0, 1]
T(u){ ! 0, foru>2

and letting xk = % we have:

e For u,z € [0,1] and p(u) = 3:

3\3 2, _
wen(T3u, T32) = W - <i) b = e wx (u, z).

e For u € [0,1],z € [2,400) and p(u) = 3:

(T3u, T3z2) = §3i_ §2E<Z_u_ (u, 2)
wa(T7u, T72) = | 1) 35S =)

3\

Thus, 7T is strong Sehgal w-contraction and Theorem (2.6) implies that 7
admits a fixed point.

Example 3.2. Let the set X = [0, +00] and the modular metric w : R* x X x X given

by wy(u,z) = ‘“—;zl Let the mapping 7 : X — X, where
3 for w € [0, 1]
Tu = 4 for u € (1,4]
2
2uutl for u € (4, +00).

The mapping 7T is not a strong w-contraction, since for v = 1 and z = % we have
wa(1,2) = A& and wA(T1,T3) = wa(2, ) = 145 and then

) 7 1 5
Wi (TI,T4) = Torex > = A (1, 4)

for every k € (0,1) and A > 0. Now, we have

3 for u € [0,4]
2 _ 4 )
T () = { 20HButl g, € (4, 4+00)

4u2—-12

and T3u = % for every u € X. Consequently, w,y(7T3u,T32) = 0 for any u,z € X
and x € (0,1). Then the assumptions of Theorem (2.5) are satisfied and then 7 has
a unique fixed point, that is u = 0.

Finally, as an application of our results, we consider the following matrix equation
AU = B, (3.1)

where
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a—1 0 —a 2a — 1 1 -1
A= b -1 b , B= 1 —-2b 2b with a,b e R,a > 1
a 0 —-a-—1 20+ 1 1 -1

Uy U2 U3
Uex= Uy Us Ug ru; €Ri=1,2,...,9.
U7 ug Ug
Let w: (0,400) X X x X — [0, +00) be the modular metric given by
1 max \ui—zi|, 1ful7ézl

w\(U, Z) = { A 15i§90 I

Because we can write

0 —a
0 b
0

—a

A=M—1I3, where M =

Q o Q

the equation 3.1) can be rewritten as MU — B = U. Denoting TU = MU — B, where
T : X5 — X, we see that solving the equation (3.1) is equivalent to finding the fixed
point of 7.

First of all, we can see that, choosing for example

1 0 0 0 1 0
U=10 0 O ,and Z=10 0 O ,
0 0 0 0 0 0
we have
a 0 0 0 a O
MU=1b 0 0 and MZ=1[0 b 0
a 0 0 0 a O

In this case, since a > 1,
1 1
wx(TU, TZ) = —)\max{a,b} >3 = wy(U, Z)
K

which show us that 7 is not a w-contraction. By calculation we get M3 = O3 and
since

T?°U = M?U—-MB-B, T3U=MU-M?B-MB-B

we obtain that 73U = —M?B — M B — B. For these reasons, for any x € (0,1) we
have

wNT2U,T3Z) =0 < wy\(U, Z),
for all U, Z € X. Thus, the mapping T has a fixed point,

1 -1 1
Up=|-1 0 O
-1 -1 1

and this matrix is the unique solution of equation (3.1).
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