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1. Introduction

Let A and B be nonempty subsets of the metric space (X, d). The self mapping
T : A ∪ B → A ∪ B is said to be cyclic provided that T (A) ⊆ B and T (B) ⊆ A. A
point x∗ ∈ A ∪B is called a best proximity point for T if d(x∗, Tx∗) = d(A,B) where
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. If d(A,B) = 0, x∗ is called a fixed point
of T . In 2006, the cyclic contraction mappings on uniformly convex Banach spaces
were introduced and studied by Anthony Eldred and Veeremani [2]. Since then, the
problems of the existence of a best proximity point of cyclic mappings, have been
extensively studied by many authors; see for instance [4, 5, 6, 9, 10, 11, 12, 13] and
references therein. In order to extend the obtained best proximity results in uniformly
convex Banach spaces to metric spaces, the UC property were introduced by Suzuki
et al. [13]. They also proved the existence of the best proximity points for cyclic
contraction type mappings in metric spaces.
In this paper, in the setting of metric spaces we introduce the notions of general-
ized cyclic quasi-contractions on A ∪ B and the ultrametric property as an applied
geometric concept. Then we study the existence and uniqueness of best proximity
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points for such mappings when (A,B) has the UC property and (B,A) has the ul-
trametric property. Also, iterative algorithms are furnished to determine such best
proximity points. As a result, we establish a fixed point result and a common fixed
point theorem. Our results extend and improve some recent results in [3, 8, 12, 13].

2. Preliminaries

Here, we recall some definitions and facts will be used in the next section.

Definition 2.1. [13] Let A and B be nonempty subsets of the metric space (X, d).
Then (A,B) is said to satisfies the UC property, if {xn} and {x′n} are sequences in
A and {yn} is a sequence in B such that

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn) = d(A,B),

then limn→∞ d(xn, x
′
n) = 0.

Suzuki et al. [13] proved that if A and B be nonempty subsets of a uniformly
convex Banach space X such that A is convex, then (A,B) has the UC property.

Lemma 2.2. [13] Let A and B be nonempty subsets of the metric space (X, d).
Assume that (A,B) has the UC property. Let {xn} and {yn} are sequences in A and
B respectively, such that either of the following holds

lim
m→∞

sup
n≥m

d(xm, yn) = d(A,B) or lim
n→∞

sup
m≥n

d(xm, yn) = d(A,B).

Then {xn} is Cauchy.

Definition 2.3. [5] Let A and B be nonempty subsets of the metric space (X, d).
Then (A,B) is said to be proximinal if and only if A = A0 and B = B0 that

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Definition 2.4. [5] Let A and B be nonempty subsets of the metric space (X, d).
Then (A,B) is said to be sharp proximinal if and only if, for each x ∈ A and y ∈ B,
there exists a unique x′ ∈ A and y′ ∈ B such that d(x, y′) = d(x′, y) = d(A,B). The
pair (A,B) is said to be a semi-sharp proximinal if and only if, for each x ∈ A and
y ∈ B, there exists at most one point x′ ∈ A and at most one point y′ ∈ B such that
d(x, y′) = d(x′, y) = d(A,B).

Every closed and convex pair (A,B) in a strictly convex Banach space is semi-sharp
proximinal [9, Lemma 2.5]. Examples of such pairs are given in [9] for nonstrictly
convex Banach spaces.

Definition 2.5. [5] A sharp proximinal pair (A,B) is said to have the Pythagorean
property if and only if, for each (x, y) ∈ A×B,

d(x, y)2 = d(x, x′)2 + d(x′, y)2 and d(x, y)2 = d(y, y′)2 + d(y′, x)2,

where x′ ∈ A and y′ ∈ B are the unique points such that d(x, y′) = d(x′, y) = d(A,B).
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It is easy to see that if d(A,B) = 0, then the pair (A0, B0) has the Pythagorean
property.

Definition 2.6. [7] The modulus of convexity of a Banach space X is the function
δX : [0, 2]→ [0, 1] defined by

δX(ε) = inf
{

1− ‖x+ y

2
‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

Note that for any ε > 0 the number of δX(ε) is the largest number for which the
following implication always holds. For each x, y ∈ X

‖x‖ ≤ 1
‖y‖ ≤ 1
‖x− y‖ ≥ ε

 ⇒ ‖x+ y

2
‖ ≤ 1− δX(ε). (2.1)

Obviously a spaceX is uniformly convex if and only if its modulus of convexity satisfies
δ(ε) > 0 for ε > 0. We note that (2.1) has the following equivalent formulation. For
all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]

‖x− p‖ ≤ R
‖y − p‖ ≤ R
‖x− y‖ ≥ r

 ⇒ ‖p− x+ y

2
‖ ≤

(
1− δ( r

R
)
)
R. (2.2)

The characteristic (or coefficient) of convexity of Banach space X is the number
ε0 = ε0(X) = sup{ε ≥ 0 : δ(ε) = 0}.

3. Main results

First, we introduce the geometric concept of the ultrametric property to establish
our main results.

Definition 3.1. Let A and B be nonempty subsets of the metric space (X, d). Then
(A,B) is said to satisfies ultrametric property, if d(A,B) > 0 then there exists
ε(A,B) > 0 such that for every 0 < ε ≤ ε(A,B), x, x

′ ∈ A and y ∈ B satisfying
max{d(x, y), d(x′, y)} ≤ ε+ d(A,B), we have d(x, x′) ≤ max{d(x, y), d(x′, y)}.
Equivalently, (A,B) satisfies ultrametric property if either d(A,B) = 0 or there exists
ε(A,B) > 0 such that for every 0 < ε ≤ ε(A,B), x, x

′ ∈ A and y ∈ B

max{d(x, y), d(x′, y)} ≤ ε+ d(A,B)⇒ d(x, x′) ≤ ε+ d(A,B).

Example 3.2. Let (X, d) be a metric space. If the metric d satisfies the ultrametric
inequality, that is for all x, y, z ∈ X

d(x, y) ≤ max{d(x, z), d(z, y)},
it is called ultrametric on X, and the pair (X, d) is called an ultrametric space. Let A
and B be nonempty subsets of an ultrametric space, then (A,B) has the ultrametric
property.

Proposition 3.3. Let X be a Banach space with the modulus of covexity δ and
characteristic of convexity ε0(X) < 1. Let A and B be nonempty subsets of X such
that A is convex. Then (A,B) has the ultrametric property.
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Proof. Assume that d(A,B) 6= 0. Since ε0(X) < 1 then δ(1) > 0. Choose ε < ε(A,B)

sufficiently small such that ε
ε+d(A,B) < δ(1). Let x, x′ ∈ A and y ∈ B such that

‖x−y‖ ≤ ε+d(A,B) and ‖x′−y‖ ≤ ε+d(A,B) then we prove ‖x−x′‖ ≤ ε+d(A,B).
On the contrary, suppose that ‖x− x′‖ > ε+ d(A,B) then from (2.2) we get∥∥∥∥x+ x′

2
− y
∥∥∥∥ ≤ (1− δ

(
ε+ d(A,B)

ε+ d(A,B)

))
(ε+ d(A,B))

=
(
1− δ(1)

)
(ε+ d(A,B))

<

(
1− ε

ε+ d(A,B)

)
(ε+ d(A,B))

= d(A,B),

since A is convex, this is a contradiction. �

Proposition 3.3 requires that every nonempty pair (A,B) in a uniformly convex
Banach space X such that A is convex, has the ultrametric property. This is because
ε0(X) = 0. The next proposition gives the relation between the ultrametric property
and the UC property.

Proposition 3.4. Let A and B be nonempty subsets of the metric space (X, d) and
the pair (A,B) has the UC property. Then (A,B) has the ultrametric property.

Proof. Suppose that (A,B) has not the ultrametric property. So d(A,B) > 0 and
for every n ∈ N there exists 0 < εn ≤ 1

n , xn, x
′
n ∈ A and yn ∈ B such that

max{d(xn, yn), d(x′n, yn)} ≤ εn + d(A,B) ≤ 1
n + d(A,B) and d(xn, x

′
n) > d(A,B).

So {xn}, {x′n} are sequences in A and {yn} is sequence in B such that

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn) = d(A,B)

and limn→∞ d(xn, x
′
n) 6= 0. So the pair (A,B) has not the UC property. �

Now, we are ready to state our main best proximity point result. The contraction
condition that we use is more general than the contraction condition in [13]. The
authors of this reference supposed that there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ cmax
{
d(x, y), d(x, Tx), d(y, Ty)

}
+ (1− c)d(A,B),

for all x ∈ A and y ∈ B.

Theorem 3.5. Let A and B be nonempty subsets of the metric space (X, d) such that
A is complete, (A,B) has the UC property and (B,A) has the ultrametric property.
Let T : A∪B → A∪B be a generalized cyclic quasi-contraction, i. e., for which there
exists c ∈ [0, 1) such that

d(Tx, Ty) ≤cmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2

}
+ (1− c)d(A,B), (3.1)

for all x ∈ A and y ∈ B. Then for every x0 ∈ A the sequence {T 2nx0} converges to
some best proximity point x∗ ∈ A. Furthermore, every best proximity point of T in A
is a fixed point of T 2.
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Proof. Take x0 ∈ A and consider the sequence {xn} given by xn+1 := Txn for n ≥ 0.
From (3.1), for every n ∈ N we have

d(xn, xn+1) =d(Txn−1, Txn)

≤cmax

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2

}
+ (1− c)d(A,B)

≤cmax

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn) + d(xn, xn+1)

2

}
+ (1− c)d(A,B)

=cmax
{
d(xn−1, xn), d(xn, xn+1)

}
+ (1− c)d(A,B). (3.2)

Assume that for some n0 ∈ N,

max{d(xn0−1, xn0), d(xn0 , xn0+1)} = d(xn0 , xn0+1),

so by (3.2) we get

d(xn0−1, xn0) = d(xn0 , xn0+1) = d(A,B),

hence

max{d(xn0−1, xn0), d(xn0 , xn0+1)} = d(xn0−1, xn0).

Thus, we may assume that for each n ∈ N,

max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

Hence, from (3.2) for every n ∈ N, we obtain

d(xn, xn+1) ≤c d(xn−1, xn) + (1− c)d(A,B).

So for every n ∈ N

d(xn, xn+1) ≤ cnd(x0, x1) + (1− cn)d(A,B). (3.3)

Immediately, in the case d(A,B) = 0, from (3.3) we get {xn} and so {x2n} is a Cauchy
sequence. Suppose that d(A,B) 6= 0. From (3.3) we have

lim
n→∞

d(xn, xn+1) = d(A,B).

Since

lim
n→∞

d(x2n, x2n+1) = lim
n→∞

d(x2n+2, x2n+1) = d(A,B),

and (A,B) has the UC property, then

lim
n→∞

d(x2n, x2n+2) = 0.

Fix ε > 0 such that ε < min{ε(A,B), ε(B,A)}. We choose L ∈ N satisfying

d(xn, xn+1) < ε+ d(A,B) and d(x2n, x2n+2) < ε′ =
1− c
c

ε, (3.4)

for all n ≥ L. Fix n ∈ N with n ≥ L. We shall show that

d(x2n+1, x2p) < ε+ d(A,B), (3.5)
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for all p ≥ n. We assume that

d(x2n+1, x2m) < ε+ d(A,B), (3.6)

holds for some m ≥ n. Then since d(x2m+1, x2m) < ε + d(A,B) and (B,A) has the
ultrametric property, we obtain

d(x2n+1, x2m+1) < ε+ d(A,B) (3.7)

and since d(x2n+1, x2n+2) < ε + d(A,B) and (A,B) has the ultrmetric property we
get

d(x2n+2, x2m) < ε+ d(A,B). (3.8)

Also, we have

d(x2n+2, x2m+1) ≤cmax

{
d(x2n+1, x2m), d(x2n+1, x2n+2), d(x2m, x2m+1)

,
d(x2n+1, x2m+1) + d(x2n+2, x2m)

2

}
+ (1− c)d(A,B).

Now, by relations (3.4), (3.6), (3.7) and (3.8) we obtain

d(x2n+2, x2m+1) < c(ε+ d(A,B)) + (1− c)d(A,B) < ε+ d(A,B). (3.9)

Since d(x2m+2, x2m+1) < ε+d(A,B) and (A,B) has the ultrmetric property we obtain

d(x2n+2, x2m+2) < ε+ d(A,B). (3.10)

Hence, we have

d(x2n+1, x2m+2) ≤cmax

{
d(x2n, x2m+1), d(x2n, x2n+1), d(x2m+1, x2m+2)

,
d(x2n, x2m+2) + d(x2n+1, x2m+1)

2

}
+ (1− c)d(A,B)

≤cmax

{
d(x2n, x2n+2) + d(x2n+2, x2m+1), d(x2n, x2n+1)

, d(x2m+1, x2m+2)

,
d(x2n, x2n+2) + d(x2n+2, x2m+2) + d(x2n+1, x2m+1)

2

}
+ (1− c)d(A,B).

Now, by relations (3.4), (3.7) and (3.9) and (3.10) we obtain

d(x2n, x2m+3) ≤ cmax

{
ε′ + ε+ d(A,B), ε+ d(A,B),

ε′ + 2(ε+ d(A,B))

2

}
+ (1− c)d(A,B)

where ε′ = 1−c
c ε, so we have

d(x2n+1, x2m+2) < c(ε′ + ε+ d(A,B)) + (1− c)d(A,B) = ε+ d(A,B).
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By induction, we obtain (3.5) holds for all p ≥ n and so we get

lim
n→∞

sup
p≥n

d(x2n+1, x2p) = d(A,B),

that by using the UC property of (A,B) and Lemma 2.2 imply {x2n} is a Cauchy
sequence.
Hence, in both cases d(A,B) = 0 and d(A,B) 6= 0, we get the sequence {x2n} is
Cauchy and so convergent to some x∗ ∈ A. But we have

d(Tx∗, x2n) ≤cmax

{
d(x∗, x2n−1), d(x∗, Tx∗), d(x2n−1, x2n)

,
d(x∗, x2n) + d(x2n−1, Tx

∗)

2

}
+ (1− c)d(A,B)

≤cmax

{
d(x∗, x2n−1), d(x∗, Tx∗), d(x2n−1, x2n)

,
d(x∗, x2n) + d(x2n−1, x

∗) + d(x∗, Tx∗)

2

}
+ (1− c)d(A,B).

Letting n→∞ and taking lim sup, we obtain

d(x∗, Tx∗) ≤ cd(x∗, Tx∗) + (1− c)d(A,B),

and so d(x∗, Tx∗) = d(A,B). Furthermore, if z∗ be an arbitrary best proximity point
of T in A then we have

d(T 2z∗, T z∗) ≤cmax

{
d(Tz∗, z∗), d(Tz∗, T 2z∗),

d(Tz∗, T z∗) + d(z∗, T 2z∗)

2

}
+ (1− c)d(A,B)

≤cmax

{
d(z∗, T z∗), d(Tz∗, T 2z∗),

d(z∗, T z∗) + d(Tz∗, T 2z∗)

2

}
+ (1− c)d(A,B)

=cmax
{
d(z∗, T z∗), d(Tz∗, T 2z∗)

}
+ (1− c)d(A,B)

=cd(Tz∗, T 2z∗) + (1− c)d(A,B).

So we obtain d(T 2z∗, T z∗) = d(A,B), because d(z∗, T z∗) = d(A,B) and (A,B) has
the UC property, we get T 2z∗ = z∗. �

In the next theorem, we present conditions for uniqueness of best proximity point.

Theorem 3.6. In addition to assumptions of the previous theorem assume that
(A0, B0) has the Pythagorean property and (B,A) has the UC property. Then T
has a unique best proximity point x∗ in A.

Proof. Suppose that x∗ and x are two best proximity points of T in A, then

T 2x∗ = x∗ and T 2x = x.

Also, we know that (A0, B0) has the Pythagorean property and (x, Tx∗) ∈ (A0×B0),
so there exists unique (u,w) ∈ (A0 × B0) such that d(x,w) = d(u, Tx∗) = d(A,B)
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and

d(x, Tx∗)2 = d(x, u)2 + d(u, Tx∗)2 = d(x,w)2 + d(w, Tx∗)2.

Because x∗ and x are two best proximity points of T and the pairs (A,B) and (B,A)
have the UC property, we obtain u = x∗ and w = Tx. So we get

d(x, Tx∗)2 = d(x, x∗)2 + d(x∗, Tx∗)2 = d(x, Tx)2 + d(Tx, Tx∗)2.

Similarly we have

d(x∗, Tx)2 = d(x∗, x)2 + d(x, Tx)2 = d(x∗, Tx∗)2 + d(Tx∗, Tx)2.

Hence

d(x∗, x) = d(Tx∗, Tx) ≤ d(x, Tx∗) = d(x∗, Tx). (3.11)

From (3.1) and (3.11) we get

d(x, Tx∗) =d(T 2x, Tx∗)

≤cmax

{
d(Tx, x∗), d(Tx, T 2x), d(x∗, Tx∗)

,
d(Tx, Tx∗) + d(T 2x, x∗)

2

}
+ (1− c)d(A,B)

=cmax
{
d(Tx, x∗), d(x, x∗)

}
+ (1− c)d(A,B)

=cmax
{
d(x, Tx∗), d(x, x∗)

}
+ (1− c)d(A,B)

≤cd(x, Tx∗) + (1− c)d(A,B),

and so d(x, Tx∗) = d(A,B). Since d(x∗, Tx∗) = d(A,B) and (A,B) has the UC
property, we obtain x = x∗. �

The following example shows that the Pythagorean property of the pair (A0, B0)
in Theorem 3.6 is necessary to guarantee the uniqueness of best proximity of T . Also,
it shows that Theorem 3.5 is stronger than Theorem 2 of [13].

Example 3.7. Let R2 equipped with the Euclidian metric and let

A = {a = (0, 0), a′ = (1, 1.1)}

and

B = {b = (1, 0), b′ = (0, 1.1)}.
We define the cyclic mapping T : A ∪B → A ∪B by

Ta = b, Ta′ = b′, T b = a, T b′ = a′.

It is straightforward to show that all the assumptions of Theorem 3.5 are satisfied
and for all x ∈ A and y ∈ B we have

d(Tx, Ty) ≤3

4
max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2

}
+

1

4
d(A,B),
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and a, a′ are two best proximity points of T in A. In this example the pair (A0, B0)
has not the Pythagorean property. Also, note that since

cmax
{
d(a′, b), d(a′, Ta′), d(b, T b)

}
+ (1− c)d(A,B) = 1.1c+ (1− c)

= 1 + 0.1c < 1.1

= d(Ta′, T b),

for each c ∈ [0, 1), then we can not invoke Theorem 2 of [13] to show that the existence
of best proximity points of T in A.

The next example illustrates Theorem 3.6.

Example 3.8. Let R2 with the Euclidian norm, a = (0, 1), a′ = (1, 0), b = (0, 0),
b′ = (1, 1), A = [a, a′] and B = [b, b′]. We define the cyclic mapping T : A∪B → A∪B
by

Tx =

{
( 1
2 ,

1
2 ) if x ∈ (a, a′],

(0, 0) if x = a.
and Ty =

{
( 1
2 ,

1
2 ) if y ∈ [b, b′),

(1, 0) if y = b′.

for all x ∈ A and y ∈ B we have

d(Tx, Ty) ≤1

2
max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2

}
+

1

2
d(A,B).

It is straightforward to show that all the assumptions of Theorems 3.5 and 3.6 are
satisfied and x∗ = ( 1

2 ,
1
2 ) is unique fixed point of T in A.

Safari et al. [12] improved Theorem 2.4 in [3]. They showed that if A and B be
nonempty, closed and convex subsets of a uniformly convex Banach space X and T
be a cyclic mapping on A ∪B, then the contraction condition

d(T 2x, T 2y) ≤ c d(x, y) + (1− c)d(A,B),

for every x ∈ A, y ∈ B and some c ∈ [0, 1); is sufficient to prove the existence and
uniqueness of best proximity point of T .
The following corollary shows that the condition (3.1) is sufficient to prove the exis-
tence of best proximity point of T in Theorem 2.4 in [3].

Corollary 3.9. Let A and B be nonempty, closed and convex subsets of a uniformly
convex Banach space X. Let T be a cyclic mapping on A ∪B such that

‖Tx− Ty‖ ≤cmax

{
‖x− y‖, ‖x− Tx‖, ‖y − Ty‖, ‖x− Ty‖+ ‖Tx− y‖

2

}
+ (1− c)d(A,B),

for all x ∈ A and y ∈ B where c ∈ [0, 1). Then T has at least a best proximity point
x∗ in A that is a fixed point of T 2.

Note that when d(A,B) = 0, then the pairs (A,B) and (B,A) have the UC property,
and (A0, B0) has the Pythagorean property. So as a result of Theorems 3.5 and 3.6
we get the following theorem that is the extention of Corollaries 2.3 and 2.10 in [8].
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Theorem 3.10. Let A and B be nonempty and closed subsets of a complete metric
space (X, d). Let T be a cyclic mapping on A ∪B such that

d(Tx, Ty) ≤ cmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
for all x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point x∗ in
A ∩ B such that the Picard iteration {Tnx0} converges to x∗ for any starting point
x0 ∈ A ∪B.

Proof. Without loss of generality, take x0 ∈ A and consider the sequence {xn} given
by xn+1 := Txn for n ≥ 0. By the proof of Theorem 3.5

d(xn, xn+1) ≤ cnd(x0, x1), ∀ n ∈ N.

Then {xn} is a Cauchy sequence and thus there exists x∗ ∈ A∪B such that xn → x∗.
Now {x2n} is a sequence in A and {x2n+1} is a sequence in B and both converges to
x∗. Since A and B are closed x∗ ∈ A ∩ B and by the proof of Theorem 3.5 x∗ is a
fixed point of T . Since d(A,B) = 0, from Theorem 3.6 fixed point of T in A and so
in A ∩B is unique. �

To illustrate Theorem 3.10, we state the following example.

Example 3.11. Let X = R2 with the Euclidean norm,

a = (0, 1), b = (0, 0), a′ = (1, 0), b′ = (1, 1), z = (1,
1

2
),

A = {a, a′, z}, B = {b, b′, z}
and define the cyclic map T on A ∪B as follows:

Ta = b′, Ta′ = z, Tz = z, T b = a′, T b′ = z.

It is straightforward to show that

d(Tx, Ty) ≤ 1√
2

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

So from Theorem 3.10 T has a unique fixed point z ∈ A ∩B. �

From Theorem 3.10, we obtain the following common fixed point result which is
the extention of Corollary 3.11 in [12], immediatelly.

Corollary 3.12. Let (X, d) be a complete metric space and let T : X → X and
S : X → X be two mappings satisfying

d(Tx, Sy) ≤ cmax
{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)

2

}
for all x, y ∈ X where c ∈ [0, 1). Then T and S have a unique common fixed point in
X.

In Proposition 3.4 we prove that the ultrametric property is weaker than the UC
property. But if we apply the ultrametric property instead of the UC property for
the pair (A,B) then the results of Theorem 3.5 need not be true. In fact, we need the
UC property to ensure the convergence of sequence {T 2nx0}. The following examples
shows this fact.



BEST PROXIMITY POINTS 517

Example 3.13. Let R3 equipped with the Euclidian metric and let A = {a, a′} and
B = {b, b′}, that a, a′, b and b′ are four vertices of a regular tringular pyramid made
of equilateral triangles of side d = 1. We define the cyclic mapping T : A∪B → A∪B
by

Ta = b, T b = a′, Ta′ = b′, T b′ = a.

It is straightforward to show that the pairs (A,B) and (B,A) have the ultrametric
property and d(Tx, Ty) = 1 = d(A,B). Therefore, all the conditions of Theorem 3.5
except the UC property of (A,B) are true. For x0 = a and every n ∈ N, we have
x4n = a, x4n+1 = b, x4n+2 = a′, x4n+3 = b′. This proves that the sequence {T 2nx0}
is not convergent.

Example 3.14. Let R with the discrete metric. Let A be the set of even counting
numbers and B be the set of odd counting numbers. We define the cyclic mapping
T : A∪B → A∪B by Tx = x+1. It is obvious that the pairs (A,B) and (B,A) have
the ultrametric property and d(Tx, Ty) = 1 = d(A,B). Therefore, all the conditions
of Theorem 3.5 except the UC property of (A,B) are true. Then for every n ∈ N and
x0 ∈ A we get d(T 2nx0, T

2n+2x0) = 1, so the sequence {T 2nx0} is not convergence.

Of course, regardless of the convergence of sequence {T 2nx0}, the existence of
the best proximity point can be examined separately if both the pair (A,B) and
(B,A) satisfies the ultrametric property. Here, we present an existence theorem in
ultrametric spaces as a special case of metric spaces. In the theorem, the notation
A(X) denotes the family of all admissible subsets of X, that is, the family of subsets
of X that can be written as the intersection of a family of closed balls centered at
points of X. The proof of the theorem is similar to Theorem 3.8 in [1].

Theorem 3.15. Suppose the ultrametric space X be spherically complete, i.e., every
chain of closed balls in X has nonempty intersection. Let A and B be nonempty
subsets of X such that A ∈ A(X) and T : A ∪ B → A ∪ B be a cyclic map which
satisfies the following condition:

d(Tx, Ty) ≤cmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2

}
+ (1− c)d(A,B),

for all x ∈ A and y ∈ B and for some c ∈ [0, 1). Then T has a best proximity point.
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