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1. Introduction and main results

Let B ⊂ RN (N ≥ 3) denote the unit ball, this paper considers the following
semilinear elliptic equation with variable exponent −∆u = u2∗+f(|x|)−1, in B,

u > 0, in B,
u = 0, on ∂B,

(1.1)

where 2∗ = 2N
N−2 , f ∈ C([0, 1],R) satisfies condition:

(f) f(0) = 0, f(t) ≥ 0 for 0 ≤ t ≤ 1 and there exists 0 < α < min
{
N − 2, N2

}
such that f(t) = O(tα) for t→ 0+.

In 2008, Kurata and Shioji in [8] posed the following problem: if a variable exponent
q(·) satisfies 2 < inf

x∈Ω
q(x) ≤ sup

x∈Ω
q(x) ≤ 2∗ and q(·) is equal to 2∗ at a point, then does

the equation {
−∆u = |u|q(x)−2u, in Ω,
u = 0, on ∂Ω,

(1.2)

have a positive solution? They showed that if there exist x0 ∈ Ω, C0 > 0, η > 0
and 0 < l < 1 such that sup

Ω\Bη(x0)

q(x) < 2∗ and q(x) ≤ 2∗ − C0

| log |x−x0||l for a.e. x ∈

Ω∩Bη(x0), then the embedding from H1
0 (Ω) to Lq(x)(Ω) is compact and problem (1.2)

has a positive solution. Subsequently, many researchers studied this type of equation
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involving critical variable exponent(see [1, 3, 7, 10, 11]). Recently, for q(x) = 2∗+ |x|α
and Ω = B, Marcos do Ó et al. in [9] showed that the embedding from H1

0,rad(B) to

Lq(x)(B) is continuous and obtained a particular solution of problem (1.2). Moreover,
Cao et al. in [6] considered multiple nodal solutions in the same situation.

In fact, they required the measure size of the criticality set {x ∈ Ω : q(x) = 2∗} is
”small”. A natural and interesting question is whether or not we can obtain existence
results of nontrivial solution for problem (1.1) when the constraint of the criticality set
is violated? Motivated by [8] and [9], our aim in this paper is to obtain the existence
of nontrivial solutions for problem (1.1) with critical or supercritical exponent. The
main result of this paper reads as follows.

Theorem 1.1. Assume that f ∈ C([0, 1],R) satisfies the condition (f). Then problem
(1.1) has a nontrivial radial solution.

Remark 1.2. Our results extend the results of Theorem 1.5 in [9]. There are many
functions satisfying the condition (f). In addition, it is worth mentioning that we do
not require the measure size of the criticality set and the strictly supercritical growth
except in the origin.

Throughout this paper, we use ‖ · ‖ and | · |s to denote the usual norms of H1
0 (B)

and Ls(B) for s ≥ 1, respectively. The letter C and Ci stand for positive constants
which may take different values at different places.

2. Preliminaries and proof of the results

Let H1
0,rad(B) be the subspace of H1

0 (B) consisting of radially symmetric functions

and the variable exponent Lebesgue space Lp(x)(B) is defined by

Lp(x)(B) =

{
u | u : B → R is measurable,

∫
B

|u|p(x) dx <∞
}

with the norm

|u|p(x) = inf

{
λ > 0

∣∣∣ ∫
B

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

}
.

It follows from assumption (f) that there exist A > 0 and δ ∈ (0, 1) such that

A

2
tα < f(t) <

3A

2
tα, for t ∈ (0, δ). (2.1)

Moreover, f(t) ≤Mtα for t ∈ [δ, 1], where M = max
δ≤t≤1

f(t)
tα . Set C = max{ 3A

2 ,M}, we

have

0 ≤ f(t) ≤ Ctα, for t ∈ [0, 1]. (2.2)

According to (2.2), it is easy to see that f(t) satisfies the conditions (f2) and (f3)
in [9]. In addition, according to the proof of Theorem 2.1 in [9], their condition (f1)
can be reduced to f(t) ≥ 0. Therefore, similar to Theorem 2.1 in [9], we have the
following lemma.

Lemma 2.1. Let q(x) = 2∗ + f(|x|) and f ∈ C([0, 1],R) satisfies the condition (f).
Then the imbedding from H1

0,rad(B) to Lq(x)(B) is continuous.
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Define the energy functional on H1
0,rad(B) corresponding to problem (1.1)

I(u) =
1

2
‖u‖2 −

∫
B

|u|2∗+f(|x|)

2∗ + f(|x|)
dx.

Due to Lemma 2.1, we have that the functional I is well-defined and of class C1. It
is well known that the critical points of the functional I in H1

0,rad(B) are solutions of

problem (1.1). Define the best Sobolev constant

S = inf
u∈H(RN )\{0}

‖u‖2(∫
RN |u|2

∗dx
) 2

2∗
. (2.3)

From ([5]), we know that S is attained by functions vε(x) = (N(N−2)ε)
N−2

2

(ε2+|x|2)
N−2

2

.

Lemma 2.2. Assume that f ∈ C([0, 1],R) satisfies the condition (f), then the func-

tional I satisfies the (PS)c condition with c ∈ (0, 1
N S

N
2 ) in H1

0,rad(B).

Proof. Let {un} ⊂ H1
0,rad(B) be a (PS)c sequence of I with c ∈ (0, 1

N S
N
2 ). Then

|I(un)| ≤ c, I ′(un)→ 0 as n→∞. (2.4)

It follows from the condition (f) that

I(un)− 1

2∗
〈I ′(un), un〉 =

1

N
‖un‖2 +

∫
B

f(|x|)|u|2∗+f(|x|)

2∗(2∗ + f(|x|))
dx ≥ 1

N
‖un‖2,

which implies that 1
N ‖un‖

2 ≤ c + o(‖un‖). Thus {un} is a bounded sequence in

H1
0,rad(B). Up to a subsequence, there exists u ∈ H1

0,rad(B) such that un converges

to u weakly in H1
0,rad(B). Let vn = un−u, then we see that vn converges to 0 weakly

in H1
0,rad(B). Since H1

rad([θ, 1]) ↪→↪→ Lp([θ, 1]) for any θ ∈ (0, 1) and p ≥ 1. It implies

from (2.2) that ∫ 1

θ

(|vn|2
∗+f(r) − |vn|2

∗
)rN−1 dr → 0, as n→∞.

Similar to (3.9) in [9], for any ε > 0, we obtain that there exists θ = θ(ε) > 0 such
that ∫ θ

0

(|vn|2
∗+f(r) − |vn|2

∗
)rN−1 dr ≤ ε.

Therefore, we have∫ 1

0

|vn|2
∗+f(r)rN−1 dr =

∫ 1

0

|vn|2
∗
rN−1 dr + o(1). (2.5)

By the Brezis-Lieb lemma(see [4]), one has

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1),

and ∫
B

|un|2
∗+f(|x|)

2∗ + f(|x|)
dx =

∫
B

|vn|2
∗+f(|x|)

2∗ + f(|x|)
dx+

∫
B

|u|2∗+f(|x|)

2∗ + f(|x|)
dx+ o(1).
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Since I(un) = c+ o(1), we obtain

1

2
‖vn‖2 −

∫
B

|vn|2
∗+f(|x|)

2∗ + f(|x|)
dx = c− I(u) + o(1). (2.6)

According to I ′(un) = o(1) and 〈I ′(u), u〉 = 0, we get

‖vn‖2 −
∫
B

|vn|2
∗+f(|x|) dx = o(1). (2.7)

Assume that ‖vn‖ → l, we have
∫
B
|vn|2

∗+f(|x|) dx→ l2. By (2.5), one has∫
B

|vn|2
∗
dx→ l2.

It follows from (2.3)

‖vn‖2
∗
≥ S 2∗

2

∫
RN
|vn|2

∗
dx.

As n→∞, we obtain l ≥ S N
4 . Note that I(u) ≥ 0, it implies from (2.6) and f(t) ≥ 0

that

c ≥ 1

N
l2 + I(u) ≥ 1

N
S
N
2 ,

which contradicts the fact c < 1
N S

N
2 . Therefore, we have l = 0, which implies

that un → u strongly in H1
0,rad(B). Hence I satisfies the (PS)c condition with

c ∈ (0, 1
N S

N
2 ). �

Let φ(x) ∈ C∞0 (B) be a cut-off function such that 0 ≤ φ(x) ≤ 1 in B, φ(x) ≡ 1
for |x| ≤ ρ and φ(x) ≡ 0 for |x| ≥ 2ρ, where 0 < ρ < 1

2 is a constant. Define
uε(x) = φ(x)vε(x), it is known ([5]) that

‖uε‖2 = S
N
2 +O(εN−2),

∫
B

|uε|2
∗
dx = S

N
2 +O(εN ). (2.8)

Lemma 2.3. Assume that f ∈ C([0, 1],R) satisfies the condition (f), then

sup
t≥0

I(tuε) <
1
N S

N
2 for ε > 0 sufficiently small.

Proof. Define

h(t) =
t2

2
‖uε‖2 −

t2
∗

2∗

∫
B

|uε|2
∗
dx,

and

I(tuε) =
t2

2
‖uε‖2 −

∫
B

t2
∗+f(|x|)

2∗ + f(|x|)
|uε|2

∗+f(|x|) dx.

By (2.8), after a straightforward calculation, we have

sup
t≥0

h(t) =
1

N
S
N
2 +O(εN−2). (2.9)

It follows from (f) and (2.8) that lim
t→+∞

I(tuε) = −∞. Note that I(0) = 0 and

I(tuε) > 0 for t→ 0+, so sup
t≥0

I(tuε) attains for some tε > 0 and there exist R, τ > 0
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such that τ ≤ tε ≤ R. Let aε =

(
N(N − 2)εt

2
N−2
ε − ε2

) 1
2

. Choose ε small enough,

we have |tεuε| ≥ 1 for r ≤ aε and |tεuε| ≤ 1 for r ≥ aε. Moreover, there exists C1 > 0
such that

ε ≤ C1ε
1
2 ≤

(
N(N − 2)τ

2
N−2 ε− ε2

) 1
2 ≤ aε ≤

(
N(N − 2)R

2
N−2 ε− ε2

) 1
2

< 1.

(2.10)
Define

Aε =

∫
B

|tεuε(x)|2∗+f(|x|)

2∗ + f(|x|)
dx−

∫
B

|tεuε(x)|2∗

2∗ + f(|x|)
dx

and

Bε =

∫
B

(
1

2∗
− 1

2∗ + f(|x|)

)
|tεuε(x)|2

∗
dx.

Then

sup
t≥0

I(tuε) = I(tεuε) = h(tε)−Aε +Bε ≤ sup
t≥0

h(t)−Aε +Bε. (2.11)

Using the definition of uε and assumption (f), it follows from (2.1) and (2.10) that

Aε = NωN

∫ 1

0

|tεuε(r)|2
∗

2∗ + f(r)
(|tεuε(r)|f(r) − 1)rN−1 dr

≥ NωN
∫ ε

0

|tεuε(r)|2
∗

2∗ + f(r)
(|tεuε(r)|f(r) − 1)rN−1 dr −NωN

∫ 1

aε

|tεuε(r)|2
∗

2∗ + f(r)
rN−1 dr

≥ C2

∫ ε

0

ε−N | log ε|rN−1f(r) dr − C3

∫ 1

aε

εN

r2N
rN−1 dr

≥ C2A

2

∫ ε

0

ε−N | log ε|rN−1+α dr − C3ε
N (a−Nε − 1)

≥ C2A

2
εα| log ε| − C3

CN1
ε
N
2 (2.12)

where ωN = (2πN/2)/(NΓ(N/2)) denotes the volume of the unit ball B. In addition,
by (2.2), we have

Bε = NωN

∫ 1

0

f(r)

2∗(2∗ + f(r))
|tεuε(r)|2

∗
rN−1 dr

≤ C4

∫ ε

0

ε−NrN−1f(r) dr + C4

∫ 1

ε

εN

r2N
rN−1f(r) dr

≤ C5

∫ ε

0

ε−NrN−1rα dr + C5

∫ 1

ε

εN

r2N
rN−1rα dr

= C5ε
α + C5(εα − εN )

≤ 2C5ε
α. (2.13)
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Note that 0 < α < min{N − 2, N2 }, from (2.11), (2.12) and (2.13), we obtain

sup
t≥0

I(tuε) ≤
1

N
S
N
2 +O(εN−2)− C2A

2
εα| log ε|+ C3

CN1
ε
N
2 + 2C5ε

α <
1

N
S
N
2

for ε > 0 sufficiently small. The proof is complete. �

Proof of Theorem 1.1. According to (2.8), we know that the functional I has the
mountain pass geometry and there exists t0 > 0 such that I(t0uε) < 0. Define

Γ = {γ ∈ C([0, 1], X0)| γ(0) = 0, γ(1) = t0uε}, c̃ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)).

From Lemma 2.3, we have c̃ ≤ sup
t≥0

I(tuε) <
1
N S

N
2 . Applying Lemma 2.2, we know

that I satisfies the (PS)c̃ condition. By the mountain pass theorem(see [2]), we obtain
that problem (1.1) has a nontrival solution. The proof is complete. �
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