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1. Introduction

In 1992, Dhage introduced the D-metric in his Ph.D. thesis [4]. In 2003, Mustafa
however demonstrated that most claims concerning the fundamental topological prop-
erties of D-metric were incorrect and he instead introduced the G-metric [14]. Since
then, many authors studied fixed points and common fixed points on G-metric spaces
[27, 6]. In 2007, Sedghi et al. gave some definitions of D∗-metric [22] and in 2012, he
also defined an S-metric [21] as a generalization of D∗-metric. From then on many
authors studied the S-metric [24, 23, 15, 16, 25, 17, 5, 18, 26]. In this paper we in-
vestigate the relationships between the G-metric and S-metric, and we introduce the
concept of Meir-Keeler S type contraction on S-metric space. We also obtain new
fixed point theorems with F control functions on S-metric spaces.

In this section, we recall some definitions that will be used in the remainder of this
paper.

Definition 1.1. [14] Let X be a nonempty set, G : X × X × X −→ [0,+∞] be a
function satisfying the following properties:
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(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on
X, and the pair (X,G) is called a G-metric space.

Definition 1.2. [14] A G-metric space (X,G) is symmetric if G(x, y, y) = G(x, x, y)
for all x, y ∈ X.

Definition 1.3. [21] Let X be a nonempty set and S : X × X × X −→ R+ be a
function satisfying the following properties:

(1) S(x, y, z) = 0 iff x = y = z;
(2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), for all a, x, y, z ∈ X.

Then the function S is called an S-metric on X and the pair (X,S) is called an
S-metric space.

Remark 1.4. [21] S(x, x, y) = S(y, y, x).

Example 1.5. [21] S(x, y, z) =| x− z | + | y − z | is an S-metric on R.

Example 1.6. [20] S(x, y, z) =| x− z | + | y + z − 2x | is an S-metric on R.

Remark 1.7. G-metric and S-metric can not contain each other. Because G(x, x, y)
is not always equal G(y, y, x), but S(x, x, y) = S(y, y, x). And G(x, x, y) ≤ G(x, y, z)
for z 6= y, but S(x, x, y) is not always less than S(x, y, z) even z 6= y.

Example 1.8. Let X = {a, b} and define G by
G(a, a, a) = G(b, b, b) = 0,
G(a, a, b) = G(a, b, a) = G(b, a, a) = 2,
G(b, b, a) = G(b, a, b) = G(a, b, b) = 4.
Then G is a G-metric, but G(a, a, b) 6= G(b, b, a).

Example 1.9. Let X = {a, b, c} and define S by
S(a, a, a) = S(b, b, b) = S(c, c, c) = 0,
S(a, a, b) = S(b, b, a) = 1, S(a, a, c) = S(c, c, a) = 2,
S(b, b, c) = S(c, c, b) = 1, S(a, b, c) = 1.
Assume S(x, y, z) = S(y, x, z) = S(z, y, x) = · · · (symmetry in all three variables).
Then S is an S-metric, but S(a, b, c) < S(a, a, c).

Definition 1.10. [3] Let X be a nonempty set. A function d : X → [0,+∞) is
said to be a b-metric if there exists b ≥ 1 such that for all x, y, z ∈ X, the following
conditions hold:

(1) d(x, y) = 0 iff x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ b(d(x, z) + d(z, y)).

In this case, the pair (X, d) is called a b-metric space.
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Remark 1.11. [24] d(x, y) := S(x, x, y) is a b-metric, and

d(x, y) ≤ 3

2
(d(x, z) + d(z, y)).

Definition 1.12. [21] Let (X,S) be an S-metric space.

(1) A sequence {xn} in X is said to S-converge to a point x ∈ X if and only if
S(xn, xn, x)→ 0 as n→∞. That is for each ε > 0 there exists n0 ∈ N such that
for all n > n0, S(xn, xn, x) < ε.

(2) A sequence {xn} in X is called an S-Cauchy sequence if, for each ε > 0, there
exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

(3) The S-metric space (X,S) is said to be S-complete if every S-Cauchy sequence
is S-convergent.

Lemma 1.13. [21] Let (X,S) be an S-metric space. If a sequence {xn} in X S-
converges to x, then x is unique.

Definition 1.14. [8] Let T, g : X → X. If Tx = gx implies Tgx = gTx for all x ∈ X,
then the pair (T, g) is said to be weakly compatible.

2. Meir-Keeler S type contraction on S-metric spaces

Meir-Keeler’s result [12], proved in 1969, plays a fundamental role in the fixed point
theory for metric spaces [2, 9]. Z. Mustafa generalized Meir-Keeler type contraction
on G-metric spaces [13]. Here we generalize that contraction on S-metric spaces.

Definition 2.1. Let (X,S) be an S-metric space and T be a self-mapping of X. Then
T is called a Meir-Keeler S type contraction whenever for each ε > 0 there exists δ > 0
such that

ε < M(x, y, z) < ε+ δ ⇒ S(Tx, Ty, Tz) ≤ ε,
where

M(x, y, z) = max

{
S(x, y, z), S(Tx, Tx, x), S(Ty, Ty, y), S(Tz, Tz, z),

S(Tx, Tx, y) + S(Ty, Ty, x)

3
,
S(Tx, Tx, z) + S(Tz, Tz, x)

3
,

S(Tz, Tz, y) + S(Ty, Ty, z)

3

}
.

Remark 2.2. Note that if T is a Meir-Keeler S type contraction and M(x, y, z) > 0,
we have S(Tx, Ty, Tz) < M(x, y, z).

Proposition 2.3. Let (X,S) be an S-metric space and T : X → X be a Meir-Keeler
S type contraction. Then

lim
n→∞

S(Tn+1x, Tn+1x, Tnx) = 0 and lim
n→∞

S(Tnx, Tnx, Tn+1x) = 0

for all x ∈ X.
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Proof. Let x0 ∈ X. We define an iterative sequence {xn} as follows:

xn+1 = Txn = Tn+1x0

for all n ≥ 0. If some xn0+1 = xn0 for some n0 ≥ 0, then xn0 is a fixed point of
T . In this case, S(Tn+1x, Tn+1x, Tnx) = 0, for n ≥ n0, then the proposition follows.
Throughout the proof, we assume that xk+1 6= xk for all k ∈ N . Since

M(xn+1, xn, xn)

=max

{
S(xn+1, xn+1, xn), S(Txn+1, Txn+1, xn+1), S(Txn, Txn, xn), S(Txn, Txn, xn),

S(Txn+1, Txn+1, xn) + S(Txn, Txn, xn+1)

3
,

S(Txn+1, Txn+1, xn) + S(Txn, Txn, xn+1)

3
,

S(Txn, Txn, xn) + S(Txn, Txn, xn)

3

}
= max

{
S(xn+1, xn+1, xn), S(xn+2, xn+2, xn+1),

S(xn+2, xn+2, xn)

3

}
≤ max

{
S(xn+1, xn+1, xn), S(xn+2, xn+2, xn+1),

2S(xn+2, xn+2, xn+1) + S(xn+1, xn+1, xn)

3

}
= max{S(xn+1, xn+1, xn), S(xn+2, xn+2, xn+1)}.

So M(xn+1, xn+1, xn) = max{S(xn+1, xn+1, xn), S(xn+2, xn+2, xn+1)} > 0. Since T
is a Meir-Keeler S type contraction,

S(xn+2, xn+2, xn+1) = S(Txn+1, Txn+1, Txn) < M(xn+1, xn+1, xn).

Then it is impossible that

max{S(xn+1, xn+1, xn), S(xn+2, xn+2, xn+1)} = S(xn+2, xn+2, xn+1).

Hence we derive that

S(xn+2, xn+2, xn+1) < M(xn+1, xn+1, xn) = S(xn+1, xn+1, xn)

for every n. Thus {S(xn+1, xn+1, xn)}∞n=0 is a decreasing sequence, hence converges
to some ε ∈ [0,∞), that is

lim
n→∞

S(xn+1, xn+1, xn) = ε.

In particular, we have

lim
n→∞

M(xn+1, xn+1, xn) = ε. (2.1)

Notice that ε = inf{S(xn+1, xn+1, xn) : n ∈ N}.
We claim that ε = 0. Suppose to the contrary that ε > 0. Regarding (2.1) together
with the assumption that T is a Meir-Keeler S type contraction, for this ε > 0, there
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exists δ > 0 and a natural number m such that ε < M(xm+1, xm+1, xm) < ε+ δ, then
we have

S(Txm+1, Txm+1, Txm) = S(xm+2, xm+2, xm+1) ≤ ε
which is a contradiction, because

ε = inf{S(xn+1, xn+1, xn) : n ∈ N}

and

{S(xn+1, xn+1, xn)}∞n=0

is a strictly decreasing sequence. So we get

lim
n→∞

S(Tn+1x, Tn+1x, Tnx) = 0.

Since

S(xn, xn, xn+1) = S(xn+1, xn+1, xn),

we also obtain limn→∞ S(Tn+1x, Tn+1x, Tnx) = 0. �

Theorem 2.4. Let (X,S) be a complete S-metric space. Let T : X → X be an
orbitally continuous mapping and a Meir-Keeler S type contraction. Then T has
a unique fixed point, say w ∈ X. Moreover, lim

n→∞
S(Tn+1x, Tn+1x,w) = 0 for all

x ∈ X.

Proof. Let x0 ∈ X. We define an iterative sequence {xn} as follows:

xn+1 = Txn = Tn+1x0

for all n ≥ 0. We claim that limm,n→∞ S(xn, xn, xm) = 0. If this is not the case, then
there exists a ε > 0 and a subsequence {xn(i)} of {xn} such that

S(xn(i), xn(i), xn(i+1)) > 2ε. (2.2)

For the same ε > 0, there exists δ > 0 such that ε < M(x, y, z) < ε+ δ which implies
S(Tx, Ty, Tz) ≤ ε. Set r = min{ε, δ}. By Proposition 2.3, one can choose a natural
number n0 such that

S(xn+1, xn+1, xn) <
r

8
, S(xn, xn, xn+1) <

r

8
(2.3)

for all n ≥ n0. Let n(i) > n0, we have n(i) ≤ n(i+ 1)− 1. Because

S(xn(i), xn(i), xn(i+1)−1) ≥ S(xn(i), xn(i), xn(i+1))− 2S(xn(i+1)−1, xn(i+1)−1, xn(i+1))

≥ 2ε− r

4
≥ 2ε− ε

4
= ε+

3ε

4
≥ ε+

r

2

and

S(xn(i), xn(i), xn(i)+1) <
r

4
< ε+

r

2
,

it follows that the value of S(xn(i), xn(i), xk) changes from less than ε + r
2 to no less

than ε+ r
2 when k increases from n(i) + 1 to n(i+ 1)− 1. We can choose the smallest
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integer k with n(i) + 2 ≤ k ≤ n(i + 1) − 1 such that S(xn(i), xn(i), xk) ≥ ε + r
2 , and

S(xn(i), xn(i), xk−1) < ε+ r
2 . We then get

S(xn(i), xn(i), xk) ≤ S(xn(i), xn(i), xk−1) + 2S(xk−1, xk−1, xk)

< ε+
r

2
+
r

4
= ε+

3r

4
. (2.4)

Therefore, we obtain the inequalities

ε+
r

2
≤ S(xn(i), xn(i), xk) < ε+ r, (2.5)

S(xn(i)+1, xn(i)+1, xn(i)) <
r

8
< ε+ r, (2.6)

S(xk+1, xk+1, xk) <
r

8
< ε+ r, (2.7)

S(xn(i)+1, xn(i)+1, xk) + S(xk+1, xk+1, xn(i))

3

≤
2S(xn(i)+1, xn(i)+1, xn(i))+S(xn(i), xn(i), xk)+2S(xk+1, xk+1, xk)+S(xk, xk, xn(i))

3

<
r
4 + ε+ 3r

4 + r
4 + ε+ 3r

4

3
= ε+ r.

(2.8)

By (2.5)-(2.8), we get that ε < M(xn(i), xk, xk) < ε + r. Since T is a Meir-Keeler S
type contraction, we derive S(xn(i)+1, xk+1, xk+1) ≤ ε. But

S(xn(i)+1, xn(i)+1, xk+1) ≥ S(xn(i), xn(i), xk)− 2S(xn(i), xn(i), xn(i)+1)

− 2S(xk+1, xk+1, xk)

> ε+
r

2
− r

4
− r

4
= ε.

This is a contradiction. Therefore, our claim is proved. So {xn} is an S-Cauchy
sequence. Since (X,S) is S-complete, the sequence {xn} S-converges to some w ∈ X,
we have

lim
n→∞

S(Tnx0, T
nx0, w) = lim

n→∞
S(w,w, Tnx0) = 0.

Since T is orbitally continuous and limn→∞ S(Tnx0, w, w) = 0, we get

lim
n→∞

S(TTnx0, TT
nx0, Tw) = 0,

that is,
lim
n→∞

S(Tn+1x0, T
n+1x0, Tw) = lim

n→∞
S(xn+1, xn+1, Tw) = 0.

Thus, {xn+1} converges to Tw in (X,S). By the uniqueness of limit, we get Tw = w.
Finally, we show that T has a unique fixed point. If there exists u ∈ X such that
Tu = u and S(u, u, w) > 0,

M(u, u, w)

= max

{
S(u, u, w), S(Tu, Tu, u), S(Tw,w,w),

S(Tu, Tu,w) + S(Tw, Tw, u)

3

}
= S(u, u, w) > 0.



MEIR-KEELER S TYPE CONTRACTIONS 493

Since T is a Meir-Keeler S type contraction, we derive

M(u, u, w) > S(Tu, Tu, Tw) = S(u, u, w),

which is a contradiction. Thus, we find that S(u, u, w) = 0. So we conclude that
u = w. T has a unique fixed point. �

Bisht and Pant [1] gave a solution to the question of the existence of a contractive
mapping that has a fixed point which is discontinuous at the fixed point. The following
theorem shows some Meir-Keeler S type contractions on S-metric space have a fixed
point but the mapping need not be continuous at the fixed point.

Theorem 2.5. Let (X,S) be a complete S-metric space. Let T : X → X be a Meir-
Keeler S type contraction. Assume T 2 is an orbitally continuous mapping. Then, T
has a unique fixed point, say w ∈ X. And, limn→∞ S(Tn+1x,w,w) = 0 for all x ∈ X.
Moreover, T is continuous at w iff limx→wM(x,w,w) = 0.

Proof. Because T is a Meir-Keeler S type contraction, Proposition 2.3 is still correct.
And just like the proof of Theorem 2.4, we can also define an iterative sequence
{xn = Tnx0}, where x0 ∈ X is arbitrary; and also we can show the sequence is an
S-Cauchy sequence. Since X is S-complete, there exists a point w ∈ X such that

lim
n→∞

S(Tnx0, T
nx0, w) = 0.

Also

lim
n→∞

S(T 2Tnx0, T
2Tnx0, w) = lim

n→∞
S(xn+2, xn+2, w) = 0.

By the orbital continuity of T 2, we have

lim
n→∞

S(T 2Tnx0, T
2Tnx0, T

2w) = 0.

By the uniqueness of limit, we get T 2w = w. We claim that Tw = w. If w 6= Tw,
then

M(Tw, Tw,w) = max

{
S(Tw, Tw,w), S(Tw, Tw, Tw), S(Tw, Tw,w),

S(T 2w, T 2w,w) + S(Tw, Tw, Tw)

3
,

S(T 2w, T 2w,w) + S(Tw, Tw, Tw)

3
,

S(Tw, Tw,w) + S(Tw, Tw,w)

3

}
= max{S(Tw, Tw,w), S(Tw, Tw, Tw)}
=S(w,w, Tw) > 0,

and since T is a Meir-Keeler S type contraction,

S(w,w, Tw) = S(T 2w, T 2w, Tw) < M(Tw, Tw,w) = S(w,w, Tw).

which is a contradiction. Thus, w is a fixed point of T . The uniqueness of fixed point
we can also get just as the proof of Theorem 2.4.
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Finally, we show that T is continuous at w iff lim
x→w

M(x, x, w) = 0.

Let T be continuous at the fixed point w and let a sequence {yn} in X converge
to w, i.e., lim

n→∞
S(yn, yn, w) = lim

n→∞
S(w,w, yn) = 0, and lim

n→∞
S(Tyn, T yn, Tw) = 0.

Since

M(yn, yn, w)

= max

{
S(yn, yn, w), S(Tyn, Tyn, yn),

S(Tyn, T yn, w) + S(Tw, Tw, yn)

3

}
≤max

{
S(yn, yn, w), S(Tyn, T yn, w) + S(w,w, yn),

S(Tyn, T yn, Tw) + S(w,w, yn)

3

}
,

we get limn→∞M(yn, yn, w) = 0.
On the other hand, if

lim
n→∞

M(yn, yn, w) = 0

and

lim
n→∞

S(yn, yn, w) = lim
n→∞

S(w,w, yn) = 0,

and since
S(Tyn, Tyn, w)

3
≤M(yn, yn, w)

= max

{
S(yn, yn, w), S(Tyn, Tyn, yn),

S(Tyn, T yn, w) + S(Tw, Tw, yn)

3

}
,

we get lim
n→∞

S(Tyn, T yn, Tw) = 0, that is, T is continuous at w. �

Example 2.6. Let X = [0, 2] and S(x, y, z) = max{|x−y|, |x−z|} for all x, y, z ∈ X.
Define T : X → X by

T (x) =

{
1, if x ≤ 1,

0, if x > 1.

We shall show that T is a Meir-Keeler S type contraction. Without loss of generality,
take z ≤ y ≤ x. We have the following cases:

Case 1: 0 ≤ z ≤ y ≤ x ≤ 1. Here we have S(Tx, Ty, Tz) = S(1, 1, 1) = 0 and

M(x, y, z) = max

{
S(x, y, z), S(1, 1, x), S(1, 1, y), S(1, 1, z),

S(1, 1, y) + S(1, 1, x)

3
,
S(1, 1, z) + S(1, 1, x)

3
,
S(1, 1, y) + S(1, 1, z)

3

}
=1− z;

Case 2: 0 ≤ z ≤ y ≤ 1 and 1 < x ≤ 2. Here we have S(Tx, Ty, Tz) = 1 and
M(x, y, z) = x;

Case 3: 0 ≤ z ≤ 1 and 1 < y ≤ x ≤ 2. Here we have S(Tx, Ty, Tz) = 1 and
M(x, y, z) = x;

Case 4: 1 < z ≤ y ≤ x ≤ 2. Here we have S(Tx, Ty, Tz) = 0 and M(x, y, z) = x.
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When ε ≥ 1 the case 2, case 3, case 4 probably satisfy ε < M(x, y, z), here
S(Tx, Ty, Tz) ≤ ε and the δ(ε) can be any positive number. When 0 < ε < 1 the
case 1 probably satisfy ε < M(x, y, z), and here we let δ(ε) = 1− ε to limit only the
case 1 occur, and the S(Tx, Ty, Tz) ≤ ε. Then for each ε > 0 there exists δ > 0 such
that

ε < M(x, y, z) < ε+ δ ⇒ S(Tx, Ty, Tz) ≤ ε.
So T is a Meir-Keeler S type contraction. T 2 is continuous, since T 2(x) = 1 for all
x ∈ X. Then T satisfies the condition of Theorem 2.5 and has a unique fixed point
x = 1. It can also be seen that

lim
x→1+

M(1, x, x) = lim
x→1+

max

{
S(1, 1, x), S(1, 1, 1), S(0, 0, x), S(0, 0, x),

S(1, 1, x) + S(0, 0, 1)

3
,
S(0, 0, x) + S(0, 0, x)

3

}
= lim

x→1+
max

{
x− 1, 0, x, x,

x− 1 + 1

3
,
x+ x

3

}
= lim

x→1+
x = 1 6= 0,

and T is discontinuous at the fixed point x = 1.

3. Contraction by F control function on S-metric spaces

This section is inspired by [11, 7]. In the papers [11, 7] using contraction through F
control function on metric-like space to get common fixed point and coupled common
fixed point. We generalize the contraction with F control function on S-metric spaces.

Definition 3.1. [19] Let φ, ϕ : [0,+∞) → [0,+∞) be two functions. If they satisfy
the following conditions:

(1) if φ(u) ≤ ϕ(v), then u ≤ v;
(2) for un, vn ∈ [0,+∞) with lim

n→∞
un = lim

n→∞
vn = w, if φ(un) ≤ ϕ(vn) for all n

n ∈ N, then w = 0,

then (φ, ϕ) is called a pair of shifting distance functions.

Remark 3.2. [7] If (φ, ϕ) is a pair of shifting distance functions, φ(t) ≤ ϕ(t), then
t = 0.

Example 3.3. The pair (φ, ϕ) defined by φ(t) = arctan(1 + 2t), ϕ(t) = arctan(1 + t)
is a pair of shifting distance functions on [0,+∞).

The F control function F : [0,+∞)3 → [0,∞) was introduced by Karapinar et al.
[10]. We extend it to functions of four variables.

Definition 3.4. A function F : [0,+∞)4 → [0,∞) is a control function if it satisfies
the conditions:

(F1) max{a, b} ≤ F (a, b, c, d);
(F2) F (a, 0, 0, 0) = a;
(F3) F is continuous.
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We denote this class of functions F by F.

Example 3.5. The following functions belong to F.

1. F (a, b, c, d) = a+ b+ c+ d,
2. F (a, b, c, d) = max{a, b}+ ln(c+ d+ 1).

Theorem 3.6. Let (X,S) be an S-complete S-metric space, and T, g : X → X
functions such that TX ⊂ gX. Assume gX is closed and satisfies the condition:

φ (F (S(Tx, Ty, Tz), ψ(Tx), ψ(Ty), ψ(Tz)))

≤ ϕ (F (S(gx, gy, gz), ψ(gx), ψ(gy), ψ(gz))) ,
(3.1)

for all x, y, z ∈ X, where F ∈ F, (φ, ϕ) is a pair of shifting distance function, and
ψ : X → R+ is a lower semi-continuous function. Then T and g have a coincidence
point. If (T, g) is weakly compatible, then T and g have a unique common fixed point.

Proof. Step 1. Let x0 ∈ X. Since TX ⊂ gX, there exists x1 ∈ X such that gx1 = Tx0.
There exists x2 ∈ X such that gx2 = Tx1. Continue this procedure, we get a sequence
{xn} satisfying

gxn = Txn−1, n = 1, 2, 3, · · · . (3.2)

If there exists n0 ∈ N such that gxn0 = gxn0+1, then Txn0 = gxn0 , which means that
T and g have a coupled point and the proof is ended. In the following we assume
gxn0

6= gxn0+1 for n ∈ N. In (3.1) we let (x, y, z) = (xn, xn, xn+1). From (3.2) we
obtain

φ (F (S(gxn+1, gxn+1, gxn+2), ψ(gxn+1), ψ(gxn+1), ψ(gxn+2)))

≤ϕ (F (S(gxn, gxn, gxn+1), ψ(gxn), ψ(gxn), ψ(gxn+1))) .

In light of (1) of Definition 3.1 we have

{F (S(gxn, gxn, gxn+1), ψ(gxn), ψ(gxn), ψ(gxn+1))}

is a decreasing sequence. So there exists r ≥ 0 such that

lim
n→∞

F (S(gxn, gxn, gxn+1), ψ(gxn), ψ(gxn), ψ(gxn+1)) = r.

It follows from (2) of Definition 3.1 that r = 0.
By virtue of (F1) of Definition 3.4 we gain that

lim
n→∞

max{S(gxn, gxn, gxn+1), ψ(gxn)} = 0. (3.3)

Step 2. To prove {gxn} is an S-Cauchy sequence. If lim
n→∞

S(gxn, gxn, gxn+1) 6= 0,

then there exists ε > 0, two subsequence {gxm(k)} and {gxn(k)} with m(k) > n(k) ≥ k
and m(k) is the smallest positive integer which satisfy

S(gxn(k), gxn(k), gxm(k)) ≥ ε. (3.4)

We have

S(gxn(k), gxn(k), gxm(k)−1) < ε. (3.5)
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Since

ε ≤S(gxn(k), gxn(k), gxm(k))

≤S(gxn(k), gxn(k), gxm(k)−1) + 2S(gxm(k), gxm(k), gxm(k)−1)

≤ε+ 2S(gxm(k), gxm(k), gxm(k)−1),

and (3.3) we gain

lim
n→∞

S(gxn(k), gxn(k), gxm(k)) = ε.

In light of

S(gxn(k), gxn(k), gxm(k))

≤ S(gxn(k), gxn(k), gxm(k)−1) + 2S(gxm(k), gxm(k), gxm(k)−1)

≤ S(gxm(k)−1, gxm(k)−1, gxn(k)−1) + 2S(gxn(k), gxn(k), gxn(k)−1)

+ 2S(gxm(k), gxm(k), gxm(k)−1),

and

S(gxn(k)−1, gxn(k)−1, gxm(k)−1)

≤ S(gxm(k)−1, gxm(k)−1, gxn(k)) + 2S(gxn(k)−1, gxn(k)−1, gxn(k))

≤ S(gxn(k), gxn(k), gxm(k)) + 2S(gxm(k), gxm(k), gxm(k)−1)

+ 2S(gxn(k)−1, gxn(k)−1, gxn(k)),

we get

lim
n→∞

S(gxn(k)−1, gxn(k)−1, gxm(k)−1) = ε.

In (3.1), let (x, y, z) = (xn(k)−1, xn(k)−1, xm(k)−1), we derive that

φ(Ak) ≤ ϕ(Bk),

with

Ak = F (S(gxn(k), gxn(k), gxm(k)), ψ(gxn(k)), ψ(gxn(k)), ψ(gxm(k))),

Bk = F (S(gxn(k)−1, gxn(k)−1, gxm(k)−1), ψ(gxn(k)−1), ψ(gxn(k)−1), ψ(gxm(k)−1)),

From the property of F we get lim
n→∞

Ak = lim
n→∞

Bk = F (ε, 0, 0, 0) = ε.

On account of (2) of Definition 3.1 we get ε = 0. It is a contradiction. So {gxn} is an
S-Cauchy sequence. From the S-completely of (X,S), we obtain that the sequence
{gxn} is S-convergent. Since gX is a closed set there exists gx such that

lim
n→∞

gxn = gx.

Step 3. To prove gx = Tx.
From the lower semi-continuity of ψ we get ψ(gx) ≤ lim inf

n→∞
ψ(gxn) = 0.

On account of (3.1) and (1) of Definition 3.1 we get

lim
n→∞

F (S(Tx, Tx, Txn), ψ(Tx), ψ(Tx), ψ(Txn))

≤ lim
n→∞

F (S(gx, gx, gxn), ψ(gx), ψ(gx), ψ(gxn)) = 0.
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In light of lim
n→∞

S(Tx, Tx, Txn) = 0, we have

S(Tx, Tx, gx) ≤2S(Tx, Tx, Txn) + S(gx, gx, Txn) = 0,

i.e. Tx = gx; thus, T and g have a coupled point x.
Step 4. If T and g are weakly compatible, then Tgx = gTx = ggx, i.e. gx is also a
coupled point of (T, g). Assume there exists another y ∈ X such that Ty = gy. From
(3.1) we have

φ(F (S(Tx, Tx, Ty), ψ(Tx), ψ(Tx), ψ(Ty)))

≤ ϕ(F (S(gx, gx, gy), ψ(gx), ψ(gx), ψ(gy))).

From Remark 3.2 we get F (S(Tx, Tx, Ty), ψ(Tx), ψ(Tx), ψ(Ty)) = 0, i.e.

gx = gy = Tx = Ty,

which implies that the coupled point is unique. We derive Tgx = ggx = gx. T and g
have a unique common fixed point gx. �

In light of Theorem 3.6, if we take g = I, the identity mapping on X, we deduce
the following corollary.

Corollary 3.7. Let (X,S) be an S-complete S-metric space, and T : X → X be a
function satisfying the condition:

φ (F (S(Tx, Ty, Tz), ψ(Tx), ψ(Ty), ψ(Tz))) ≤ ϕ (F (S(x, y, z), ψ(x), ψ(y), ψ(z))) ,
(3.6)

for all x, y, z ∈ X, where F ∈ F, (φ, ϕ) is a pair of shifting distance functions, and
ψ : X → R+ is a lower semi-continuous function. Then T has a unique fixed point.

From Theorem 3.6, if the function F (a, b, c, d) = a + b + c + d and ψ(t) ≡ 0, we
derive the following corollary.

Corollary 3.8. Let (X,S) be an S-complete S-metric space, and T, g : X → X be
two functions such that TX ⊂ gX. Assume gX is closed and satisfies the condition:

φ (S(Tx, Ty, Tz)) ≤ ϕ (S(gx, gy, gz)) (3.7)

for all x, y, z ∈ X, where F ∈ F, (φ, ϕ) is a pair of shifting distance functions, and
ψ : X → R+ is a lower semi-continuous function. Then T and g have a coincidence
point. If (T, g) is weakly compatible, then T and g have a unique common fixed point.

Corollary 3.9. Let (X,S) be an S-complete S-metric space, and T, g : X → X are
two functions such that TX ⊂ gX. Assume gX is a closed set, and for all x, y ∈ X,

F (S(Tx, Ty, Tz), ψ(Tx), ψ(Ty), ψ(Tz))

≤α (F (S(gx, gy, gz), ψ(gx), ψ(gy), ψ(gz)))F (S(gx, gy, gz), ψ(gx), ψ(gy), ψ(gz))

(3.8)

where F ∈ F, the function α : R+ → [0, 1) satisfies the condition:

lim
n→∞

α(tn) = 1 ⇒ lim
n→∞

tn = 0,
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and ψ : X → R+ is a lower semi-continuous function. Then T and g have a coupled
point. Moreover, if T and g are weakly compatible, then T and g have a unique
common fixed point.

Proof. It is obvious that (I, αI) is a pair of shifting distance functions. From Theorem
3.6 we can derive the conclusion. �

Example 3.10. Let X = [0, 2], S(x, y, z) = |x−z|+|y−z|; then (X,S) is an S-metric
space. Define the mapping T, g : X → X by Tx = x

5 , gx = 5x
6 .

Let ψ(x) = x, F (a, b, c, d) = a+ b+ c+ d, φ(x) = ln(5x), ϕ(x) = ln(2x) on [0, 2].
It is easy to know that (φ, ϕ) is a pair of shifting distance functions. For every

x, y ∈ X we have

φ(F (S(Tx, Ty, Tz), ψ(Tx), ψ(Ty), ψ(Tz)))

= ln
(

5
(∣∣∣x

3
− z

3

∣∣∣+
∣∣∣y
3
− z

3

∣∣∣+
x

3
+
y

3
+
z

3

))
≤ ln

(
2

(∣∣∣∣2x3 − 2z

3

∣∣∣∣+

∣∣∣∣2y3 − 2z

3

∣∣∣∣+
2x

3
+

2y

3
+

2z

3

))
=ϕ(F (S(gx, gy, gz), ψ(gx), ψ(gy), ψ(gz))).

The conditions of Theorem 3.6 are satisfied and the mappings T and g have a unique
common fixed point 0.
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