MEIR-KEELER S TYPE CONTRACTIONS AND CONTRACTIONS WITH F CONTROL FUNCTIONS ON S-METRIC SPACES

JING CHEN*, CHUANXI ZHU**, CHUNFANG CHEN*** AND LI ZHU****
*Department of Mathematics, Nanchang University, Nanchang, 330031, P.R. China
E-mail: chenjing@jxau.edu.cn
**Department of Mathematics, Nanchang University, Nanchang, 330031, P.R. China
E-mail: chuanxizhu@126.com
(Corresponding author)
*** Department of Mathematics, Nanchang University, Nanchang, 330031, P.R. China
**** Department of Mathematics, Jiangxi Agricultural University, Nanchang, 330045, P.R. China

Abstract

In this paper, some fixed point results under the Meir-Keeler S type contraction conditions on S-metric spaces and some fixed point theorems with F control functions on S-metric spaces are proved. Moreover, the relationships among G-metric and S-metric are investigated and an example of discontinuity at a fixed point is given.

Key Words and Phrases: G-metric, S-metric, Meir-Keeler contraction, F control function, fixed point.
2020 Mathematics Subject Classification: 47H10, 47H09, 54H25.

1. Introduction

In 1992, Dhage introduced the D-metric in his Ph.D. thesis [4]. In 2003, Mustafa however demonstrated that most claims concerning the fundamental topological properties of D-metric were incorrect and he instead introduced the G-metric [14]. Since then, many authors studied fixed points and common fixed points on G-metric spaces [27, 6]. In 2007, Sedghi et al. gave some definitions of D^{*}-metric [22] and in 2012, he also defined an S-metric [21] as a generalization of D^{*}-metric. From then on many authors studied the S-metric $[24,23,15,16,25,17,5,18,26]$. In this paper we investigate the relationships between the G-metric and S-metric, and we introduce the concept of Meir-Keeler S type contraction on S-metric space. We also obtain new fixed point theorems with F control functions on S-metric spaces.

In this section, we recall some definitions that will be used in the remainder of this paper.

Definition 1.1. [14] Let X be a nonempty set, $G: X \times X \times X \longrightarrow[0,+\infty]$ be a function satisfying the following properties:
(G1) $G(x, y, z)=0$ if $x=y=z$;
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$;
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables);
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, a \in X$ (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric on X , and the pair (X, G) is called a G-metric space.

Definition 1.2. [14] A G-metric space (X, G) is symmetric if $G(x, y, y)=G(x, x, y)$ for all $x, y \in X$.

Definition 1.3. [21] Let X be a nonempty set and $S: X \times X \times X \longrightarrow R^{+}$be a function satisfying the following properties:
(1) $S(x, y, z)=0$ iff $x=y=z$;
(2) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$, for all $a, x, y, z \in X$.

Then the function S is called an S-metric on X and the pair (X, S) is called an S-metric space.

Remark 1.4. [21] $S(x, x, y)=S(y, y, x)$.
Example 1.5. [21] $S(x, y, z)=|x-z|+|y-z|$ is an S-metric on R.
Example 1.6. [20] $S(x, y, z)=|x-z|+|y+z-2 x|$ is an S-metric on R.
Remark 1.7. G-metric and S-metric can not contain each other. Because $G(x, x, y)$ is not always equal $G(y, y, x)$, but $S(x, x, y)=S(y, y, x)$. And $G(x, x, y) \leq G(x, y, z)$ for $z \neq y$, but $S(x, x, y)$ is not always less than $S(x, y, z)$ even $z \neq y$.

Example 1.8. Let $X=\{a, b\}$ and define G by
$G(a, a, a)=G(b, b, b)=0$,
$G(a, a, b)=G(a, b, a)=G(b, a, a)=2$,
$G(b, b, a)=G(b, a, b)=G(a, b, b)=4$.
Then G is a G-metric, but $G(a, a, b) \neq G(b, b, a)$.
Example 1.9. Let $X=\{a, b, c\}$ and define S by
$S(a, a, a)=S(b, b, b)=S(c, c, c)=0$,
$S(a, a, b)=S(b, b, a)=1, S(a, a, c)=S(c, c, a)=2$,
$S(b, b, c)=S(c, c, b)=1, S(a, b, c)=1$.
Assume $S(x, y, z)=S(y, x, z)=S(z, y, x)=\cdots$ (symmetry in all three variables).
Then S is an S-metric, but $S(a, b, c)<S(a, a, c)$.
Definition 1.10. [3] Let X be a nonempty set. A function $d: X \rightarrow[0,+\infty)$ is said to be a b-metric if there exists $b \geq 1$ such that for all $x, y, z \in X$, the following conditions hold:
(1) $d(x, y)=0$ iff $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, y) \leq b(d(x, z)+d(z, y))$.

In this case, the pair (X, d) is called a b-metric space.

Remark 1.11. [24] $d(x, y):=S(x, x, y)$ is a b-metric, and

$$
d(x, y) \leq \frac{3}{2}(d(x, z)+d(z, y))
$$

Definition 1.12. [21] Let (X, S) be an S-metric space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to S-converge to a point $x \in X$ if and only if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. That is for each $\varepsilon>0$ there exists $n_{0} \in N$ such that for all $n>n_{0}, S\left(x_{n}, x_{n}, x\right)<\varepsilon$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called an S-Cauchy sequence if, for each $\varepsilon>0$, there exists $n_{0} \in N$ such that $S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$ for each $n, m \geq n_{0}$.
(3) The S-metric space (X, S) is said to be S-complete if every S-Cauchy sequence is S-convergent.

Lemma 1.13. [21] Let (X, S) be an S-metric space. If a sequence $\left\{x_{n}\right\}$ in $X S$ converges to x, then x is unique.

Definition 1.14. [8] Let $T, g: X \rightarrow X$. If $T x=g x$ implies $T g x=g T x$ for all $x \in X$, then the pair (T, g) is said to be weakly compatible.

2. Meir-Keeler S type contraction on S-metric spaces

Meir-Keeler's result [12], proved in 1969, plays a fundamental role in the fixed point theory for metric spaces [2, 9]. Z. Mustafa generalized Meir-Keeler type contraction on G-metric spaces [13]. Here we generalize that contraction on S-metric spaces.

Definition 2.1. Let (X, S) be an S-metric space and T be a self-mapping of X. Then T is called a Meir-Keeler S type contraction whenever for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
\varepsilon<M(x, y, z)<\varepsilon+\delta \Rightarrow S(T x, T y, T z) \leq \varepsilon
$$

where

$$
\begin{aligned}
M(x, y, z)=\max \{ & S(x, y, z), S(T x, T x, x), S(T y, T y, y), S(T z, T z, z) \\
& \frac{S(T x, T x, y)+S(T y, T y, x)}{3}, \frac{S(T x, T x, z)+S(T z, T z, x)}{3}, \\
& \left.\frac{S(T z, T z, y)+S(T y, T y, z)}{3}\right\}
\end{aligned}
$$

Remark 2.2. Note that if T is a Meir-Keeler S type contraction and $M(x, y, z)>0$, we have $S(T x, T y, T z)<M(x, y, z)$.
Proposition 2.3. Let (X, S) be an S-metric space and $T: X \rightarrow X$ be a Meir-Keeler S type contraction. Then

$$
\lim _{n \rightarrow \infty} S\left(T^{n+1} x, T^{n+1} x, T^{n} x\right)=0 \text { and } \lim _{n \rightarrow \infty} S\left(T^{n} x, T^{n} x, T^{n+1} x\right)=0
$$

for all $x \in X$.

Proof. Let $x_{0} \in X$. We define an iterative sequence $\left\{x_{n}\right\}$ as follows:

$$
x_{n+1}=T x_{n}=T^{n+1} x_{0}
$$

for all $n \geq 0$. If some $x_{n_{0}+1}=x_{n_{0}}$ for some $n_{0} \geq 0$, then $x_{n_{0}}$ is a fixed point of T. In this case, $S\left(T^{n+1} x, T^{n+1} x, T^{n} x\right)=0$, for $n \geq n_{0}$, then the proposition follows. Throughout the proof, we assume that $x_{k+1} \neq x_{k}$ for all $k \in N$. Since

$$
\begin{aligned}
& M\left(x_{n+1}, x_{n}, x_{n}\right) \\
= & \max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(T x_{n+1}, T x_{n+1}, x_{n+1}\right), S\left(T x_{n}, T x_{n}, x_{n}\right), S\left(T x_{n}, T x_{n}, x_{n}\right),\right. \\
& \frac{S\left(T x_{n+1}, T x_{n+1}, x_{n}\right)+S\left(T x_{n}, T x_{n}, x_{n+1}\right)}{3}, \\
& \frac{S\left(T x_{n+1}, T x_{n+1}, x_{n}\right)+S\left(T x_{n}, T x_{n}, x_{n+1}\right)}{3}, \\
& \left.\frac{S\left(T x_{n}, T x_{n}, x_{n}\right)+S\left(T x_{n}, T x_{n}, x_{n}\right)}{3}\right\} \\
= & \max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right), \frac{S\left(x_{n+2}, x_{n+2}, x_{n}\right)}{3}\right\} \\
\leq & \max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right),\right. \\
& \left.\frac{\left.2 S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)+S\left(x_{n+1}, x_{n+1}, x_{n}\right)\right\}}{3}\right\} \\
= & \max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)\right\} .
\end{aligned}
$$

So $M\left(x_{n+1}, x_{n+1}, x_{n}\right)=\max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)\right\}>0$. Since T is a Meir-Keeler S type contraction,

$$
S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)=S\left(T x_{n+1}, T x_{n+1}, T x_{n}\right)<M\left(x_{n+1}, x_{n+1}, x_{n}\right)
$$

Then it is impossible that

$$
\max \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)\right\}=S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)
$$

Hence we derive that

$$
S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)<M\left(x_{n+1}, x_{n+1}, x_{n}\right)=S\left(x_{n+1}, x_{n+1}, x_{n}\right)
$$

for every n. Thus $\left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right)\right\}_{n=0}^{\infty}$ is a decreasing sequence, hence converges to some $\varepsilon \in[0, \infty)$, that is

$$
\lim _{n \rightarrow \infty} S\left(x_{n+1}, x_{n+1}, x_{n}\right)=\varepsilon
$$

In particular, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(x_{n+1}, x_{n+1}, x_{n}\right)=\varepsilon \tag{2.1}
\end{equation*}
$$

Notice that $\varepsilon=\inf \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right): n \in N\right\}$.
We claim that $\varepsilon=0$. Suppose to the contrary that $\varepsilon>0$. Regarding (2.1) together with the assumption that T is a Meir-Keeler S type contraction, for this $\varepsilon>0$, there
exists $\delta>0$ and a natural number m such that $\varepsilon<M\left(x_{m+1}, x_{m+1}, x_{m}\right)<\varepsilon+\delta$, then we have

$$
S\left(T x_{m+1}, T x_{m+1}, T x_{m}\right)=S\left(x_{m+2}, x_{m+2}, x_{m+1}\right) \leq \varepsilon
$$

which is a contradiction, because

$$
\varepsilon=\inf \left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right): n \in N\right\}
$$

and

$$
\left\{S\left(x_{n+1}, x_{n+1}, x_{n}\right)\right\}_{n=0}^{\infty}
$$

is a strictly decreasing sequence. So we get

$$
\lim _{n \rightarrow \infty} S\left(T^{n+1} x, T^{n+1} x, T^{n} x\right)=0
$$

Since

$$
S\left(x_{n}, x_{n}, x_{n+1}\right)=S\left(x_{n+1}, x_{n+1}, x_{n}\right)
$$

we also obtain $\lim _{n \rightarrow \infty} S\left(T^{n+1} x, T^{n+1} x, T^{n} x\right)=0$.
Theorem 2.4. Let (X, S) be a complete S-metric space. Let $T: X \rightarrow X$ be an orbitally continuous mapping and a Meir-Keeler S type contraction. Then T has a unique fixed point, say $w \in X$. Moreover, $\lim _{n \rightarrow \infty} S\left(T^{n+1} x, T^{n+1} x, w\right)=0$ for all $x \in X$.

Proof. Let $x_{0} \in X$. We define an iterative sequence $\left\{x_{n}\right\}$ as follows:

$$
x_{n+1}=T x_{n}=T^{n+1} x_{0}
$$

for all $n \geq 0$. We claim that $\lim _{m, n \rightarrow \infty} S\left(x_{n}, x_{n}, x_{m}\right)=0$. If this is not the case, then there exists a $\varepsilon>0$ and a subsequence $\left\{x_{n(i)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
S\left(x_{n(i)}, x_{n(i)}, x_{n(i+1)}\right)>2 \varepsilon \tag{2.2}
\end{equation*}
$$

For the same $\varepsilon>0$, there exists $\delta>0$ such that $\varepsilon<M(x, y, z)<\varepsilon+\delta$ which implies $S(T x, T y, T z) \leq \varepsilon$. Set $r=\min \{\varepsilon, \delta\}$. By Proposition 2.3, one can choose a natural number n_{0} such that

$$
\begin{equation*}
S\left(x_{n+1}, x_{n+1}, x_{n}\right)<\frac{r}{8}, \quad S\left(x_{n}, x_{n}, x_{n+1}\right)<\frac{r}{8} \tag{2.3}
\end{equation*}
$$

for all $n \geq n_{0}$. Let $n(i)>n_{0}$, we have $n(i) \leq n(i+1)-1$. Because

$$
\begin{aligned}
S\left(x_{n(i)}, x_{n(i)}, x_{n(i+1)-1}\right) & \geq S\left(x_{n(i)}, x_{n(i)}, x_{n(i+1)}\right)-2 S\left(x_{n(i+1)-1}, x_{n(i+1)-1}, x_{n(i+1)}\right) \\
& \geq 2 \varepsilon-\frac{r}{4} \geq 2 \varepsilon-\frac{\varepsilon}{4}=\varepsilon+\frac{3 \varepsilon}{4} \geq \varepsilon+\frac{r}{2}
\end{aligned}
$$

and

$$
S\left(x_{n(i)}, x_{n(i)}, x_{n(i)+1}\right)<\frac{r}{4}<\varepsilon+\frac{r}{2}
$$

it follows that the value of $S\left(x_{n(i)}, x_{n(i)}, x_{k}\right)$ changes from less than $\varepsilon+\frac{r}{2}$ to no less than $\varepsilon+\frac{r}{2}$ when k increases from $n(i)+1$ to $n(i+1)-1$. We can choose the smallest
integer k with $n(i)+2 \leq k \leq n(i+1)-1$ such that $S\left(x_{n(i)}, x_{n(i)}, x_{k}\right) \geq \varepsilon+\frac{r}{2}$, and $S\left(x_{n(i)}, x_{n(i)}, x_{k-1}\right)<\varepsilon+\frac{r}{2}$. We then get

$$
\begin{align*}
S\left(x_{n(i)}, x_{n(i)}, x_{k}\right) & \leq S\left(x_{n(i)}, x_{n(i)}, x_{k-1}\right)+2 S\left(x_{k-1}, x_{k-1}, x_{k}\right) \\
& <\varepsilon+\frac{r}{2}+\frac{r}{4}=\varepsilon+\frac{3 r}{4} . \tag{2.4}
\end{align*}
$$

Therefore, we obtain the inequalities

$$
\begin{align*}
& \varepsilon+\frac{r}{2} \leq S\left(x_{n(i)}, x_{n(i)}, x_{k}\right)<\varepsilon+r, \tag{2.5}\\
& S\left(x_{n(i)+1}, x_{n(i)+1}, x_{n(i)}\right)<\frac{r}{8}<\varepsilon+r, \tag{2.6}\\
& S\left(x_{k+1}, x_{k+1}, x_{k}\right)<\frac{r}{8}<\varepsilon+r, \tag{2.7}\\
& \frac{S\left(x_{n(i)+1}, x_{n(i)+1}, x_{k}\right)+S\left(x_{k+1}, x_{k+1}, x_{n(i)}\right)}{3} \\
\leq & \frac{2 S\left(x_{n(i)+1}, x_{n(i)+1}, x_{n(i)}\right)+S\left(x_{n(i)}, x_{n(i)}, x_{k}\right)+2 S\left(x_{k+1}, x_{k+1}, x_{k}\right)+S\left(x_{k}, x_{k}, x_{n(i)}\right)}{3} \\
< & \frac{\frac{r}{4}+\varepsilon+\frac{3 r}{4}+\frac{r}{4}+\varepsilon+\frac{3 r}{4}}{3}=\varepsilon+r . \tag{2.8}
\end{align*}
$$

By (2.5)-(2.8), we get that $\varepsilon<M\left(x_{n(i)}, x_{k}, x_{k}\right)<\varepsilon+r$. Since T is a Meir-Keeler S type contraction, we derive $S\left(x_{n(i)+1}, x_{k+1}, x_{k+1}\right) \leq \varepsilon$. But

$$
\begin{aligned}
S\left(x_{n(i)+1}, x_{n(i)+1}, x_{k+1}\right) & \geq S\left(x_{n(i)}, x_{n(i)}, x_{k}\right)-2 S\left(x_{n(i)}, x_{n(i)}, x_{n(i)+1}\right) \\
& -2 S\left(x_{k+1}, x_{k+1}, x_{k}\right) \\
& >\varepsilon+\frac{r}{2}-\frac{r}{4}-\frac{r}{4}=\varepsilon .
\end{aligned}
$$

This is a contradiction. Therefore, our claim is proved. So $\left\{x_{n}\right\}$ is an S-Cauchy sequence. Since (X, S) is S-complete, the sequence $\left\{x_{n}\right\} S$-converges to some $w \in X$, we have

$$
\lim _{n \rightarrow \infty} S\left(T^{n} x_{0}, T^{n} x_{0}, w\right)=\lim _{n \rightarrow \infty} S\left(w, w, T^{n} x_{0}\right)=0
$$

Since T is orbitally continuous and $\lim _{n \rightarrow \infty} S\left(T^{n} x_{0}, w, w\right)=0$, we get

$$
\lim _{n \rightarrow \infty} S\left(T T^{n} x_{0}, T T^{n} x_{0}, T w\right)=0
$$

that is,

$$
\lim _{n \rightarrow \infty} S\left(T^{n+1} x_{0}, T^{n+1} x_{0}, T w\right)=\lim _{n \rightarrow \infty} S\left(x_{n+1}, x_{n+1}, T w\right)=0
$$

Thus, $\left\{x_{n+1}\right\}$ converges to $T w$ in (X, S). By the uniqueness of limit, we get $T w=w$. Finally, we show that T has a unique fixed point. If there exists $u \in X$ such that $T u=u$ and $S(u, u, w)>0$,

$$
\begin{aligned}
& M(u, u, w) \\
= & \max \left\{S(u, u, w), S(T u, T u, u), S(T w, w, w), \frac{S(T u, T u, w)+S(T w, T w, u)}{3}\right\} \\
= & S(u, u, w)>0
\end{aligned}
$$

Since T is a Meir-Keeler S type contraction, we derive

$$
M(u, u, w)>S(T u, T u, T w)=S(u, u, w)
$$

which is a contradiction. Thus, we find that $S(u, u, w)=0$. So we conclude that $u=w . T$ has a unique fixed point.

Bisht and Pant [1] gave a solution to the question of the existence of a contractive mapping that has a fixed point which is discontinuous at the fixed point. The following theorem shows some Meir-Keeler S type contractions on S-metric space have a fixed point but the mapping need not be continuous at the fixed point.
Theorem 2.5. Let (X, S) be a complete S-metric space. Let $T: X \rightarrow X$ be a MeirKeeler S type contraction. Assume T^{2} is an orbitally continuous mapping. Then, T has a unique fixed point, say $w \in X . A n d, \lim _{n \rightarrow \infty} S\left(T^{n+1} x, w, w\right)=0$ for all $x \in X$. Moreover, T is continuous at w iff $\lim _{x \rightarrow w} M(x, w, w)=0$.

Proof. Because T is a Meir-Keeler S type contraction, Proposition 2.3 is still correct. And just like the proof of Theorem 2.4, we can also define an iterative sequence $\left\{x_{n}=T^{n} x_{0}\right\}$, where $x_{0} \in X$ is arbitrary; and also we can show the sequence is an S-Cauchy sequence. Since X is S-complete, there exists a point $w \in X$ such that

$$
\lim _{n \rightarrow \infty} S\left(T^{n} x_{0}, T^{n} x_{0}, w\right)=0
$$

Also

$$
\lim _{n \rightarrow \infty} S\left(T^{2} T^{n} x_{0}, T^{2} T^{n} x_{0}, w\right)=\lim _{n \rightarrow \infty} S\left(x_{n+2}, x_{n+2}, w\right)=0
$$

By the orbital continuity of T^{2}, we have

$$
\lim _{n \rightarrow \infty} S\left(T^{2} T^{n} x_{0}, T^{2} T^{n} x_{0}, T^{2} w\right)=0
$$

By the uniqueness of limit, we get $T^{2} w=w$. We claim that $T w=w$. If $w \neq T w$, then

$$
\begin{aligned}
M(T w, T w, w)= & \max \{S(T w, T w, w), S(T w, T w, T w), S(T w, T w, w) \\
& \frac{S\left(T^{2} w, T^{2} w, w\right)+S(T w, T w, T w)}{3} \\
& \frac{S\left(T^{2} w, T^{2} w, w\right)+S(T w, T w, T w)}{3} \\
& \left.\frac{S(T w, T w, w)+S(T w, T w, w)}{3}\right\} \\
= & \max \{S(T w, T w, w), S(T w, T w, T w)\} \\
= & S(w, w, T w)>0
\end{aligned}
$$

and since T is a Meir-Keeler S type contraction,

$$
S(w, w, T w)=S\left(T^{2} w, T^{2} w, T w\right)<M(T w, T w, w)=S(w, w, T w)
$$

which is a contradiction. Thus, w is a fixed point of T. The uniqueness of fixed point we can also get just as the proof of Theorem 2.4.

Finally, we show that T is continuous at w iff $\lim _{x \rightarrow w} M(x, x, w)=0$.
Let T be continuous at the fixed point w and let a sequence $\left\{y_{n}\right\}$ in X converge to w, i.e., $\lim _{n \rightarrow \infty} S\left(y_{n}, y_{n}, w\right)=\lim _{n \rightarrow \infty} S\left(w, w, y_{n}\right)=0$, and $\lim _{n \rightarrow \infty} S\left(T y_{n}, T y_{n}, T w\right)=0$. Since

$$
\begin{aligned}
& M\left(y_{n}, y_{n}, w\right) \\
= & \max \left\{S\left(y_{n}, y_{n}, w\right), S\left(T y_{n}, T y_{n}, y_{n}\right), \frac{S\left(T y_{n}, T y_{n}, w\right)+S\left(T w, T w, y_{n}\right)}{3}\right\} \\
\leq & \max \left\{S\left(y_{n}, y_{n}, w\right), S\left(T y_{n}, T y_{n}, w\right)+S\left(w, w, y_{n}\right), \frac{S\left(T y_{n}, T y_{n}, T w\right)+S\left(w, w, y_{n}\right)}{3}\right\},
\end{aligned}
$$

we get $\lim _{n \rightarrow \infty} M\left(y_{n}, y_{n}, w\right)=0$.
On the other hand, if

$$
\lim _{n \rightarrow \infty} M\left(y_{n}, y_{n}, w\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} S\left(y_{n}, y_{n}, w\right)=\lim _{n \rightarrow \infty} S\left(w, w, y_{n}\right)=0
$$

and since

$$
\begin{gathered}
\frac{S\left(T y_{n}, T y_{n}, w\right)}{3} \leq M\left(y_{n}, y_{n}, w\right) \\
=\max \left\{S\left(y_{n}, y_{n}, w\right), S\left(T y_{n}, T y_{n}, y_{n}\right), \frac{S\left(T y_{n}, T y_{n}, w\right)+S\left(T w, T w, y_{n}\right)}{3}\right\}
\end{gathered}
$$

we get $\lim _{n \rightarrow \infty} S\left(T y_{n}, T y_{n}, T w\right)=0$, that is, T is continuous at w.
Example 2.6. Let $X=[0,2]$ and $S(x, y, z)=\max \{|x-y|,|x-z|\}$ for all $x, y, z \in X$. Define $T: X \rightarrow X$ by

$$
T(x)= \begin{cases}1, & \text { if } x \leq 1 \\ 0, & \text { if } x>1\end{cases}
$$

We shall show that T is a Meir-Keeler S type contraction. Without loss of generality, take $z \leq y \leq x$. We have the following cases:
Case 1: $0 \leq z \leq y \leq x \leq 1$. Here we have $S(T x, T y, T z)=S(1,1,1)=0$ and

$$
\begin{aligned}
M(x, y, z)= & \max \{S(x, y, z), S(1,1, x), S(1,1, y), S(1,1, z) \\
& \left.\frac{S(1,1, y)+S(1,1, x)}{3}, \frac{S(1,1, z)+S(1,1, x)}{3}, \frac{S(1,1, y)+S(1,1, z)}{3}\right\} \\
= & 1-z
\end{aligned}
$$

Case 2: $0 \leq z \leq y \leq 1$ and $1<x \leq 2$. Here we have $S(T x, T y, T z)=1$ and $M(x, y, z)=x ;$
Case 3: $0 \leq z \leq 1$ and $1<y \leq x \leq 2$. Here we have $S(T x, T y, T z)=1$ and $M(x, y, z)=x ;$
Case 4: $1<z \leq y \leq x \leq 2$. Here we have $S(T x, T y, T z)=0$ and $M(x, y, z)=x$.

When $\varepsilon \geq 1$ the case 2 , case 3 , case 4 probably satisfy $\varepsilon<M(x, y, z)$, here $S(T x, T y, T z) \leq \varepsilon$ and the $\delta(\varepsilon)$ can be any positive number. When $0<\varepsilon<1$ the case 1 probably satisfy $\varepsilon<M(x, y, z)$, and here we let $\delta(\varepsilon)=1-\varepsilon$ to limit only the case 1 occur, and the $S(T x, T y, T z) \leq \varepsilon$. Then for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
\varepsilon<M(x, y, z)<\varepsilon+\delta \Rightarrow S(T x, T y, T z) \leq \varepsilon
$$

So T is a Meir-Keeler S type contraction. T^{2} is continuous, since $T^{2}(x)=1$ for all $x \in X$. Then T satisfies the condition of Theorem 2.5 and has a unique fixed point $x=1$. It can also be seen that

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} M(1, x, x)= & \lim _{x \rightarrow 1^{+}} \max \{S(1,1, x), S(1,1,1), S(0,0, x), S(0,0, x) \\
& \left.\frac{S(1,1, x)+S(0,0,1)}{3}, \frac{S(0,0, x)+S(0,0, x)}{3}\right\} \\
= & \lim _{x \rightarrow 1^{+}} \max \left\{x-1,0, x, x, \frac{x-1+1}{3}, \frac{x+x}{3}\right\} \\
= & \lim _{x \rightarrow 1^{+}} x=1 \neq 0
\end{aligned}
$$

and T is discontinuous at the fixed point $x=1$.

3. Contraction by F control function on S-metric spaces

This section is inspired by $[11,7]$. In the papers $[11,7]$ using contraction through F control function on metric-like space to get common fixed point and coupled common fixed point. We generalize the contraction with F control function on S-metric spaces.
Definition 3.1. [19] Let $\phi, \varphi:[0,+\infty) \rightarrow[0,+\infty)$ be two functions. If they satisfy the following conditions:
(1) if $\phi(u) \leq \varphi(v)$, then $u \leq v$;
(2) for $u_{n}, v_{n} \in[0,+\infty)$ with $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=w$, if $\phi\left(u_{n}\right) \leq \varphi\left(v_{n}\right)$ for all n $n \in \mathbb{N}$, then $w=0$,
then (ϕ, φ) is called a pair of shifting distance functions.
Remark 3.2. [7] If (ϕ, φ) is a pair of shifting distance functions, $\phi(t) \leq \varphi(t)$, then $t=0$.

Example 3.3. The pair (ϕ, φ) defined by $\phi(t)=\arctan (1+2 t), \varphi(t)=\arctan (1+t)$ is a pair of shifting distance functions on $[0,+\infty)$.

The F control function $F:[0,+\infty)^{3} \rightarrow[0, \infty)$ was introduced by Karapinar et al. [10]. We extend it to functions of four variables.

Definition 3.4. A function $F:[0,+\infty)^{4} \rightarrow[0, \infty)$ is a control function if it satisfies the conditions:
$\left(\mathrm{F}_{1}\right) \max \{a, b\} \leq F(a, b, c, d) ;$
$\left(\mathrm{F}_{2}\right) F(a, 0,0,0)=a$;
$\left(\mathrm{F}_{3}\right) F$ is continuous.

We denote this class of functions F by \mathbb{F}.
Example 3.5. The following functions belong to \mathbb{F}.

$$
\begin{aligned}
& \text { 1. } F(a, b, c, d)=a+b+c+d \\
& \text { 2. } F(a, b, c, d)=\max \{a, b\}+\ln (c+d+1) \text {. }
\end{aligned}
$$

Theorem 3.6. Let (X, S) be an S-complete S-metric space, and $T, g: X \rightarrow X$ functions such that $T X \subset g X$. Assume $g X$ is closed and satisfies the condition:

$$
\begin{align*}
& \phi(F(S(T x, T y, T z), \psi(T x), \psi(T y), \psi(T z))) \tag{3.1}\\
& \leq \varphi(F(S(g x, g y, g z), \psi(g x), \psi(g y), \psi(g z)))
\end{align*}
$$

for all $x, y, z \in X$, where $F \in \mathbb{F},(\phi, \varphi)$ is a pair of shifting distance function, and $\psi: X \rightarrow R_{+}$is a lower semi-continuous function. Then T and g have a coincidence point. If (T, g) is weakly compatible, then T and g have a unique common fixed point.

Proof. Step 1. Let $x_{0} \in X$. Since $T X \subset g X$, there exists $x_{1} \in X$ such that $g x_{1}=T x_{0}$. There exists $x_{2} \in X$ such that $g x_{2}=T x_{1}$. Continue this procedure, we get a sequence $\left\{x_{n}\right\}$ satisfying

$$
\begin{equation*}
g x_{n}=T x_{n-1}, \quad n=1,2,3, \cdots \tag{3.2}
\end{equation*}
$$

If there exists $n_{0} \in \mathbb{N}$ such that $g x_{n_{0}}=g x_{n_{0}+1}$, then $T x_{n_{0}}=g x_{n_{0}}$, which means that T and g have a coupled point and the proof is ended. In the following we assume $g x_{n_{0}} \neq g x_{n_{0}+1}$ for $n \in \mathbb{N}$. In (3.1) we let $(x, y, z)=\left(x_{n}, x_{n}, x_{n+1}\right)$. From (3.2) we obtain

$$
\begin{aligned}
& \phi\left(F\left(S\left(g x_{n+1}, g x_{n+1}, g x_{n+2}\right), \psi\left(g x_{n+1}\right), \psi\left(g x_{n+1}\right), \psi\left(g x_{n+2}\right)\right)\right) \\
\leq & \varphi\left(F\left(S\left(g x_{n}, g x_{n}, g x_{n+1}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n+1}\right)\right)\right) .
\end{aligned}
$$

In light of (1) of Definition 3.1 we have

$$
\left\{F\left(S\left(g x_{n}, g x_{n}, g x_{n+1}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n+1}\right)\right)\right\}
$$

is a decreasing sequence. So there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} F\left(S\left(g x_{n}, g x_{n}, g x_{n+1}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n}\right), \psi\left(g x_{n+1}\right)\right)=r
$$

It follows from (2) of Definition 3.1 that $r=0$.
By virtue of $\left(\mathrm{F}_{1}\right)$ of Definition 3.4 we gain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{S\left(g x_{n}, g x_{n}, g x_{n+1}\right), \psi\left(g x_{n}\right)\right\}=0 \tag{3.3}
\end{equation*}
$$

Step 2. To prove $\left\{g x_{n}\right\}$ is an S-Cauchy sequence. If $\lim _{n \rightarrow \infty} S\left(g x_{n}, g x_{n}, g x_{n+1}\right) \neq 0$, then there exists $\varepsilon>0$, two subsequence $\left\{g x_{m(k)}\right\}$ and $\left\{g x_{n(k)}\right\}$ with $m(k)>n(k) \geq k$ and $m(k)$ is the smallest positive integer which satisfy

$$
\begin{equation*}
S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right) \geq \varepsilon \tag{3.4}
\end{equation*}
$$

We have

$$
\begin{equation*}
S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)-1}\right)<\varepsilon . \tag{3.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\varepsilon & \leq S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right) \\
& \leq S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)-1}\right)+2 S\left(g x_{m(k)}, g x_{m(k)}, g x_{m(k)-1}\right) \\
& \leq \varepsilon+2 S\left(g x_{m(k)}, g x_{m(k)}, g x_{m(k)-1}\right)
\end{aligned}
$$

and (3.3) we gain

$$
\lim _{n \rightarrow \infty} S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)=\varepsilon .
$$

In light of

$$
\begin{aligned}
& S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right) \\
& \leq S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)-1}\right)+2 S\left(g x_{m(k)}, g x_{m(k)}, g x_{m(k)-1}\right) \\
& \leq S\left(g x_{m(k)-1}, g x_{m(k)-1}, g x_{n(k)-1}\right)+2 S\left(g x_{n(k)}, g x_{n(k)}, g x_{n(k)-1}\right) \\
& +2 S\left(g x_{m(k)}, g x_{m(k)}, g x_{m(k)-1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{m(k)-1}\right) \\
& \leq S\left(g x_{m(k)-1}, g x_{m(k)-1}, g x_{n(k)}\right)+2 S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{n(k)}\right) \\
& \leq S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right)+2 S\left(g x_{m(k)}, g x_{m(k)}, g x_{m(k)-1}\right) \\
& +2 S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{n(k)}\right)
\end{aligned}
$$

we get

$$
\lim _{n \rightarrow \infty} S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{m(k)-1}\right)=\varepsilon
$$

In (3.1), let $(x, y, z)=\left(x_{n(k)-1}, x_{n(k)-1}, x_{m(k)-1}\right)$, we derive that

$$
\phi\left(A_{k}\right) \leq \varphi\left(B_{k}\right)
$$

with

$$
\begin{gathered}
A_{k}=F\left(S\left(g x_{n(k)}, g x_{n(k)}, g x_{m(k)}\right), \psi\left(g x_{n(k)}\right), \psi\left(g x_{n(k)}\right), \psi\left(g x_{m(k)}\right)\right) \\
B_{k}=F\left(S\left(g x_{n(k)-1}, g x_{n(k)-1}, g x_{m(k)-1}\right), \psi\left(g x_{n(k)-1}\right), \psi\left(g x_{n(k)-1}\right), \psi\left(g x_{m(k)-1}\right)\right)
\end{gathered}
$$

From the property of F we get $\lim _{n \rightarrow \infty} A_{k}=\lim _{n \rightarrow \infty} B_{k}=F(\varepsilon, 0,0,0)=\varepsilon$.
On account of (2) of Definition 3.1 we get $\varepsilon=0$. It is a contradiction. So $\left\{g x_{n}\right\}$ is an S-Cauchy sequence. From the S-completely of (X, S), we obtain that the sequence $\left\{g x_{n}\right\}$ is S-convergent. Since $g X$ is a closed set there exists $g x$ such that

$$
\lim _{n \rightarrow \infty} g x_{n}=g x
$$

Step 3. To prove $g x=T x$.
From the lower semi-continuity of ψ we get $\psi(g x) \leq \liminf _{n \rightarrow \infty} \psi\left(g x_{n}\right)=0$.
On account of (3.1) and (1) of Definition 3.1 we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} F\left(S\left(T x, T x, T x_{n}\right), \psi(T x), \psi(T x), \psi\left(T x_{n}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} F\left(S\left(g x, g x, g x_{n}\right), \psi(g x), \psi(g x), \psi\left(g x_{n}\right)\right)=0 .
\end{aligned}
$$

In light of $\lim _{n \rightarrow \infty} S\left(T x, T x, T x_{n}\right)=0$, we have

$$
S(T x, T x, g x) \leq 2 S\left(T x, T x, T x_{n}\right)+S\left(g x, g x, T x_{n}\right)=0
$$

i.e. $T x=g x$; thus, T and g have a coupled point x.

Step 4. If T and g are weakly compatible, then $T g x=g T x=g g x$, i.e. $g x$ is also a coupled point of (T, g). Assume there exists another $y \in X$ such that $T y=g y$. From (3.1) we have

$$
\begin{aligned}
& \phi(F(S(T x, T x, T y), \psi(T x), \psi(T x), \psi(T y))) \\
\leq & \varphi(F(S(g x, g x, g y), \psi(g x), \psi(g x), \psi(g y)))
\end{aligned}
$$

From Remark 3.2 we get $F(S(T x, T x, T y), \psi(T x), \psi(T x), \psi(T y))=0$, i.e.

$$
g x=g y=T x=T y
$$

which implies that the coupled point is unique. We derive $T g x=g g x=g x . T$ and g have a unique common fixed point $g x$.

In light of Theorem 3.6, if we take $g=I$, the identity mapping on X, we deduce the following corollary.

Corollary 3.7. Let (X, S) be an S-complete S-metric space, and $T: X \rightarrow X$ be a function satisfying the condition:

$$
\begin{equation*}
\phi(F(S(T x, T y, T z), \psi(T x), \psi(T y), \psi(T z))) \leq \varphi(F(S(x, y, z), \psi(x), \psi(y), \psi(z))) \tag{3.6}
\end{equation*}
$$

for all $x, y, z \in X$, where $F \in \mathbb{F},(\phi, \varphi)$ is a pair of shifting distance functions, and $\psi: X \rightarrow R_{+}$is a lower semi-continuous function. Then T has a unique fixed point.

From Theorem 3.6, if the function $F(a, b, c, d)=a+b+c+d$ and $\psi(t) \equiv 0$, we derive the following corollary.

Corollary 3.8. Let (X, S) be an S-complete S-metric space, and $T, g: X \rightarrow X$ be two functions such that $T X \subset g X$. Assume $g X$ is closed and satisfies the condition:

$$
\begin{equation*}
\phi(S(T x, T y, T z)) \leq \varphi(S(g x, g y, g z)) \tag{3.7}
\end{equation*}
$$

for all $x, y, z \in X$, where $F \in \mathbb{F},(\phi, \varphi)$ is a pair of shifting distance functions, and $\psi: X \rightarrow R_{+}$is a lower semi-continuous function. Then T and g have a coincidence point. If (T, g) is weakly compatible, then T and g have a unique common fixed point.
Corollary 3.9. Let (X, S) be an S-complete S-metric space, and $T, g: X \rightarrow X$ are two functions such that $T X \subset g X$. Assume $g X$ is a closed set, and for all $x, y \in X$,

$$
\begin{align*}
& F(S(T x, T y, T z), \psi(T x), \psi(T y), \psi(T z)) \\
\leq & \alpha(F(S(g x, g y, g z), \psi(g x), \psi(g y), \psi(g z))) F(S(g x, g y, g z), \psi(g x), \psi(g y), \psi(g z)) \tag{3.8}
\end{align*}
$$

where $F \in \mathbb{F}$, the function $\alpha: R_{+} \rightarrow[0,1)$ satisfies the condition:

$$
\lim _{n \rightarrow \infty} \alpha\left(t_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0
$$

and $\psi: X \rightarrow R_{+}$is a lower semi-continuous function. Then T and g have a coupled point. Moreover, if T and g are weakly compatible, then T and g have a unique common fixed point.

Proof. It is obvious that $(I, \alpha I)$ is a pair of shifting distance functions. From Theorem 3.6 we can derive the conclusion.

Example 3.10. Let $X=[0,2], S(x, y, z)=|x-z|+|y-z|$; then (X, S) is an S-metric space. Define the mapping $T, g: X \rightarrow X$ by $T x=\frac{x}{5}, g x=\frac{5 x}{6}$.

Let $\psi(x)=x, F(a, b, c, d)=a+b+c+d, \phi(x)=\ln (5 x), \varphi(x)=\ln (2 x)$ on $[0,2]$.
It is easy to know that (ϕ, φ) is a pair of shifting distance functions. For every $x, y \in X$ we have

$$
\begin{aligned}
& \phi(F(S(T x, T y, T z), \psi(T x), \psi(T y), \psi(T z))) \\
= & \ln \left(5\left(\left|\frac{x}{3}-\frac{z}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\frac{x}{3}+\frac{y}{3}+\frac{z}{3}\right)\right) \\
\leq & \ln \left(2\left(\left|\frac{2 x}{3}-\frac{2 z}{3}\right|+\left|\frac{2 y}{3}-\frac{2 z}{3}\right|+\frac{2 x}{3}+\frac{2 y}{3}+\frac{2 z}{3}\right)\right) \\
= & \varphi(F(S(g x, g y, g z), \psi(g x), \psi(g y), \psi(g z))) .
\end{aligned}
$$

The conditions of Theorem 3.6 are satisfied and the mappings T and g have a unique common fixed point 0 .

Acknowledgments. This research was funded by the National Natural Science Foundation of China (11771198, 11661053), and Science and Technology Program of Department of Education of Jiangxi Province (GJJ190183, GJJ160380).

References

[1] R.K. Bisht, R.P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl., 445(2017), 1239-1242.
[2] T.H. Chang, C.M. Chen, A common fixed theorem for the weaker Meir-Keeler type function, Appl. Math. Lett., 23(2010), 252-255.
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), no. 1, 5-11.
[4] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84(1992), 329-336.
[5] N.V. Dung, N.T. Hieu, S. Radojević, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, 28(2014), no. 9, 1885-1898.
[6] Y.U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl., 455(2017), 528-537.
[7] B. Hazarika, E. Karapinar, R. Arab, M. Rabbani, Metric-like spaces to prove existence of solution for nonlinear quadratic integral equation and numerical method to solve it, J. Comput. Appl. Math., 318(2018), 302-313.
[8] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure. Appl. Math., 29(1998), 227-238.
[9] Z. Kadelburg, S. Radenović, Meir-Keeler-type conditions in abstract spaces, Appl. Math. Lett., 24(2011), 1411-1414.
[10] E. Karapinar, D. O'Regan, B. Samet, On the existence of fixed points that belong to the zero set of a certain function, Fixed Point Theory Appl., 2015(2015), no. 1, 1-14.
[11] M. Liang, C. Zhu, Z. Wu, C. Chen, Some new coupled coincidence point and coupled fixed point results in partially ordered metric-like spaces and an application, J. Function Spaces, 2018(2018), 1-13.
[12] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1996), 326329.
[13] Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir-Keeler type contractons on G-metric spaces, Appl. Math. Comput., 219 (2013), 10441-10447.
[14] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297.
[15] N.Y. Özgür, N.I. Taş, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sciences, 11(2017), no. 1, 7-16.
[16] N.Y. Özgür, N.I. Taş, Some Generalizations of Fixed-Point Theorems on S-Metric Spaces, Essays in Mathematics and its Applications, Springer, Cham, 2016, 229-261.
[17] N.Y. Özgür, N.I. Taş, The Picard theorem on S-metric spaces, Acta Mathematica Scientia, 38(2018), no. 4, 1245-1258.
[18] K.P.R. Rao, G.V.N. Kishore, S. Sadik, Unique common coupled fixed point theorem for four maps in S_{b}-metric spaces, J. Linear Topol. Algebra, 6(2017), no. 1, 29-43.
[19] A.S. Saluja, M.S. Khan, P.K. Jhade, B. Fisher, Some fixed point theorems for mappings involving rational type expressions in partial metric spaces, Appl. Math. E - Notes, 15(2015), 147-161.
[20] S. Sedghi, I. Altun, N. Shobe, et al., Some properties of S-metric spaces and fixed point results, Kyungpook Math. J., 54(2014), no. 1, 113-122.
[21] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(2012), 258-266.
[22] S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl., 2007, DOI:10.1155/2007/27906. Article ID 27906, 13 pages.
[23] S. Sedghi, N. Shobkolaei, M. Shahraki, et al., Common fixed point of four maps in S-metric spaces, Math. Sci., 12(2018), no. 2, 137-143.
[24] S. Sedghi, N. Van Dung, Fixed point theorems on S-metric spaces, Matematički Vesnik, 255(2014), 113-124.
[25] N. Taş, Suzuki-Berinde type fixed-point and fixed-circle results on S-metric spaces, Linear Topol. Algebra, 7 (2018), no. 3, 233-244.
[26] N. Taş, N.Y. Özgür, Common fixed points of continuous mappings on S-metric spaces, Mathematical Notes, 104(2018), no. 3, 587-600.
[27] L. Zhu, C. Zhu, C. Chen, Common fixed point theorems for fuzzy mappings in G-metric spaces, Fixed Point Theory Appl., 2012, DOI:10.1186/1687-1812-2012-159.

Received: May 16, 2021; Accepted: November 6, 2021.

