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Abstract. In this paper, we proposed a hybrid inertial algorithm for approximating fixed points of
noncommutative generic 2-generalized Bregman nonspreading mappings with equilibrium in reflexive

Banach space. Also, we proved that the sequence generated by such algorithm converges strongly

to the common fixed points of such mappings and solved some equilibrium problems in the space.
The result established improved and generalized some recently announced results in the literature.

A numerical example is given at end of the paper to ascertain some least level of improvement.
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1. Introduction

Let H a real Hilbert space and C be a nonempty subset of H. A point x ∈ C is
called a fixed point of a map T : C → H if Tx = x. Denote the set of fixed points of T
by F (T ) i.e. F (T ) = {x ∈ C : Tx = x}. A mapping T : C → H is called 2-generalized
hybrid [20] if there exist α1, α2, β1, β2 ∈ R such that

α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2

≤ β1‖T 2x− y‖2 + β2‖Tx− y‖2 + (1− β1 − β2)‖x− y‖2, ∀ x, y ∈ C.

Takahashi [27] obtained weak and strong convergence theorems for noncommutative
2-generalized hybrid mappings in Hilbert spaces.
As an extension of 2-generalized hybrid mapping, a normally 2-generalized hy-
brid mapping was introduced in Hilbert spaces by Kondo and Takahahasi [19].
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A mapping T : C → C is called normally 2-generalized hybrid [19] if there exist

α1, α2, α3, β1, β2, β3 ∈ R such that (a)
∑3
i=1(αi + βi) ≥ 0; (b)

∑3
i=1 αi > 0 and

(c) α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + α3‖x− Ty‖2

+ β1‖T 2x− y‖2 + β2‖Tx− y‖2 + β3‖x− y‖2 ≤ 0, ∀ x, y ∈ C.

In 2018, Hojo et al. [17] proved weak and strong convergence theorems for commuta-
tive normally 2-generalized hybrid mappings in Hilbert spaces. They established that
the sequence {xn} ⊂ C defined by

x1 = x ∈ C
yn = αnxn + (1− αn) 1

(n+1)2

∑n
k=0

∑n
l=0 S

kT l, xn
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0}
xn+1 = PCn∩Qnx, ∀n ∈ N,

.

converges strongly to z0 = PF (S)∩F (T )x, where PF (S)∩F (T ) is the metric projection of
H onto F (S) ∩ F (T ).

Recently, Takahashi et al. [28] proved strong convergence theorem by hybrid
method for two noncommutative normally 2-generalized hybrid mappings in Hilbert
spaces. They proved that the sequence {xn} ⊂ C defined by

x1 = x ∈ C
yn = anxn + bn(γnS + (1− γn)T )xn + cn(δnS

2 + (1− δn)T 2)xn
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0}
xn+1 = PCn∩Qnx1 ∀n ∈ N

. (1.1)

converges strongly to z0 = PF (S)∩F (T )x, where PF (S)∩F (T ) is the metric projection of
H on F (S) ∩ F (T ).

Let f : E → (−∞,+∞] be a convex function. We denote by domf the domain
of f ; that is domf = {x ∈ E : f(x) < ∞}. For any x ∈ int(dom(f)) and y ∈ E, the
derivative of f at x in the direction y is defined by

f ′(x, y) := lim
t→0

f(x+ ty)− f(x)

t
. (1.2)

The function f is said to be Gâteaux differentiable at x if limt→0
f(x+ty)−f(x)

t exists
for any y. In this case, the gradient of f at x is the linear functional ∇f(x) : E →
(−∞,+∞] defined by 〈∇f(x), y〉=f ′(x, y), for any y ∈ E . The function f is said
to be Gâteaux differentiable if it is Gâteaux differentiable at every x ∈ int(dom(f)).
The function f is said to be Fréchet differentiable at x if the limit in (1.2) is attained
uniformly in y, ‖y‖ = 1. Finally, f is said to be uniformly Fréchet differentiable on a
subset C ⊂ int(dom(f)) if the limit (1.2) is attained uniformly for x∈E and ‖y‖ = 1.
It is well known that if a continuous convex function f is Gâteaux differentiable (resp.
Fréchet differentiable) in int(dom(f)), then ∇f is norm-to-weak∗ continuous (resp.
continuous) in int(dom(f)) (see also [7]).

Let E be a real Banach space and f : E → (−∞,+∞] a strictly convex and
Gâteaux differentiable function. The function Df : domf× int(dom(f)) → [0,+∞),
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defined by

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉, (1.3)

is called the Bregman distance with respect to f (see [14]).

Remark 1.1. If E is smooth Banach space and f(x) = ‖x‖2 for all x ∈ E, then
we have ∇f(x) = 2Jx for all x ∈ E where J : E → E∗ is the normalized duality

mapping. Hence Df (x, y) = φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀ x, y ∈ E. Also if E
is Hilbert space, then Df (x, y) = ‖x− y‖2, ∀x, y ∈ E.

Observe that from (1.3), we have for any x ∈ domf and y, z ∈ int(dom(f)).

Df (x, z) = Df (x, y) +Df (y, z) + 〈x− y,∇f(y)−∇f(z)〉. (1.4)

which is called the three point identity.
As an extension and generalization of the normally 2-generalized hybrid mapping, Ali
and Haruna [3] introduced a generic 2-generalized Bregman nonspreading mapping in
a real reflexive Banach space. A mapping T : C → C is called generic 2-generalized
Bregman nonspreading mapping if there exist α1, α2, α3, β1, β2, β3, γ1, γ2, δ1, δ2 ∈ R
such that (i)

∑3
i=1(αi + βi) ≥ 0, (ii)

∑3
i=1 αi > 0 and

(iii) α1Df (T 2x, Ty) + α2Df (Tx, Ty) + α3Df (x, Ty) + β1Df (T 2x, y)

+ β2Df (Tx, y) + β3Df (x, y) (1.5)

≤ γ1
(
Df (Ty, T 2x)−Df (Ty, x)

)
+ γ2

(
Df (Ty, Tx)−Df (Ty, x)

)
+ δ1

(
Df (y, T 2x)−Df (y, x)

)
+ δ2

(
Df (y, Tx)−Df (y, x)

)
,

for all x, y ∈ C. such mapping is called (α1, α2, α3, β1, β2, β3, γ1, γ2, δ1, δ2)-generic 2-
generalized Bregman nonspreading mapping. See, for example, [[2],[4],[21]], the other
mappings which the generic 2-generalized Bregman nonspreading mapping contained
as special cases in the Banach spaces.

Remark 1.2. If E = H is a real Hibert space, then Df (x, y) = ‖x − y‖2 and
consequently the generic 2-generalized Bregman nonspreading mapping reduces to
(α′1, α

′
2, α
′
3, β
′
1, β
′
2, β
′
3) normally 2-generalized hybrid in the sense of [19] where

α′1 = α1 − γ1, α′2 = α2 − γ2, α′3 = α3 + γ1 + γ2

and

β′1 = β1 − δ1, β′2 = β2 − δ2, β′3 = β3 + δ1 + δ2.

With regards to the generic 2-generalized nonspreading mappings, the following
results were proved, see [5] for details.

Lemma 1.1. Let f : E → R be a Legendre function which is uniformly Fréchet dif-
ferentiable on bounded subsets of E. Let C be a nonempty subset of int(dom(f)) and
T : C → C be a generic 2-generalized Bregman nonspreading mapping. If xn ⇀ p,
(xn − Txn)→ 0 and (xn − T 2xn)→ 0 as n→∞, then p ∈ F (T ).

Lemma 1.2. Let C be a nonempty subset of int(dom(f)) and T : C → C be a generic
2-generalized Bregman nonspreading mapping. If F (T ) 6= ∅, then T is quasi Bregman
nonexpansive.
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Motivated and inspired by the above results, we prove that the sequence defined
by the proposed algorithm converges strongly to the common fixed point of generic 2-
generalized Bregman nonspreading mappings which in turns, solved some equilblirium
problems in a real reflexive Banach space. Our result improved and generalized the
results of Takahashi et al.[28]. In fact, a numerical example shows that a sequence
generated by hybrid inertial algorithm which is corollary to our main result converges
faster than that of Takahashi et al.[28].

2. Preliminaries

Let E be a real reflexive Banach space with norm ‖ ·‖ and E∗ the the dual space of
E. Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex function.
The Fenchel conjugate of f is the convex function f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.

Observe that the Young-Fenchel inequality holds:

〈x∗, x〉 ≤ f(x) + f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

It is well known that if f : E → (−∞,+∞] is a proper, convex and lower semi-
continuous, then f∗ : E∗ → (−∞,+∞] is proper, convex and weak∗ lower semi-
continuous function; see for example [26].

A sublevel of f is the set of the form levf≤r := {x ∈ E : f(x) ≤ r} for r ∈ R.

A function f on E is coercive [16] if every sublevel of f is bounded, equivalently

lim
‖x‖→+∞

f(x) = +∞.

Let Br := {x ∈ E : ‖x‖ ≤ r} for all r > 0 and SE := {x ∈ E : ‖x‖ = 1}. A function
f on E is said to be

(i) strongly coercive [30] if

lim
‖x‖→+∞

f(x)

‖x‖
= +∞.

(ii) locally bounded if f(Br) is bounded for all r > 0.

(iii) locally uniformly smooth ([30]) if ∀ r > 0, the limt→0
σr(t)
t = 0, where

σr : [0,+∞)→ [0,+∞] is the function defined by

σr(t) = sup
x∈Br,y∈SE ,α∈(0,1)

(αf(x+(1−α)ty)+(1−α)f(x−αty)−f(x))× (α(1−α))−1

for all t ≥ 0.
(iv) locally uniformly convex (or uniformly convex on bounded subsets of E ([30]))

if ∀ r, t > 0 the ρr(t) > 0, where ρr : [0,+∞) → [0,+∞] is the gauge of
uniform convexity of f , defined by

ρr(t) = inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

(αf(x) + (1−α)f(y)− f(αx+ (1−α)y))× (α(1−α))−1

for all t ≥ 0.

The following result is proved in [30].
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Lemma 2.1. [30]. Let E be a reflexive Banach space and let f : E → R be a con-
tinuous convex function which is strongly coercive. Then the following assertions are
equivalent

(1) f is bounded on bounded sets and uniformly smooth on bounded sets;
(2) f∗ is Fréchet differentiable and f∗ is uniformly norm-to-norm continuous on

bounded sets.
(3) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded sets.

Let x ∈ int(dom(f)), the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E}.

Definition 2.1. (see [9]) The function f is said to be:

(i) Essentially smooth, if ∂f is both locally bounded and single-valued on its
domain;

(ii) Essentially strictly convex, if (∂f)
−1

is locally bounded on its domain and f
is strictly convex on every subset of domf ;

(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 2.1. Let E be a reflexive Banach space. Then we have:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex (see [9]
Theorem 5.4);

(ii) (∂f)
−1

= ∂f∗;
(iii) f is Legendre if and only if f∗ is Legendre (see [9],Corrolary 5.5);
(iv) If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f∗)−1,

ran∇f = dom∇f∗ = int(dom(f∗)) and ran ∇f∗ = dom∇f = int(dom(f)),
(see [9], Theorem 5.10).

Various examples of Legendre functions were given in [8, 9] . One important and
interesting Legendre function is 1

p‖ · ‖
p

(1 < p <∞) when E is a smooth and strictly

convex Banach space. In this case, the gradient ∇f of f coincides with the generalized
duality mapping of E, i.e, ∇f = Jp (1 < p <∞). In particular, ∇f = I the identity
mapping in Hilbert spaces.

Definition 2.2. [12, 18] Let E be a Banach space. The function f : E → R is said
to be a Bregman function if the following conditions are satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Df (x, y) < r} is bounded for all x ∈ E and r > 0.

The following result can be found in [1] [see also [13], [18]]

Lemma 2.2. Let E be a reflexive Banach space, let f : E → R be a strongly coercive
Bregman function and let Vf be a function Vf : E × E∗ → [0,+∞) associated with f
defined by

Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗) ∀x ∈ E, x∗ ∈ E∗. (2.1)

Then the following assertions hold:

(i) Vf (x, x∗) = Df (x,∇f∗(x∗)) ∀x ∈ E, x∗ ∈ E∗.
(ii) Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗) ∀x ∈ E, x∗ ∈ E∗.
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Also from equation (2.1), it is obvious that Df (x, y) = Vf (x,∇f(y)) and Vf is
convex in the second variable. Therefore for t ∈ (0, 1) and x, y ∈ E, we have

Df (z,∇f∗(t∇f(x) + (1− t)∇f(y))) ≤ tDf (z, x) + (1− t)Df (z, y). (2.2)

A Bregman projection [11] of x ∈ int(dom(f)) onto the nonempty, closed and convex

set C ⊂ domf is the unique vector P fC(x) ∈ C satisfying

Df (P fC(x), x) = inf{Df (y, x) : y ∈ C}.

The following is well-known concerning Bregman projections

Lemma 2.3 ([13]). Let C be nonempty, closed and convex subset of a reflexive Banach
space E. Let f : E → R be a Gâteaux differentiable and totally convex function and
let x ∈ E. Then
(a) z = P fCx if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0,∀y ∈ C.
(b) Df (y, P fCx) +Df (P fCx, x) ≤ Df (y, x) ∀x ∈ E, y ∈ C.

Lemma 2.4. [23] Let E be a Banach space and let g : E → R be a convex function
which is uniformly convex on bounded subsets of E. Let r > 0 be a constant,

Br := {z ∈ E : ‖z‖ ≤ r}, B∗r := {z∗ ∈ E∗ : ‖z∗‖ ≤ r}

let ρr and ρ∗r be the gauges of uniform convexity of g and g∗ respectively. Then,

(i) for any x, y ∈ Br and α ∈ (0, 1),

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρr(‖x− y‖)

(ii) for any x, y ∈ Br, ρr(‖x− y‖) ≤ Dg(x, y)
(iii) If in addition g is bounded on bounded subsets and uniformly convex on

bounded subsets of E, then for any x ∈ E,y∗, z∗ ∈ B∗r and α ∈ (0, 1),

Vg(x, αy
∗ + (1− α)z∗) ≤ αVg(x, y∗) + (1− α)Vg(x, z

∗)− α(1− α)ρ∗r(‖y∗ − z∗‖);

(iv) If in addition g is bounded on bounded subsets, uniformly convex and uni-
formly smooth on bounded subsets of E, then for any x ∈ E,y∗, z∗ ∈ B∗r ,

ρ∗r(‖x∗ − y∗‖) ≤ Dg(x
∗, y∗).

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. The
modulus of total convexity of f at x ∈ int(dom(f)) is the function

vf (x, .) : int(dom(f))× [0,+∞]→ [0,+∞]

defined by

vf (x, t) = inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t}.
The function f is totally convex at x if vf (x, t) > 0 whenever t > 0. The function f
is called totally convex if it is totally convex at every point x ∈ int(dom(f)) and is
said to be totally convex on bounded sets if vf (B, t) > 0, for any nonempty bounded
subset B of E and t > 0, where the modulus of total convexity of the function f on
the set B is the function Vf : int(dom(f))× [0,+∞]→ [0,+∞] defined by

Vf (B, t) = inf{vf (x, t) : x ∈ B ∩ domf}.
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Lemma 2.5. [25] If x ∈ int(dom(f)), then the following statements are equivalent:
(i) The function f is totally convex at x;
(ii) for any sequence {yn} ⊂ domf ,

lim
n→+∞

Df (yn, x) = 0⇒ lim
n→+∞

‖yn − x‖ = 0

Lemma 2.6. [29] Let f : E → (−∞,+∞] be a Legendre function such that ∇f∗ is
bounded on bounded subsets of int(domf∗). Let x ∈ int(dom(f)). If {Df (x, xn)}n∈N
is bounded, then so is the sequence {xn}n∈N .

Lemma 2.7. [22] Let E be a Banach space and let g : E → R be a Gâteaux differen-
tiable function which is uniformly convex on bounded subsets of E. Let {xn}n∈N and
{yn}n∈N be bounded sequences in E. Then the following are equivalent.

(1) limn→∞Df (xn, yn) = 0;
(2) limn→∞ ‖xn − yn‖ = 0.

Lemma 2.8. [24] Let f : E → (−∞,+∞] be a Legendre function. Let C be a
nonempty closed convex subset of int(domf) and T : C → C be a quasi -Bregman
nonexpansive mapping. Then F (T ) is closed and convex.

The equilibrium problem with respect to a bifunction g : C × C → R is to find a
point x ∈ C such that g(x, y) ≥ 0 for all y ∈ C. Denote the set of solutions of the
equilibrium problem by EP (g), i.e.

EP (g) = {x ∈ C : g(x, y) ≥ 0 ∀y ∈ C}.
Numerous problems can be reduced to finding solution of the equilibrium problem
among which can be found in physics, optimization and economics. To solve equilib-
rium problems, some of the methods been proposed include that of Blum and Oettli
[10] and Combettes and Hirstoaga [15].
To solve equilibrium problem, the bifunction g : C ×C → R is assumed to satisfy the
following conditions as can be seen in [10]:

(A1) g(x, x) = 0 ∀x ∈ C.
(A2) g is monotone that is, g(x, y) + g(y, x) ≤ 0 ∀x, y ∈ C.
(A3) lim supt→∞ g(x+ t(z − x), y) ≤ g(x, y), ∀x, y, z ∈ C.
(A4) The function y → g(x, y) is convex and lower semi continuous.

The resolvent of the bifunction g [15] is the operator Tr : E → 2C defined by

Trx = {x ∈ C : g(x, y) +
1

r
〈∇fx−∇fz, y − x〉 ≥ 0, ∀y ∈ C}.

Lemma 2.9. [24] Let E be a real reflexive Banach space and C be a nonempty closed
convex subset of E. Let f : E → (−∞,+∞] be a Legendre function. If the bifunction
g : C × C → R satisfies conditions (A1)− (A4), then the following hold:

(i) Tr is single-valued;
(ii) Tr is a Bregman firmly nonexpansive operator;

(iii) F (Tr) = EP (g);
(iv) EP (g) is closed and convex;
(v) For all x ∈ E and p ∈ F (Tr) one has Df (p, Trx) +Df (Trx, x) ≤ Df (p, x).
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3. Main results

In this section, E is consider to be a real reflexive Banach space. We proposed
a hybrid inertial algorithm for noncommutative generic 2-generalized Bregman non-
spreading mappings with equilibrium in Banach spaces. We then prove that the
sequence generated by such algorithm converges strongly to the common element of
the set of fixed points of such mappings and the set of solutions of the equilblirium
problem in the space.

Theorem 3.1. Let f : E → R be strongly coercive, Legendre, uniformly Fréchet dif-
ferentiable and totally convex function which is bounded on bounded subsets of E. Let
C be a nonempty, closed and convex subset of int(domf) and g : C × C → R be a
bifunction satisfying (A1) − (A4). Let S, T : C → C generic 2-generalized Bregman
nonspreading mappings such that F = F (S) ∩ F (T ) ∩ EP (g) 6= ∅. Let {xn} be a
sequence generated by

x0, x1 ∈ C
un = xn + ln(xn − xn−1)
yn = ∇f∗(αn∇fun + βn∇fvn + γn∇fwn)
zn = Trnyn
Cn = {p ∈ C : Df (p, zn) ≤ Df (p, un)},
Qn = {p ∈ C : 〈∇fx1 −∇fxn, xn − p〉 ≥ 0},
xn+1 = PfCn∩Qn

(x1) n ∈ N,

(3.1)

where

vn = ∇f∗(δn∇fSun + (1− δn)∇fTun),

wn = ∇f∗(λn∇fS2un + (1− λn)∇fT 2un)

with the real sequences {αn}, {βn}, {γn}, {δn}, {λn} ⊂ [a, b] ⊂ (0, 1) and

αn + βn + γn = 1.

Then {xn} converges strongly to z = PfF (u), where PfF (u) is the Bregman projection
of E onto F .

Proof. We first guarantee that the sequence {xn} is well defined. From the definition
of Cn, we see that Df (p, zn) ≤ Df (p, un) if and only if

Df (un, zn) + 〈∇un −∇zn, p− un〉 ≤ 0.

Thus, it is an evident that both Cn, Qn and Cn ∩ Qn are closed and convex. Also,
since the mappings S and T are generic 2-generalized Bregman nonspreading with
nonempty fixed point sets then by Lemma 1.2, they are quasi nonexpansive. Hence
by Lemma 2.8, both S and T are closed and convex.
We let z ∈ F = F (S) ∩ F (T ) ∩ EP (g) 6= ∅ so that

Df (z, vn) = Df (z,∇f∗(δn∇fSun + (1− δn)∇fTun))

≤ δnDf (z, Sun) + (1− δn)Df (z, Tun)

≤ δnDf (z, un) + (1− δn)Df (z, un)

= Df (z, un).
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Similarly,

Df (z, wn) = Df (z,∇f∗(λn∇fS2un + (1− λn)∇fT 2un))

≤ λnDf (z, S2un) + (1− λn)Df (z, T 2un)

≤ λnDf (z, un) + (1− λn)Df (z, un)

= Df (z, un).

Also,

Df (z, yn) = Df (z, αn∇fun + βn∇fvn + γn∇fwn))

≤ αnDf (z, un) + βnDf (z, vn) + γDf (z, wn)

≤ αnDf (z, un) + βDf (z, un) + δDf (z, un)

= Df (z, un).

Using (b) of Lemma 2.3, we obtain

Df (z, zn) = Df (z, Trnyn))

≤ Df (z, yn)−Df (Trnyn, yn)

≤ Df (z, un).

This implies, z ∈ Cn . Thus F ⊂ Cn. Now, we show that F ⊂ Cn ∩ Qn ∀n ∈ N
and we do this by induction. For n = 1, we see that F ⊂ C1 ∩Q1 since F ⊂ C1 and
Q1 = C. Suppose for some k ≥ 1, F ⊂ Ck ∩ Qk then there exists xk+1 ∈ Ck ∩ Qk
such that xk+1 = P fCk∩Qk

x1. Thus, from the property of Bregman projection we have

〈∇fxk+1 −∇fx1, p− xk+1〉 ≥ 0,

for all p ∈ Ck ∩Qk and since F ⊂ Ck ∩Qk, we have

〈∇fxk+1 −∇fx1, z − xk+1〉 ≥ 0,

for all z ∈ F . This implies F ⊂ Ck+1 ∩ Qk+1 and therefore F ⊂ Cn ∩ Qn ∀n ∈ N.
Hence, the sequence {xn} is well defined.
Next is to show that the sequence {xn} is bounded. We know from the definition of

Qn that xn = P fQn
x1. Using (b) of Lemma 2.3, we get

Df (xn, x1) = Df (P fQn
x1, x1)

≤ Df (z, x1)−Df (z, xn)

≤ Df (z, x1) ∀z ∈ F ⊂ Qn.

This implies that the sequence {Df (xn, x1)} is bounded. Thus, by Lemma 2.6, the
sequence {xn} is bounded too.

Also, since xn = P fQn
x1 and xn+1 ⊂ Qn then using (1.4), we have that

0 ≤ 〈∇fxn −∇fx1, xn+1 − xn〉
= Df (xn+1, x1)−Df (xn+1, xn)−Df (xn, x1) (3.2)

≤ Df (xn+1, x1)−Df (xn, x1).
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This implies that Df (xn, x1) ≤ Df (xn+1, x1). Thus, the sequence {Df (xn, x1)} is
monotone increasing and since it is bounded then limn→∞Df (xn, x1) exists.
From (3.2), we see that

Df (xn+1, xn) ≤ Df (xn+1, x1)−Df (xn, x1).

Using the fact that limn→∞Df (xn, x1) exists, we get that

lim
n→∞

Df (xn+1, xn) = 0.

Thus, by Lemma 2.7

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

Using (3.1) and (3.3), we obtain

lim
n→∞

‖xn − un‖ = 0. (3.4)

This implies {un} is bounded. Also, using (3.3) and (3.4) we get

lim
n→∞

‖xn+1 − un‖ = 0. (3.5)

Thus, by Lemma 2.7, limn→∞Df (xn+1, un) = 0.
Since xn+1 ⊂ Cn, it implies Df (xn+1, zn) ≤ Df (xn+1, un).
Thus, limn→∞Df (xn+1, zn) = 0. Therefore,

lim
n→∞

‖xn+1 − zn‖ = 0. (3.6)

Using (3.5) and (3.6) we get

lim
n→∞

‖un − zn‖ = 0. (3.7)

Hence, we obtain that the

lim
n→∞

‖∇fun −∇fzn‖ = 0 and lim
n→∞

Df (zn, un) = 0.

From the definition of zn and (b) of Lemma 2.3, we obtain

Df (zn, yn) = Df (Trnyn, yn)

≤ Df (z, yn)−Df (z, zn)

≤ Df (z, un)−Df (z, zn)

≤ Df (zn, un) + ‖∇fun −∇fzn‖‖z − un‖ → 0 as n→∞.

Thus, by Lemma 2.5

lim
n→∞

‖zn − yn‖ = 0. (3.8)

From (3.7) and (3.8), we get

lim
n→∞

‖un − yn‖ = 0. (3.9)
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On the other hand,

Df (z, yn) = Df (z,∇f∗[αn∇fun + βn∇fvn + γn∇fwn])

= Vf (z, αn∇fun + βn∇fvn + γn∇fwn)

≤ αnVf (z,∇un) + βnVf (z,∇vn) + γnVf (z,∇wn)

− αnβnρ
∗
r(‖∇fun −∇fvn)‖ (3.10)

= αnDf (z, un) + βnDf (z, vn) + γnDf (z, wn)

− αnβnρ
∗
r(‖∇fun −∇fvn)‖ (3.11)

≤ αnDf (z, un) + βnDf (z, un) + γnDf (z, un)

− αnβnp
∗
s

(
‖∇f(un)−∇f(vn)‖

)
= Df (z, un)− αnβnp∗r

(
‖∇f(un)−∇f(vn)‖

)
.

Thus,
Df (z, yn) ≤ Df (z, un)− αnβnp∗r

(
‖∇f(un)−∇f(vn)‖

)
. (3.12)

Similarly,
Df (z, yn) ≤ Df (z, un)− αnγnp∗r

(
‖∇f(un)−∇f(wn)‖

)
. (3.13)

These imply that

αnβnp
∗
r

(
‖∇f(un)−∇f(vn)‖

)
≤ Df (z, un)−Df (z, yn) (3.14)

and
αnγnp

∗
r

(
‖∇f(un)−∇f(wn)‖

)
≤ Df (z, un)−Df (z, yn). (3.15)

Using the property of p∗r and the fact that αn, βn, γn ∈ [a, b] ⊂ (0, 1), taking limit as
n→∞ of (3.14) and (3.15), we have

lim
n→∞

‖∇f(un)−∇f(vn)‖ = 0, lim
n→∞

‖∇f(un)−∇f(wn)‖ = 0. (3.16)

Also,

Df (z, vn) = Df (z,∇f∗(δn∇fSun + (1− δn)∇Tun))

≤ δnDf (z, Sun) + (1− δn)Df (z, Tun)

− δn(1− δn)ρ∗r(‖∇fSun −∇Tun‖) (3.17)

≤ Df (z, un)− δn(1− δn)ρ∗r(‖∇fSun −∇Tun‖).
This implies,

δn(1− δn)ρ∗r(‖∇fSun −∇Tun‖) ≤ Df (z, un)−Df (z, vn). (3.18)

Similarly,

λn(1− λn)ρ∗r(‖∇fS2un −∇T 2un‖) ≤ Df (z, un)−Df (z, wn). (3.19)

Using the property of p∗r and the fact that δn, λn ∈ [a, b] ⊂ (0, 1), taking limit as
n→∞ of (3.18) and (3.19), we get

lim
n→∞

‖∇f(Sun)−∇f(Tun)‖ = 0, lim
n→∞

‖∇f(S2un)−∇f(T 2un)‖ = 0. (3.20)

This implies,

lim
n→∞

‖Sun − Tun‖ = 0, lim
n→∞

‖S2un − T 2un‖ = 0. (3.21)
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Using (3.16) and (3.20), we get

lim
n→∞

‖∇f(un)−∇f(Tun)‖ = 0, lim
n→∞

‖∇f(un)−∇f(T 2un)‖ = 0. (3.22)

Thus,

lim
n→∞

‖un − Tun‖ = 0, lim
n→∞

‖un − T 2un‖ = 0. (3.23)

From (3.21) and (3.23), we can deduce that

lim
n→∞

‖un − Sun‖ = 0, lim
n→∞

‖un − S2un‖ = 0. (3.24)

By the boundedness of {un} and reflexivity of E, there exists a subsequence {unk
}

of {un} such that unk
⇀ u. Thus, it follows from (3.23), (3.24) and Lemma 1.1 that

u ∈ F (S) ∩ F (T ). Also, using (3.7), we see that znk
⇀ u. Since zn = Trnyn then

from the definition of Tr, we get

g(zn, y) +
1

rn
〈∇fzn −∇fyn, y − zn〉 ≥ 0, ∀y ∈ C.

Hence

g(znk
, y) +

1

rnk

〈∇fznk
−∇fynk

, y − znk
〉 ≥ 0, ∀y ∈ C.

Using (A2), we get

g(y, znk
) ≤ −g(znk

, y)

≤ 1

rnk

〈∇fznk
−∇fynk

, y − znk
〉

≤ 1

rnk

‖∇fznk
−∇fynk

‖‖y − znk
‖ ∀y ∈ C.

Taking limit as k →∞ of the above inequality and with use of (A4) and the fact that
znk

⇀ u, we get g(y, u) ≤ 0. Define yt = ty+ (1− t)u for 0 < t < 1 and y ∈ C. Since
u, y ∈ C then yt ∈ C which yield that g(yt, u) ≤ 0.
Using (A1) we see that

0 = g(yt, yt) ≤ tg(yt, y) + (1− t)g(yt, u)

≤ tg(yt, y).

Thus, g(yt, y) ≥ 0. Now letting t→ 0 and using (A3) we see that g(u, y) ≥ 0 for any
y ∈ C. This implies u ∈ EP (g). Hence u ∈ F .
Also, from (3.4), we have xnk

⇀ u. Now put v = P fFx1. Since xn+1 = P fCn∩Qn
x1 and

v ∈ Cn ∩Qn, we get Df (xn+1, x1) ≤ Df (v, x1).
Since Df (., x) is lower semi continuous and convex and thus weakly lower semi con-
tinuous on int(domf) then from the fact that xnk

⇀ u, wee see that

Df (u, x1) ≤ lim inf
k→∞

Df (xnk
, x1) ≤ Df (v, x1).
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From the definition of v, we can conclude that u = v and the sequence xn ⇀ v.
We finally show that xn → v. Now using the three point identity

lim sup
n→∞

Df (xn, v) = lim sup
n→∞

[Df (xn, x1) +Df (x1, v) + 〈∇fx1 −∇fv, xn − x1〉]

≤ lim sup
n→∞

[Df (v, x1) +Df (x1, v) + 〈∇fx1 −∇fv, xn − x1〉]

= lim sup
n→∞

[〈∇fv −∇fx1, v − x1〉 − 〈∇fv −∇fx1, xn − x1〉]

= lim sup
n→∞

〈∇fv −∇fx1, v − xn〉 = 0.

Thus, we obtain limn→∞Df (xn, v) = 0. Hence by Lemma 2.6 we get xn → v as
n→∞. This completes the proof. �

As a consequence, in view of Remark 1.2, the following results are obtained by
applying Theorem 3.1.

Corollary 3.1.1. Let C be a nonempty, closed convex subset of a real Hilbert space
and g : C × C → R be a bifunction satisfying (A1) − (A4). Let S, T : C → C be
normally 2-generalized hybrid mapping with f(x) = ‖x‖2 such that

F = F (S) ∩ F (T ) ∩ EP (g) 6= ∅.
Let {xn} be a sequence defined by

x0, x1 ∈ C
un = xn + ln(xn − xn−1)
yn = αnun + βnvn + γnwn
zn = Trnyn
Cn = {p ∈ C : ‖zn − p‖2 ≤ ‖un − p‖2},
Qn = {p ∈ C : 〈x1 − xn, xn − p〉 ≥ 0},
xn+1 = PCn∩Qn(x1) n ∈ N,

.

where
vn = δnSun + (1− δn)Tun,

wn = λnS
2un + (1− λn)T 2un

with the real sequences {αn}, {βn}, {γn}, {δn}, {λn} ⊂ [a, b] ⊂ (0, 1) and

αn + βn + γn = 1.

Then {xn} converges strongly to z = PF (u), where PF (u) is the metric projection of
E onto F .

Proof. By remark 1.2, the generic 2-generalized Bregman nonspreading mapping re-
duces to normally 2-generalized hybrid mapping in Hilbert space i.e. there exists
α′1, α

′
2, α
′
3, β
′
1, β
′
2, β
′
3 ∈ R such that

α′1‖T 2x− Ty‖2 + α′2‖Tx− Ty‖2 + α′3‖x− Ty‖2

+ β′1‖T 2x− y‖2 + β′2‖Tx− y‖2 + β′3‖x− y‖2 ≤ 0 ∀ x, y ∈ C,
where

α′1 = α1 − γ1, α′2 = α2 − γ2, α′3 = α3 + γ1 + γ2
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and
β′1 = β1 − δ1, β′2 = β2 − δ2, β′3 = β3 + δ1 + δ2

satisfying
3∑
i=1

(α′i + β′i) =

3∑
i=1

(αi + βi) ≥ 0

and
3∑
i=1

α′i =

3∑
i=1

αi > 0.

Thus, by Theorem 3.1 we see that the sequence {xn} converges strongly to z = PF (u).
This completes the proof. �

Corollary 3.1.2. Let C be a nonempty closed convex subset of a real Hilbert space
and Let S, T : C → C be normally 2-generalized hybrid mapping with f(x) = ‖x‖2
such that F = F (S) ∩ F (T ) 6= ∅. Let {xn} be a sequence defined by

x0, x1 ∈ C
un = xn + ln(xn − xn−1)
yn = αnun + βnvn + γnwn
Cn = {p ∈ C : ‖yn − p‖2 ≤ ‖un − p‖2},
Qn = {p ∈ C : 〈x1 − xn, xn − p〉 ≥ 0},
xn+1 = PCn∩Qn

(x1) n ∈ N,

. (3.25)

where
vn = δnSun + (1− δn)Tun,

wn = λnS
2un + (1− λn)T 2un

with the real sequences {αn}, {βn}, {γn}, {δn}, {λn} ⊂ [a, b] ⊂ (0, 1) and

αn + βn + γn = 1.

Then {xn} converges strongly to z = PF (u), where PF (u) is the metric projection of
E onto F . This completes the proof.

A numerical example

Here, we present a numerical example to show that the convergence of a sequence
generated by our inertial algorithm (3.25) in corollary 3.1.2 is faster than that of
(1.1) which does not involve the intertial condition. Let E = R and C = [0, 2]. Let
S, T : C → C be defined by

Sx = Tx =

{
0, x ∈ [0, 2)

1, x = 2.

Observe that for the choice of real numbers

α=α2 = α3 = δ1 = 1

and
β1 = β2 = β3 = γ1 = γ2 = δ2 = −1,

we see that
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(1)
∑3
i=1 αi > 0;

(2)
∑3
i=1(αi + βi) ≥ 0; and

(3) h(x, y) ≤ 0, for all x, y ∈ C, where

h(x, y) = α1(T 2x− Ty)2 + α2(Tx− Ty)2 + α3(x− Ty)2

+ β1(T 2x− y)2 + β2(Tx− y)2 + β3(x− y)2

− γ1(Ty − T 2x)2 + γ1(Ty − x)2 − γ2(Ty − Tx)2 + γ2(Ty − x)2

− δ1(y − T 2x)2 + δ1(y − x)2 − δ2(y − Tx)2 + δ2(y − x)2.

Therefore, S and T are generic 2-generalized Bregman nonspreading mappings, see
[3] for details.

It is clear that S and T are such that 0 ∈ F (S) = F (T ). Thus, 0 ∈ F (S) ∩ F (T ).
Taking

{an} = {bn} = {cn} = {αn} = {βn} = {λn} = {γn} = {δn} =

{
n

2n+ 1

}
⊂ (0, 1)

and {ln} =
{

n
2n+30

}
⊂ (0, 1), it follows from (1.1) and (3.25) that a sequence {xn}

generated by the following algorithms

x1 ∈ [0, 2];

yn =

{
n

2n+1xn, xn ∈ [0, 2)
n

2n+1 (xn + 1), xn = 2;

Cn =
{
z ∈ [0, 2] : z ≤ xn+yn

2

}
;

Qn = {z ∈ [0, 2] : z ≥ xn} ;

Cn ∩Qn =
{
z ∈ [0, 2] : xn ≤ z ≤ xn+yn

2

}
;

xn+1 = PCn∩Qn
(x1) = xn+yn

2 , n ≥ 1;

(3.26)

and respectively, 

x0, x1 ∈ [0, 2];

un = xn + n
2n+30 (xn − xn−1);

yn =

{
n

2n+1un, un ∈ [0, 2)
n

2n+1 (un + 1), un = 2;

Cn =
{
p ∈ [0, 2] : p ≤ un+yn

2

}
;

Qn = {p ∈ [0, 2] : p ≥ xn} ;

Cn ∩Qn =
{
p ∈ [0, 2] : xn ≤ p ≤ un+yn

2

}
;

xn+1 = PCn∩Qn
(x1) = un+yn

2 , n ≥ 1;

(3.27)

converge strongly to 0 ∈ F (S)∩F (T ). Clearly from Figure 1 below our inertial algo-
rithm which is a corollary to our main result converges faster than that of Takahashi
et al. [28] which does not involve the inertial condition.
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Figure 1. The graph of sequence {xn} generated by (3.26) (respec-
tively, (3.27)) versus number of iterations n := 1, 2, · · · , 30, with
initial choices of x1 = 1.5000. and x2 = 1.0000.
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