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Abstract. This paper deals with an open problem posed by Jleli and Samet in [1, M. Jleli and

B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl, 20(3) 2018]. In
[1, Remark 5.1], they asked whether the Cantor’s intersection theorem can be extended to F-metric

spaces or not. In this manuscript, we give an affirmative answer to this open question. Additionally,

keeping in mind the fact that totally boundedness is not a topological property, in the setting of
F-metric spaces are equivalent to that of usual metric spaces.
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1. Introduction and preliminaries

Recently, Jleli and Samet [1] proposed a new generalization of the classical metric
space concept. By means of a certain class of functions, the authors defined the
notion of an F-metric space. Firstly, we will recall the definition of such kind of
spaces. Consider F be any class of functions f : (0,∞) → R which satisfy the
following conditions:

(F1) f is non-decreasing, i.e., 0 < s < t⇒ f(s) ≤ f(t);
(F2) for every sequence {tn}n∈N ⊆ (0,+∞), we have

lim
n→∞

tn = 0⇐⇒ lim
n→+∞

f(tn) = −∞.

Now, we like to give the definition of an F-metric space and some needed definition
related to this space.
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Definition 1.1 ([1]). Let X be a non-empty set and D : X × X → [0,∞) be a
given mapping. Suppose that there exists (f, α) ∈ F × [0,∞) satisfying the following
conditions for all (x, y) ∈ X ×X:

(D1) D(x, y) = 0⇐⇒ x = y;
(D2) D(x, y) = D(y, x);
(D3) for each N ∈ N with N ≥ 2 and for every {ui}Ni=1 ⊆ X with (u1, uN ) = (x, y),

we have

D(x, y) > 0 =⇒ f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be an F-metric on X and the pair (X,D) is said to be an F-metric
space.

Definition 1.2 ([1]). Let (X,D) be an F-metric space. A subset O of X is said to
be F-open if for every x ∈ O, there is some r > 0 such that BD(x, r) ⊆ O, where

BD(x, r) = {y ∈ X : D(x, y) < r}.

We say that a subset C of X is F-closed if X \ C is F-open.

We denote by τF the family of all F-open subsets of an F-metric space (X,D). It
is easy to see that τF is a topology on X.

Definition 1.3 ([1]). Let (X,D) be an F-metric space and {xn} be a sequence in X.

(1) We say that {xn} is F-convergent to x ∈ X if for every F-open subset Ox of
X containing x, there exists some N ∈ N such that xn ∈ Ox for all n ≥ N .

(2) We say that {xn} is an F-Cauchy sequence if lim
n,m→∞

D(xn, xm) = 0.

(3) We say thatX is F-complete if every F-Cauchy sequence inX is F-convergent
to some point in X.

Remark 1.4. In an F-metric space (X,D), a sequence {xn} ⊆ X is F-convergent
to x ∈ X if and only if lim

n→∞
D(xn, x) = 0. Moreover, the limit of an F-convergent

sequence is unique.

Definition 1.5 ([1]). A subset A of an F-metric space (X,D) is said to be F-compact
if A is compact with respect to the topology τF on X.

Definition 1.6 ([1]). A subset A of an F-metric space (X,D) is said to be F-totally
bounded if for every r > 0, there exists a finite sequence {xi}ni=1 ⊆ A such that

A ⊆
⋃

i=1,2,...,n

BD(xi, r).
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By means of the article [3], the authors proved that an F-metric space (X,D) is
metrizable under a suitable metric d : X ×X → R defined by

d(x, y) = inf

{
N−1∑
i=1

D(ui, ui+1) : N ∈ N with N ≥ 2,

{ui}Ni=1 ⊆ X with (u1, uN ) = (x, y)

}
. (1.1)

They also showed that the notions of a Cauchy sequence, the completeness, the
Banach contraction principle are equivalent with that of metric spaces.

In this paper, based on the metric defined by (1.1), we give an affirmative answer
to the open question posed by Jleli and Samet in [1].

2. Main results

In this section, we will prove the Cantor’s intersection theorem for F-metric spaces.
Before proving this theorem, we will give a lemma which will be needed for proving
the theorem. From now on, D will denote the F-metric on a non-empty set X, d will
denote the metric defined by (1.1). Also, τF and τd denotes the topologies generated
by the metrics D and d, respectively. Before stating the lemma, we first want to
introduce the notion of F-boundedness in the setting of F-metric spaces.

Definition 2.1. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then
A ⊆ X is said to be F-bounded if there exists M > 0 such that D(x, y) ≤ M for all
x, y ∈ A.

Lemma 2.2. Let (X,D) be an F-metric space with (f, α) ∈ F×[0,∞) and let A ⊆ X
be F-bounded. Then A is bounded with respect to the metric d and diamd(A) ≤
diamD(A), where

diamd(A) = sup{d(x, y) : x, y ∈ A}

and

diamD(A) = sup{D(x, y) : x, y ∈ A}.

Proof. Let A ⊆ X be F-bounded. Then there exists M > 0 such that D(x, y) ≤ M
for all x, y ∈ A. By the definition of the metric d in (1.1), we have,

d(x, y) ≤ D(x, y) for all x, y ∈ X =⇒ d(x, y) ≤M for all x, y ∈ A.

This shows that A is bounded with respect to the metric d. Proof of the second part
follows similarly, so omitted. �

Theorem 2.3 (Cantor’s Intersection Theorem). Let (X,D) be an F-metric space
with (f, α) ∈ F × [0,∞). Then X is F-complete if and only if for every decreasing
sequence {Fn}n∈N of non-empty, F-closed subsets of X with diamD(Fn) → 0 as
n→∞, the intersection

⋂∞
i=1 Fi contains exactly one point.
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Proof. First of all, we will suppose that X is F-complete. Then X is complete with
respect to the metric d [3, Theorem 2.2 (iii)]. We now suppose that {Fn}n∈N is a
decreasing sequence of non-empty, F-closed subsets of X with diamD(Fn) → 0 as
n→∞. For each n ∈ N, we have

X \ Fn ∈ τF =⇒ X \ Fn ∈ τd.
So Fn is closed with respect to the metric d for all n ∈ N. Also by Lemma 2.2,
we obtain diamd(Fn) ≤ diamD(Fn) → 0 as n → ∞. By using Cantor’s intersection
theorem for standard metric spaces, we can say that, the intersection

⋂∞
i=1 Fi contains

exactly one point.
For the reverse part, we will suppose that {Fn}n∈N is a decreasing sequence of non-

empty, F-closed subsets of X with diamD(Fn) → 0 as n → ∞ and the intersection⋂∞
i=1 Fi contains exactly one point. So by similar arguments, we can say that {Fn}n∈N

is a decreasing sequence of non-empty, closed subsets of X with respect to the metric
d with diamd(Fn) → 0 as n → ∞ and the intersection

⋂∞
i=1 Fi contains exactly one

point. Again by using Cantor’s intersection theorem for standard metric spaces, we
can say that X is complete with respect to the metric d. So X is F-complete by [3,
Theorem 2.2 (iii)]. �

Now, we will prove that the notion of compactness in the setting of F-metric spaces
is equivalent to that of standard metric spaces.

Theorem 2.4. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then
A ⊆ X is F-compact if and only if A is compact with respect to the metric d.

Proof. (=⇒) Suppose that A ⊆ X is F-compact. Let {Uα}α∈Λ be an open cover of
A with respect to the metric d. So, Uα ∈ τd ∀ α ∈ Λ ⇒ Uα ∈ τF ∀ α ∈ Λ. Since
A is F-compact so there exists a finite set Λ0 ⊆ Λ such that A ⊆

⋃
α∈Λ0

Uα. But as
τd = τF , so Uα ∈ τd ∀ α ∈ Λ0. This shows that A is compact with respect to the
metric d.
For the converse part, the arguments are similar, so omitted. �

Theorem 2.5. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then X
is F-compact if and only if for every collection {Fα}α∈Λ of F-closed subsets of X,
having the finite intersection property, the intersection

⋂
α∈Λ Fα of all elements of Λ

is non-empty.

Proof. Suppose that X is F-compact. So by Theorem 2.4, we can say that X is com-
pact with respect to the metric d. Now suppose {Fα}α∈Λ be a collection of F-closed
subsets of X having the finite intersection property. So {Fα}α∈Λ will be a collec-
tion of closed subsets of X with respect to the metric d having the finite intersection
property. Now we can use [2, Theorem 26.9] to conclude the result. �

In [1], Jleli and Samet defined the concept of F-totally boundedness and it is to be
noted that totally boundedness is not a topological property. But our next theorem
ensures that the concept of F-totally boundedness is equivalent to that of standard
metric spaces.

In the upcoming theorem, we will use the notation Bd(x, r), where x is in a metric
space (X, d) and r > 0, which is defined by Bd(x, r) = {y ∈ X : d(x, y) < r}.
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Theorem 2.6. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then
A ⊆ X is F-totally bounded if and only if A is totally bounded with respect to to the
metric d.

Proof. (=⇒) Suppose that A ⊆ X is F-totally bounded and let ε > 0. So there
exists a finite subset {a1, a2, . . . , an} ⊆ A such that A ⊆

⋃n
i=1BD(ai, ε). Now by

the definition of the metric d, we have BD(ai, ε) ⊆ Bd(ai, ε) for all i ∈ {1, 2, . . . , n}.
Consequently A ⊆

⋃n
i=1Bd(ai, ε). This shows that A is totally bounded with respect

to to the metric d.
(⇐=) Let A be totally bounded with respect to to the metric d. Let ε > 0. It

can be easily seen from the definition of F-metric and the metric d that, for any
t > 0, x, y ∈ X, y 6= x,

f(D(x, y)) ≤ f(d(x, y) + t) + α. (2.1)

Now, by F2 condition, for (f(ε) − α), there exists a δ > 0 such that if 0 < t < δ
then f(t) < f(ε)− α. Since A is totally bounded with respect to the metric d, so for
δ
2 > 0, there exists a finite subset {b1, b2, . . . , bt} ⊆ A such that A ⊆

⋃t
i=1Bd(bi,

δ
2 ).

Now we will show that Bd(bi,
δ
2 ) ⊆ BD(bi, ε) ∀ i ∈ {1, 2, . . . , t}. Let y ∈ Bd(bi, δ2 ) and

if |Bd(bi, δ2 )| = 1, then clearly y ∈ BD(bi, ε). On the other hand, if |Bd(bi, δ2 )| > 1 and

y ∈ Bd(bi, δ2 ), y 6= bi, then d(y, bi) <
δ
2 . Now, using (2.1) we have,

f(D(y, bi)) ≤ f
(
d(y, bi) +

δ

2

)
+ α =⇒ f(D(y, bi)) < f(ε)

=⇒ D(y, bi) < ε.

So, Bd(bi,
δ
2 ) ⊆ BD(bi, ε) for all i ∈ {1, 2, . . . , t}. This shows that A ⊆

⋃t
i=1BD(bi, ε).

Hence, A is F-totally bounded. �

In [1, Proposition 4.9 (ii)], Jleli and Samet showed that if A ⊆ X is F-compact,
then A is F-totally bounded but did not say anything about the converse. In the
next theorem we will consider the converse part.

Theorem 2.7. Let (X,D) be an F-metric space with (f, α) ∈ F × [0,∞). Then the
following are equivalent:

(i) X is F-complete and F-totally bounded;
(ii) X is F-compact;

(iii) X is compact with respect to the metric d;
(iv) X is complete and totally bounded with respect to the metric d.

Proof. (i) ⇒ (ii) Suppose that X is F-complete and F-totally bounded. Then by [3,
Theorem 2.2 (iii)], we can conclude that X is complete with respect to the metric d
and by Theorem 2.6, X is totally bounded with respect to the metric d. This implies
that X is compact with respect to the metric d and by Theorem 2.4, we can conclude
that X is F-compact.

(ii) ⇒(i) Suppose that X is F-compact. So by Theorem 2.4, X is compact with
respect to the metric d. This implies that X is complete with respect to the metric
d. By [3, Theorem 2.2 (iii)], we can conclude that X is F-complete. The other part
has already proved in [1].



390 SUMIT SOM, LAKSHMI KANTA DEY AND WUTIPHOL SINTUNAVARAT

(ii) ⇒ (iii) It follows from Theorem 2.4.
(iii) ⇒ (iv) It follows from the theory of standard metric spaces.
(iv) ⇒ (i) It follows from [3, Theorem 2.2 (iii)] and Theorem 2.6. �
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