SOLVING THE SPLIT EQUALITY HIERARCHICAL FIXED POINT PROBLEM

B. DJAFARI-ROUHANI ${ }^{1}$, K.R. KAZMI ${ }^{2}$, S. MORADI ${ }^{3}$, REHAN ALI ${ }^{4}$ AND S.A. KHAN ${ }^{5}$
${ }^{1}$ Department of Mathematical Sciences, University of Texas at El Paso, 500W. University Ave., El Paso, Texas 79968, USA
E-mail: behzad@utep.edu
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts - Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Kingdom of Saudi Arabia and
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail: krkazmi@gmail.com
(Corresponding author)
${ }^{3}$ Department of Mathematics, Faculty of Sciences, Lorestan University, Khorramabad, 68151-4-4316, Iran
E-mail: moradi.s@lu.ac.ir
${ }^{4}$ Department of Mathematics, Jamia Millia Islamia, New Delhi 110025, India
E-mail: rehan08amu@gmail.com
${ }^{5}$ Department of Mathematics, BITS-Pilani, Dubai Campus, P.O. Box 345055, Dubai, United Arab Emirates E-mail: khan.math@gmail.com

Abstract

This paper deals with a split equality hierarchical fixed point problem in real Hilbert spaces which is an important and natural extension of hierarchical fixed point problem and split equality fixed point problem. An iterative algorithm where the stepsizes do not depend on the operator norms, so called simultaneous Krasnoselski-Mann algorithm is suggested for solving the split equality hierarchical fixed point problem. Further we prove a weak convergence theorem for the sequence generated by this algorithm. This special aspect of the algorithm together with the convergence result makes it an interesting scheme. Furthermore, we give some examples to justify the main result. Finally, we show that our purposed iterative algorithm is more efficient than some other known iterative algorithms. On the other hand, the framework is general and allows us to treat in a unified way several iterative algorithms, recovering, developing and improving some recently known related convergence results in the literature. Key Words and Phrases: Split equality hierarchical fixed point problem, split equality fixed point problem, maximal monotone operator, simultaneous Krasnoselski-Mann algorithm, weak convergence, weak convergence. 2020 Mathematics Subject Classification: $47 \mathrm{H} 09,47 \mathrm{H} 10,47 \mathrm{~J} 25,54 \mathrm{H} 25$.

1. Introduction

Let H_{1}, H_{2} and H_{3} be real Hilbert spaces and let the symbols $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote, respectively, the inner product and induced norm of H_{1}, H_{2} and H_{3}. Recall that a mapping $U: H_{1} \rightarrow H_{1}$ is nonexpansive if $\|U x-U y\| \leq\|x-y\|$, for all $x, y \in H_{1}$. It is known that $\operatorname{Fix}(U):=\left\{x \in H_{1}: U x=x\right\}$ is a closed and convex subset of H_{1}.

Now, let $S_{1}, T_{1}: H_{1} \rightarrow H_{1}$ and $S_{2}, T_{2}: H_{2} \rightarrow H_{2}$ be nonexpansive mappings with $\operatorname{Fix}\left(T_{1}\right) \neq \emptyset, \operatorname{Fix}\left(T_{2}\right) \neq \emptyset$. We introduce the following new class of problems called split equality hierarchical fixed point problem (in short, S_{p} EHFPP):

Find $x^{*} \in \operatorname{Fix}\left(T_{1}\right)$ and $y^{*} \in \operatorname{Fix}\left(T_{2}\right)$ such that

$$
\begin{array}{r}
\left\langle x^{*}-S_{1} x^{*}, x^{*}-x\right\rangle \leq 0, \forall x \in \operatorname{Fix}\left(T_{1}\right), \\
\left\langle y^{*}-S_{2} y^{*}, y^{*}-y\right\rangle \leq 0, \forall y \in \operatorname{Fix}\left(T_{2}\right) \tag{1.2}\\
\text { and } A x^{*}=B y^{*},
\end{array}
$$

where $A: H_{1} \rightarrow H_{3}, B: H_{2} \rightarrow H_{3}$ are bounded linear operators.
When look separately, (1.1) is called hierarchical fixed point problem (in short, HFPP), introduced and studied by Moudafi [19], and its solution set is denoted by $\operatorname{Sol}(\operatorname{HFPP}(1.1))$. We note that HFPP covers monotone variational inequality on fixed point sets, minimization problems over equilibrium constraints, hierarchical minimization problems. $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is governed by two pairs of mappings; in each pair, one is used to define the governing operator and the other to define the feasible set of the variational inequality. The solution set of $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)$ (1.2) is denoted by $\Gamma:=\left\{\left(x^{*}, y^{*}\right) \in \operatorname{Fix}\left(T_{1}\right) \times \operatorname{Fix}\left(T_{2}\right): x^{*} \in \operatorname{Sol}(\operatorname{HFPP}(1.1)), y^{*} \in\right.$ $\operatorname{Sol}(\operatorname{HFPP}(1.2))$ and $\left.A x^{*}=B y^{*}\right\}$.

It is worth mentioning that when $S_{1}=I_{1}, S_{2}=I_{2}\left(I_{1}, I_{2}\right.$ are identity operators on H_{1}, H_{2}, respectively) then $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is reduced to the split equality fixed point problem (in short, $\mathrm{S}_{\mathrm{p}} \mathrm{EFPP}$) introduced by Moudafi [20]: Find $x^{*} \in H_{1}$ and $y^{*} \in H_{2}$ such that

$$
\begin{equation*}
x^{*} \in \operatorname{Fix}\left(T_{1}\right), y^{*} \in \operatorname{Fix}\left(T_{2}\right) \text { and } A x^{*}=B y^{*} . \tag{1.3}
\end{equation*}
$$

We denote the solution set of $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}$ (1.3) by Ω. Further, if take $\operatorname{Fix}\left(T_{1}\right)=$ C, $\operatorname{Fix}\left(T_{2}\right)=Q$ where $C \subseteq H_{1}, Q \subseteq H_{2}$ are nonempty closed convex sets then $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is reduced to the split equality problem (in short, $\mathrm{S}_{\mathrm{p}} \mathrm{EP}$) introduced by Moudafi [20]:

$$
\begin{equation*}
x^{*} \in C, y^{*} \in Q \text { and } A x^{*}=B y^{*} . \tag{1.4}
\end{equation*}
$$

We note that $\mathrm{S}_{\mathrm{p}} \mathrm{EP}$ (1.4) covers many important situations, for instance in decomposition methods for partial differential equations, applications in game theory and in intensity-modulated radiation therapy (in short, IMRT). In decision sciences, this allows consideration of agents that interplay only via some components of their decision variables (see, [2]). In IMRT, this amounts to envisage a weak coupling between the vector of doses absorbed in all voxels and that of the radiation intensity (see, [6]).

By setting $S_{1}=I_{1}-\gamma \mathbf{F}_{1}$ and $S_{2}=I_{2}-\gamma \mathbf{F}_{2}$, where for each $i \in\{1,2\}, \mathbf{F}_{i}$ is η_{i}-Lipschitzian and k_{i}-strongly monotone with $\gamma \in\left(0, \min \left\{\frac{2 k_{1}}{\eta_{1}}, \frac{2 k_{2}}{\eta_{2}}\right\}\right]$, and $k_{i} \leq$ $\eta_{i}<\frac{1}{\gamma}$, for each $i \in\{1,2\}$, then $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is reduced to the split equality variational inequality problem over the fixed point sets of T_{1}, T_{2} (in short, S S_{p} EVIP): Find $x^{*} \in \operatorname{Fix}\left(T_{1}\right), y^{*} \in \operatorname{Fix}\left(T_{2}\right)$

$$
\begin{align*}
&\left\langle x-x^{*}, \mathbf{F}_{1}\left(x^{*}\right)\right\rangle \geq 0, \forall x \in \operatorname{Fix}\left(T_{1}\right), \tag{1.5}\\
&\left\langle y-y^{*}, \mathbf{F}_{2}\left(y^{*}\right)\right\rangle \geq 0, \forall y \in \operatorname{Fix}\left(T_{2}\right), \tag{1.6}\\
& \text { and } A x^{*}=B y^{*},
\end{align*}
$$

which is a generalization of a variational inequality studied in [27]. Now, let M, N be maximal monotone operators; by setting

$$
\begin{aligned}
& T_{1}=J_{\lambda}^{M}:=\left(I_{1}+\lambda M\right)^{-1}, T_{2}=J_{\lambda}^{N}:=\left(I_{2}+\lambda N\right)^{-1}, \\
& S_{1}=I_{1}-\gamma \nabla \psi_{1} \text { and } S_{2}=I_{2}-\gamma \nabla \psi_{2},
\end{aligned}
$$

where for each $i \in\{1,2\}, \psi_{i}$ is a convex function such that $\nabla \psi_{i}$ is η_{i}-Lipschitzian with $\gamma \in\left(0, \min _{1 \leq i \leq 2} \frac{2}{\eta_{i}}\right]$, and using the fact that $\operatorname{Fix}\left(J_{\lambda}^{M}\right)=M^{-1}(0)$ and $\operatorname{Fix}\left(J_{\lambda}^{N}\right)=N^{-1}(0)$, the $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is reduced to the following new mathematical program with generalized equation constraints:

$$
\begin{gather*}
\min _{0 \in M\left(x^{*}\right)} \psi_{1}\left(x^{*}\right), \\
\min _{0 \in N\left(y^{*}\right)} \psi_{2}\left(y^{*}\right), \tag{1.7}\\
\text { and } A x^{*}=B y^{*},
\end{gather*}
$$

which is a generalization of the problem considered in [18].
Next, it is easy to observe that $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ is equivalent to the fixed point problem: Find $x^{*} \in \operatorname{Fix}\left(T_{1}\right)$ and $y^{*} \in \operatorname{Fix}\left(T_{2}\right)$ such that

$$
\begin{array}{r}
0 \in\left(I_{1}-S_{1}\right) x^{*}+N_{\mathrm{Fix}\left(T_{1}\right)}\left(x^{*}\right) \\
0 \in\left(I_{2}-S_{2}\right) y^{*}+N_{\mathrm{Fix}\left(T_{2}\right)}\left(y^{*}\right) \tag{1.9}\\
\text { and } A x^{*}=B y^{*}
\end{array}
$$

where $N_{\text {Fix }\left(T_{1}\right)}$ denotes the normal cone to the closed convex set $\operatorname{Fix}\left(T_{1}\right)$.
In 2014, Moudafi [20] studied the weak convergence theorem for a new CQ algorithm for $\mathrm{S}_{\mathrm{p}} \mathrm{EP}$ (1.4). However, to employ Moudafi's CQ algorithm, one needs to know priori norms (or at least an estimate of the norms) of the bounded linear operators A and B which is in general not an easy work in practice. To overcome this difficulty, Lopez et al. [17] presented a helpful iterative method for estimating the stepsizes which do not need prior knowledge of the operator norms for solving the split feasibility problems; For recent work, see Qin and Yao [25]. Further, Dong et al. [9] extended this method for solving $\mathrm{S}_{\mathrm{p}} \mathrm{EP}$ (1.4); For recent work, see Eslamian et al. [11] and Cui et al.[8]. In 2015, Zhao [30] also extended the iterative method[17] for split equality fixed point problems ($\mathrm{S}_{\mathrm{p}} \mathrm{EFPP}(1.3)$); See also [31]. Very recently,

Chang et al.[7] studied $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}$ (1.3) for quasi-pseudo-contractive and L-Lipschitizan mappings.

On the other hand, it is known that some algorithms in signal processing and image reconstruction may be written as the Krasnoselski-Mann algorithm and that the main feature of its corresponding convergence theorems provides a unified frame for analysing various concrete algorithms; see for instance [5, 28]. Motivated by these work, Moudafi [19] introduced the following Krasnoselski-Mann algorithm for solving $\operatorname{HFPP}(1.1):$

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(\sigma_{n} S_{1} x_{n}+\left(1-\sigma_{n}\right) T_{1} x_{n}\right), \forall n \geq 0 \tag{1.10}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\sigma_{n}\right\}$ are two sequences in $(0,1)$. He proved a weak convergence theorem for solving $\operatorname{HFPP}(1.1)$. For further related work, see for instance [13, 14, 10, $15,16,22,23,29]$.

It is worth mentioning that to develop an iterative method for estimating the step sizes which do not need prior knowledge of the operator norms for solving $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ (which is a more general problem than $\operatorname{HFPP}(1.1)$ and to prove a weak convergence theorem for such iterative method, looks an interesting problem, and this is what motivates our work.

Motivated by the work of Moudafi [19, 20, 21] and Dong et al. [9], we propose and analyze a simultaneous Krasnoselski-Mann algorithm for solving $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$, where the step sizes do not depend on the operator norms $\|A\|$ and $\|B\|$. Further, we prove the weak convergence of the sequence generated by this algorithm. Furthermore, we give some examples to justify the main result. Finally, we show that our purposed iterative algorithm is more efficient than some other known iterative algorithms. The framework is general enough and allows us to treat in a unified way several iterative algorithms, recovering, developing and improving some recently known related convergence results in the literature.

2. Preliminaries

Throughout the paper, we denote the strong and weak convergence of a sequence $\left\{x_{n}\right\}$ to a point $x \in X$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. Let us recall the following concepts which are of common use in the context of convex and nonlinear analysis.
Definition 2.1. See [4]. An operator $M: H_{1} \rightarrow 2^{H_{1}}$ is said to be:
(i) monotone if

$$
\langle u-v, x-y\rangle \geq 0, \text { whenever } u \in M(x), v \in M(y)
$$

(ii) maximal monotone if M is monotone and the graph, $\operatorname{graph}(M):=\{(x, y) \in$ $\left.H_{1} \times H_{1}: y \in M(x)\right\}$, is not properly contained in the graph of any other monotone operator.

Remark 2.1. It is well known that if T_{1} is a nonexpansive mapping on H_{1}, then $I-T_{1}$ is a maximal monotone operator on H_{1}, (see Example 20.26; pp. 298 [3]).

Remark 2.2. It is also well known that if M is maximal monotone then for each $x \in H_{1}$ and $\lambda>0$ there is a unique $z \in H_{1}$ such that $x \in(I+\lambda M) z$. The operator $J_{\lambda}^{M}:=(I+\lambda M)^{-1}$ is called the resolvent of M. It is a single valued and nonexpansive mapping defined on H_{1}.

Lemma 2.1. (i) For all $x, y \in H_{1}$, we have

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle \tag{2.1}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
2\langle x, y\rangle=\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}=\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}, \forall x, y \in H_{1} \tag{2.2}
\end{equation*}
$$

(iii) Every Hilbert space H_{1} satisfies the Opial condition, that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality $\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|$, holds for every $y \in H_{1}$ with $y \neq x$, see [24].

Lemma 2.2. [24] (Opial's lemma) Let H_{1} be a Hilbert space and $\left\{\mu_{n}\right\}$ be a sequence in H_{1} such that there exists a nonempty closed set $W \subset H_{1}$ satisfying:
(i) For every $\mu \in W, \lim _{n \rightarrow \infty}\left\|\mu_{n}-\mu\right\|$ exists,
(ii) Any weak-cluster point of the sequence $\left\{\mu_{n}\right\}$ belongs to W;

Then there exists $\mu^{*} \in W$ such that $\left\{\mu_{n}\right\}$ converges weakly to μ^{*}.

3. Simultaneous Krasnoselski-Mann iterative algorithm

We suggest a simultaneous Krasnoselski-Mann iterative algorithm where the stepsizes do not depend on the operator norms $\|A\|$ and $\|B\|$, to approximate a solution to $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$.

Algorithm 3.1. Choose initial guesses $x_{0} \in H_{1}, y_{0} \in H_{2}$ arbitrarily. Let $\left\{\alpha_{n}\right\} \subset$ $(0,1)$ and $\left\{\sigma_{n}\right\} \subset(0,1)$. Let the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\begin{array}{ll}
u_{n} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(\sigma_{n} S_{1} x_{n}+\left(1-\sigma_{n}\right) T_{1} x_{n}\right) \\
v_{n} & =\left(1-\alpha_{n}\right) y_{n}+\alpha_{n}\left(\sigma_{n} S_{2} y_{n}+\left(1-\sigma_{n}\right) T_{2} y_{n}\right) \\
x_{n+1} & =u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right) \tag{3.1}\\
y_{n+1} & =v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)
\end{array}
$$

for all $n \geq 0$, where the step size γ_{n} is chosen in such a way that for some $\epsilon>0$,

$$
\begin{equation*}
\gamma_{n} \in\left(\epsilon, \mu_{n}-\epsilon\right), n \in \Lambda \tag{3.2}
\end{equation*}
$$

otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where

$$
\begin{equation*}
\mu_{n}:=\frac{2\left\|A u_{n}-B v_{n}\right\|^{2}}{\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}} \tag{3.3}
\end{equation*}
$$

and the index set $\Lambda:=\left\{n: A u_{n}-B v_{n} \neq 0\right\}$.
Remark 3.1 ([30]). It follows from condition (3.2)-(3.3) that $\inf _{n \in \Lambda}\left\{\mu_{n}-\gamma_{n}\right\}>0$. Since

$$
\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\| \leq\left\|A^{*}\right\|\left\|A u_{n}-B v_{n}\right\|
$$

and

$$
\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\| \leq\left\|B^{*}\right\|\left\|A u_{n}-B v_{n}\right\|
$$

we observe that $\left\{\mu_{n}\right\}$ is bounded below by $\frac{2}{\|A\|^{2}+\|B\|^{2}}$ and so $\inf _{n \in \Lambda} \mu_{n}>0$. Consequently, with an appropriate choice of $\epsilon>0$ and $\gamma_{n} \in\left(\epsilon, \inf _{n \in \Lambda} \mu_{n}-\epsilon\right)$ for $n \in \Lambda$, we have $\sup _{n \in \Lambda} \gamma_{n}<+\infty$ and hence $\left\{\gamma_{n}\right\}$ is bounded.

4. Main result

In this section, we prove that the iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by Algorithm (3.1) is weakly convergent to a solution to $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$ for nonexpansive mappings.

Assume that $\Gamma \neq \emptyset$.
Theorem 4.1. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{3}$, $B: H_{2} \rightarrow H_{3}$ be bounded linear operators. Let $T_{1}, S_{1}: H_{1} \rightarrow H_{1}$ and $T_{2}, S_{2}: H_{2} \rightarrow H_{2}$ be nonexpansive mappings. Assume that $\Theta=\left(\operatorname{Fix}\left(S_{1}\right) \cap \operatorname{Fix}\left(T_{1}\right)\right.$, $\left.\operatorname{Fix}\left(S_{2}\right) \cap \operatorname{Fix}\left(T_{2}\right)\right)$ with $\operatorname{Fix}\left(S_{1}\right) \cap \operatorname{Fix}\left(T_{1}\right) \neq \emptyset, \operatorname{Fix}\left(S_{2}\right) \cap \operatorname{Fix}\left(T_{2}\right) \neq \emptyset$. Let the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by Algorithm 3.1 and the sequences of real numbers $\left\{\alpha_{n}\right\} \in[c, 1), c \in$ $(0,1),\left\{\sigma_{n}\right\} \in[a, b] \subset(0,1)$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{y}) of Γ.

Proof. Suppose that $\left(x^{*}, y^{*}\right) \in \Theta$. We estimate

$$
\begin{align*}
\left\|u_{n}-x^{*}\right\|^{2}= & \left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(\sigma_{n} S_{1} x_{n}+\left(1-\sigma_{n}\right) T_{1} x_{n}\right)-x^{*}\right\|^{2} \\
= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(\sigma_{n}\left(S_{1} x_{n}-x^{*}\right)+\left(1-\sigma_{n}\right)\left(T_{1} x_{n}-x^{*}\right)\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}\left(\sigma_{n}\left\|S_{1} x_{n}-x^{*}\right\|^{2}+\left(1-\sigma_{n}\right)\left\|T_{1} x_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\sigma_{n}\left(1-\sigma_{n}\right)\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2}\right) \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}\left(\sigma_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\sigma_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\sigma_{n}\left(1-\sigma_{n}\right)\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2}\right) \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\alpha_{n} \sigma_{n}\left(1-\sigma_{n}\right)\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2} . \tag{4.1}
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
\left\|v_{n}-y^{*}\right\|^{2} \leq\left\|y_{n}-y^{*}\right\|^{2}-\alpha_{n} \sigma_{n}\left(1-\sigma_{n}\right)\left\|S_{2} y_{n}-T_{2} y_{n}\right\|^{2} \tag{4.2}
\end{equation*}
$$

Adding (4.1) and (4.2), we get

$$
\begin{align*}
\left\|u_{n}-x^{*}\right\|^{2}+ & \left\|v_{n}-y^{*}\right\|^{2} \leq\left(\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}\right) \\
& -\alpha_{n} \sigma_{n}\left(1-\sigma_{n}\right)\left(\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2}+\left\|S_{2} y_{n}-T_{2} y_{n}\right\|^{2}\right) . \tag{4.3}
\end{align*}
$$

Next, we estimate

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & \left.=\| u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-x^{*} \|^{2} \\
& =\left\|u_{n}-x^{*}\right\|^{2}-2 \gamma_{n}\left\langle u_{n}-x^{*}, A^{*}\left(A u_{n}-B v_{n}\right)\right\rangle+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& =\left\|u_{n}-x^{*}\right\|^{2}-2 \gamma_{n}\left\langle A u_{n}-A x^{*}, A u_{n}-B v_{n}\right\rangle+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{4.4}
\end{align*}
$$

$\leq\left\|u_{n}-x^{*}\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x^{*}\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}$.

Now, using (2.2) in (4.4), we get

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & =\left\|u_{n}-x^{*}\right\|^{2}-\gamma_{n}\left\|A u_{n}-A x^{*}\right\|^{2}-\gamma_{n}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& +\gamma_{n}\left\|B v_{n}-A x^{*}\right\|^{2}+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{4.6}
\end{align*}
$$

In a similar way as (4.6), we obtain

$$
\begin{align*}
\left\|y_{n+1}-y^{*}\right\|^{2}= & \left\|v_{n}-y^{*}\right\|^{2}-\gamma_{n}\left\|B v_{n}-B y^{*}\right\|^{2}-\gamma_{n}\left\|A u_{n}-B v_{n}\right\|^{2} \\
& +\gamma_{n}\left\|A u_{n}-B y^{*}\right\|^{2}+\gamma_{n}^{2}\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{4.7}
\end{align*}
$$

Adding (4.6) and (4.7), and using the fact that $A x^{*}=B y^{*}$, we get

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2}+\left\|y_{n+1}-y^{*}\right\|^{2}= & \left\|u_{n}-x^{*}\right\|^{2}+\left\|v_{n}-y^{*}\right\|^{2} \\
& -\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right.\right. \\
& \left.\left.+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] . \tag{4.8}
\end{align*}
$$

Using (4.3) in (4.8), we get

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2}+\left\|y_{n+1}-y^{*}\right\|^{2} \leq & \left(\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}\right) \\
- & \alpha_{n} \sigma_{n}\left(1-\sigma_{n}\right)\left(\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2}+\left\|S_{2} y_{n}-T_{2} y_{n}\right\|^{2}\right) \\
- & \gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right.\right. \\
& \left.\left.+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] \tag{4.9}
\end{align*}
$$

Now, setting $\rho_{n}\left(x^{*}, y^{*}\right):=\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}$ in (4.9), we obtain

$$
\begin{align*}
\rho_{n+1}\left(x^{*}, y^{*}\right) \leq & \rho_{n}\left(x^{*}, y^{*}\right)-\alpha_{n} \sigma_{n}\left(1-\sigma_{n}\right)\left(\left\|S_{1} x_{n}-T_{1} x_{n}\right\|^{2}+\left\|S_{2} y_{n}-T_{2} y_{n}\right\|^{2}\right) \\
& -\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right.\right. \\
& \left.\left.+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] \tag{4.10}
\end{align*}
$$

From the condition (3.2)-(3.3) on γ_{n}, we observe that the sequence $\left\{\rho_{n}(x, y)\right\}$ being decreasing and lower bounded by 0 , therefore it converges to some finite limit, say $\rho(x, y)$. Thus condition (i) of Lemma 2.2 is satisfied with $\mu_{n}=\left(x_{n}, y_{n}\right), \mu^{*}=(x, y)$ and $W=\Theta$.

Since $\left\|x_{n}-x^{*}\right\|^{2} \leq \rho_{n}\left(x^{*}, y^{*}\right),\left\|y_{n}-y^{*}\right\|^{2} \leq \rho_{n}\left(x^{*}, y^{*}\right)$ and $\lim _{n \rightarrow \infty} \rho_{n}\left(x^{*}, y^{*}\right)$ exists, we observe that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded and $\limsup _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ and $\limsup _{n \rightarrow \infty}\left\|y_{n}-y^{*}\right\|$ exist. From (4.1) and (4.2), we have that $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|u_{n}-x^{*}\right\|$ and $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|v_{n}-y^{*}\right\|$ also exist. Now, let \bar{x} and \bar{y} be weak cluster points of the sequences $\left\{\begin{array}{r}n \rightarrow \infty \\ \left\{x_{n}\right\}\end{array}\right.$ and $\left\{y_{n}\right\}$, respectively. From Lemma 2.1(i), we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2}= & \left\|x_{n+1}-x^{*}-x_{n}+x^{*}\right\|^{2} \\
= & \left\|x_{n+1}-x^{*}\right\|^{2}-\left\|x_{n}-x^{*}\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x^{*}\right\rangle \\
= & \left\|x_{n+1}-x^{*}\right\|^{2}-\left\|x_{n}-x^{*}\right\|^{2}-2\left\langle x_{n+1}-\bar{x}, x_{n}-x^{*}\right\rangle \\
& +2\left\langle x_{n}-\bar{x}, x_{n}-x^{*}\right\rangle .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{4.11}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{4.12}
\end{equation*}
$$

Further, it follows from (4.11) and (4.12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{4.14}
\end{equation*}
$$

Since (4.10) holds and $\lim _{n \rightarrow \infty} \rho_{n}\left(x^{*}, y^{*}\right)$ exists, it follows from (3.2)-(3.3) that

$$
\lim _{n \rightarrow \infty}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)=0
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|=0 \tag{4.15}
\end{equation*}
$$

Similarly, from assumption on $\left\{\alpha_{n}\right\},\left\{\sigma_{n}\right\}$ and (4.10), we observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{1} x_{n}-T_{1} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|S_{2} y_{n}-T_{2} y_{n}\right\|=0 \tag{4.16}
\end{equation*}
$$

Further, it follows from $(4.10),(4.15),(4.16)$ and the facts that $\lim _{n \rightarrow \infty} \rho_{n}\left(x^{*}, y^{*}\right)$ exists and $\left\{\gamma_{n}\right\}$ is bounded, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A u_{n}-B v_{n}\right\|=0 \tag{4.17}
\end{equation*}
$$

Again, since $\left\{\gamma_{n}\right\}$ is bounded and

$$
\left\|u_{n}-x_{n+1}\right\|=\gamma_{n}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n+1}\right\|=0 \tag{4.18}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|u_{n}-x_{n}\right\| \leq\left\|u_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \tag{4.19}
\end{equation*}
$$

Letting $n \rightarrow \infty$, and using (4.13) and (4.18) in the above inequalities, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{4.20}
\end{equation*}
$$

The relation

$$
u_{n}=x_{n}-\alpha_{n}\left(x_{n}-T_{1} x_{n}\right)+\alpha_{n} \sigma_{n}\left(S_{1} x_{n}-T_{1} x_{n}\right)
$$

implies that

$$
\begin{equation*}
\left\|x_{n}-T_{1} x_{n}\right\| \leq \frac{\left\|x_{n}-u_{n}\right\|}{\alpha_{n}}+\sigma_{n}\left\|S_{1} x_{n}-T_{1} x_{n}\right\| \tag{4.21}
\end{equation*}
$$

Now, taking the limit as $n \rightarrow \infty$, using (4.16) and (4.21) in the above inequality, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1} x_{n}\right\|=0 \tag{4.22}
\end{equation*}
$$

From (4.16) and (4.22), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{1} x_{n}-x_{n}\right\|=0 \tag{4.23}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|v_{n}-y_{n+1}\right\|=0 \tag{4.24}\\
\lim _{n \rightarrow \infty}\left\|v_{n}-y_{n}\right\|=0 \tag{4.25}
\end{gather*}
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|y_{n}-T_{2} y_{n}\right\|=0 \tag{4.26}\\
& \lim _{n \rightarrow \infty}\left\|S_{2} y_{n}-y_{n}\right\|=0 \tag{4.27}
\end{align*}
$$

Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded, there exist subsequences $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ and $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup \bar{x}$ and $y_{n_{i}} \rightharpoonup \bar{y}$. Since $x_{n_{i}} \rightharpoonup \bar{x}$, if $T_{1} \bar{x} \neq \bar{x}$, by Lemma 2.1(iii) and (4.22), we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\|x_{n_{i}}-\bar{x}\right\| & <\liminf _{n \rightarrow \infty}\left\|x_{n_{i}}-T_{1} \bar{x}\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|x_{n_{i}}-T_{1} x_{n_{i}}\right\|+\left\|T_{1} x_{n_{i}}-T_{1} \bar{x}\right\|\right) \\
& \leq \liminf _{n \rightarrow \infty}\left\|x_{n_{i}}-\bar{x}\right\|
\end{aligned}
$$

which is a contradiction. Thus, we obtain $\bar{x} \in \operatorname{Fix}\left(T_{1}\right)$. Similarly, we can obtain $\bar{y} \in$ Fix $\left(T_{2}\right)$. Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ have the same asymptotic behaviour as the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, respectively, there exist subsequences $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ and $\left\{v_{n_{i}}\right\}$ of $\left\{v_{n}\right\}$ such that $u_{n_{i}} \rightharpoonup \bar{x}$ and $v_{n_{i}} \rightharpoonup \bar{y}$.

Further, since $\|\cdot\|^{2}$ is weakly lower semicontinuous, it follows from (4.17) that

$$
\begin{equation*}
\|A \bar{x}-B \bar{y}\|^{2} \leq \liminf _{n \rightarrow \infty}\left\|A u_{n_{i}}-B v_{n_{i}}\right\|^{2}=0 \tag{4.28}
\end{equation*}
$$

i.e., $A \bar{x}=B \bar{y}$. Thus, $(\bar{x}, \bar{y}) \in \Theta$ and hence $w_{w}\left(x_{n}, y_{n}\right) \subset \Theta$. Now, it follows from Lemma 2.2 that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by Algorithm 3.1 converges weakly to $(\bar{x}, \bar{y}) \in \Theta$.
Next, we show that $(\bar{x}, \bar{y}) \in \Gamma$. Since

$$
\begin{equation*}
u_{n}-x_{n}=\alpha_{n}\left(\sigma_{n}\left(S_{1} x_{n}-x_{n}\right)+\left(1-\sigma_{n}\right)\left(T_{1} x_{n}-x_{n}\right)\right) \tag{4.29}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{\alpha_{n} \sigma_{n}}\left(x_{n}-u_{n}\right)=\left(I-S_{1}\right) x_{n}+\left(\frac{1-\sigma_{n}}{\sigma_{n}}\right)\left(I-T_{1}\right) x_{n} \tag{4.30}
\end{equation*}
$$

and hence for all $z \in \operatorname{Fix}\left(T_{1}\right)$ and using monotonicity of $I-S_{1}$, we have

$$
\begin{align*}
\left\langle\frac{x_{n}-u_{n}}{\alpha_{n} \sigma_{n}}, x_{n}-z\right\rangle= & \left\langle\left(I-S_{1}\right) x_{n}-\left(I-S_{1}\right) z, x_{n}-z\right\rangle+\left\langle\left(I-S_{1}\right) z, x_{n}-z\right\rangle \\
& +\frac{1-\sigma_{n}}{\sigma_{n}}\left\langle x_{n}-T_{1} x_{n}, x_{n}-z\right\rangle \\
\geq & \left\langle\left(I-S_{1}\right) z, x_{n}-z\right\rangle+\frac{1-\sigma_{n}}{\sigma_{n}}\left\langle x_{n}-T_{1} x_{n}, x_{n}-z\right\rangle . \tag{4.31}
\end{align*}
$$

Using (4.20), (4.22), conditions on parameters α_{n} and σ_{n} in (4.31), we have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\langle z-S z, x_{n}-z\right\rangle \leq 0 \forall z \in \operatorname{Fix}\left(T_{1}\right) \tag{4.32}
\end{equation*}
$$

Due to the fact that x_{n} weakly converges to \bar{x}, we have

$$
\begin{equation*}
\left\langle\left(I-S_{1}\right) z, \bar{x}-z\right\rangle \leq 0 \forall z \in \operatorname{Fix}\left(T_{1}\right) \tag{4.33}
\end{equation*}
$$

Since $\operatorname{Fix}\left(T_{1}\right)$ is convex, $\lambda z+(1-\lambda) \bar{x} \in \operatorname{Fix}\left(T_{1}\right)$ for $\lambda \in(0,1)$ and hence

$$
\begin{align*}
& \left\langle\left(I-S_{1}\right)(\lambda z+(1-\lambda) \hat{x}), \bar{x}-(\lambda z+(1-\lambda) \bar{x})\right\rangle \tag{4.34}\\
= & \lambda\left\langle\left(I-S_{1}\right)(\lambda z+(1-\lambda) \bar{x}), \bar{x}-z\right\rangle \tag{4.35}\\
\leq & 0 \forall z \in \operatorname{Fix}\left(T_{1}\right) \tag{4.36}
\end{align*}
$$

which implies

$$
\left\langle\left(I-S_{1}\right)(\lambda z+(1-\lambda) \bar{x}), \bar{x}-z\right\rangle \leq 0 \forall z \in \operatorname{Fix}\left(T_{1}\right)
$$

On taking limits $\lambda \rightarrow 0_{+}$, we have

$$
\begin{equation*}
\left\langle\left(I-S_{1}\right) \bar{x}, \bar{x}-z\right\rangle \leq 0 \forall z \in \operatorname{Fix}\left(T_{1}\right) \tag{4.37}
\end{equation*}
$$

That is \bar{x} solves (1.1). Similarly, we can show that \bar{y} solves (1.2). Thus, $(\bar{x}, \bar{y}) \in \Gamma$. This completes the proof.

5. Consequences and applications

Besides some applications that were mentioned in the introduction, we now present some other applications and consequences of Theorems 4.1.
5.1. Applications to maximal monotone operators and optimization. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{3}, B: H_{2} \rightarrow H_{3}$ be bounded linear operators. Let $F_{1}: D\left(F_{1}\right) \subseteq H_{1} \rightrightarrows H_{1}$ and $F_{2}: D\left(F_{2}\right) \subseteq H_{2} \rightrightarrows H_{2}$ be two maximal monotone operators.
We consider the following problem:

$$
\begin{equation*}
\text { find } x^{*} \in F_{1}^{-1}(0), y^{*} \in F_{2}^{-1}(0) \text { such that } A x^{*}=B y^{*} . \tag{5.1}
\end{equation*}
$$

We denote the solution set of (5.1) by Θ_{1}. Let $\lambda>0$ be an arbitrary positive number. Denote by $T_{1}:=J_{\lambda}^{F_{1}}$ and $T_{2}:=J_{\lambda}^{F_{2}}$ the resolvent of F_{1} and F_{2}, respectively. It is known that T_{1} and T_{2} are nonexpansive.

Theorem 5.1. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{3}$, $B: H_{2} \rightarrow H_{3}$ be bounded linear operators. Let $F_{1}: D\left(F_{1}\right) \subseteq H_{1} \rightrightarrows H_{1}$ and F_{2} : $D\left(F_{2}\right) \subseteq H_{2} \rightrightarrows H_{2}$ be two maximal monotone operators and let $T_{1}:=J_{\lambda}^{F_{1}}$ and $T_{2}:=J_{\lambda}^{F_{2}}$. Assume that $\Theta_{1} \neq \emptyset$. Let the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by Algorithm 3.1 with $S_{1}=I_{1}, S_{2}=I_{2}$, and the sequences of real numbers $\left\{\alpha_{n}\right\} \in$ $[c, 1), c \in(0,1),\left\{\sigma_{n}\right\} \in[a, b] \subset(0,1)$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{y}) of Θ_{1}.

Proof. Since the zero set of F_{1} and F_{2} coincides with the fixed point set of the resolvent of F_{1} and F_{2}, respectively and the set of the fixed points of T_{1} and T_{2} coincides with the solution set of (5.1). The result follows from Theorem 4.1 with $S_{1}=I_{1}, S_{2}=I_{2}$.

Remark 5.1. Let $f_{1}: H_{1} \longrightarrow(-\infty,+\infty]$ and $f_{2}: H_{2} \longrightarrow(-\infty,+\infty]$ be proper, convex and lower semicontinuous functions. We know that $F_{1}=\partial f_{1}$ and $F_{2}=\partial f_{2}$ are maximal monotone operators. Let $A: H_{1} \rightarrow H_{3}, B: H_{2} \rightarrow H_{3}$ be bounded linear operators. We consider the following problem:

$$
\begin{equation*}
\text { find } x^{*} \in \operatorname{argmin} f_{1}, y^{*} \in \operatorname{argmin} f_{2} \text { such that } A x^{*}=B y^{*} . \tag{5.2}
\end{equation*}
$$

The solution to the above problem solves the following problem:

$$
\begin{equation*}
\min _{x, y}\left\{f_{1}(x)+f_{2}(y): A x=B y\right\} \tag{5.3}
\end{equation*}
$$

Therefore Theorem 5.1 provides a solution to the above problem.
5.2. Applications to common fixed point problem. Let H be a real Hilbert space and $T_{1}, T_{2}: H \longrightarrow H$ be two nonexpansive mappings. By taking $H_{1}=H_{2}=$ $H_{3}=H$, and $S_{1}=S_{2}=A=B=I$, we have $\Theta_{2}=\left\{(\bar{x}, \bar{x}): \bar{x} \in \operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)\right\}$ and we obtain the following common fixed point theorem.

Theorem 5.2. Let H be a real Hilbert space and let $T_{1}, T_{2}: H \rightarrow H$ be nonexpansive mappings. Assume that $\Theta_{2}=F i x\left(T_{1}\right) \bigcap \operatorname{Fix}\left(T_{2}\right) \neq \emptyset$. Let the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by following algorithm:

$$
\begin{cases}u_{n} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(\sigma_{n} x_{n}+\left(1-\sigma_{n}\right) T_{1} x_{n}\right) ; \\ v_{n} & =\left(1-\alpha_{n}\right) y_{n}+\alpha_{n}\left(\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{2} y_{n}\right) ; \\ x_{n+1} & =u_{n}-\gamma_{n}\left(u_{n}-v_{n}\right) ; \\ y_{n+1} & =v_{n}+\gamma_{n}\left(u_{n}-v_{n}\right)\end{cases}
$$

where $\left\{\alpha_{n}\right\} \in[c, 1), c \in(0,1),\left\{\sigma_{n}\right\} \in[a, b] \subset(0,1)$ and step size γ_{n} is chosen in such a way that for some $\epsilon>0, \gamma_{n} \in(\epsilon, 1-\epsilon)$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{x}) of Θ_{2}.
5.3. Applications to variational inequalities. Let D_{1} and D_{2} be nonempty, closed and convex subsets of Hilbert spaces H_{1} and H_{2} respectively, and let F_{0} : $D_{1} \longrightarrow H_{1}$ and $G_{0}: D_{2} \longrightarrow H_{2}$ be two single-valued, monotone and hemicontinuous (i.e. continuous along each line segment in H_{i} with respect to the weak topology) mappings. Let $N_{D_{i}}(z)(i=1,2)$ denote the normal cone to D_{i} at z :

$$
N_{D_{i}}(z):=\left\{w \in H_{i}:\langle w, z-u\rangle \geq 0, \forall u \in D_{i}\right\}
$$

and let $F: H_{1} \longrightarrow H_{1}$ and $G: H_{2} \longrightarrow H_{2}$ be defined by:

$$
F(z):= \begin{cases}F_{0}(z)+N_{D_{1}}(z), & \text { if } z \in D_{1}, \\ \emptyset, & \text { if } z \notin D_{1},\end{cases}
$$

and

$$
G(z):= \begin{cases}G_{0}(z)+N_{D_{2}}(z), & \text { if } z \in D_{2} \\ \emptyset, & \text { if } z \notin D_{2}\end{cases}
$$

The maximal monotonicity of these multivalued mappings were proved by Rockafellar [26]. The relation $0 \in F(z)$ and $0 \in G(w)$ reduces to $-F_{0}(z) \in N_{D_{1}}(z)$ and $-G_{0}(w) \in$ $N_{D_{2}}(w)$, or the so called variational inequality: find $(z, w) \in D_{1} \times D_{2}$ such that

$$
\left\langle z-u, F_{0}(z)\right\rangle \leq 0,\left\langle w-v, G_{0}(w)\right\rangle \leq 0, \forall u \in D_{1} \text { and } v \in D_{2}
$$

We define $\operatorname{VI}\left(F_{0}, G_{0}, D\right)$ as follows:

$$
\begin{aligned}
V I\left(F_{0}, G_{0}, D\right):= & \left\{(z, w) \in D_{1} \times D_{2}:\left\langle z-u, F_{0}(z)\right\rangle \leq 0\right. \\
& \left.\left\langle w-v, G_{0}(w)\right\rangle \leq 0, \quad \forall u \in D_{1}, v \in D_{2}\right\} .
\end{aligned}
$$

If D_{1} and D_{2} are cones, this condition can be written as

$$
\begin{array}{r}
(z, w) \in D_{1} \times D_{2},-F_{0}(z) \in D_{1}^{\circ},-G_{0}(w) \in D_{2}^{\circ}\left(\text { the polar sets of } D_{1} \text { and } D_{2}\right) \\
\\
\text { and }\left\langle z, F_{0}(z)\right\rangle=0,\left\langle w, G_{0}(w)\right\rangle=0
\end{array}
$$

and the problem of finding such z and w is an important instance of the well-known complementarity problem of mathematical programming. Then Theorem 4.1 provide an approximation scheme for a solution to the variational inequality for the singlevalued, monotone and hemicontinuous maps $F_{0}: D_{1} \longrightarrow H_{1}$ and $G_{0}: D_{2} \longrightarrow H_{2}$.

Theorem 5.3. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces and D_{1} and D_{2} be nonempty, closed and convex subsets of Hilbert spaces H_{1} and H_{2} respectively, and let F_{0} : $D_{1} \longrightarrow H_{1}$ and $G_{0}: D_{2} \longrightarrow H_{2}$ be two single-valued, monotone and hemicontinuous mappings, and $N_{D_{i}}(z)$ be the normal cone to D_{i} at z. Also let $A: H_{1} \rightarrow H_{3}$, $B: H_{2} \rightarrow H_{3}$ be bounded linear operators. Suppose that $T_{1}:=J_{\lambda}^{F}$ and $T_{2}:=J_{\lambda}^{G}$ where F and G are defined as above and $\Theta_{3}=\left\{(z, w) \in V I\left(F_{0}, G_{0}, D\right): A z=B w\right\} \neq \emptyset$. Let the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by Algorithm 3.1 and the sequences of real numbers $\left\{\alpha_{n}\right\} \in[c, 1), c \in(0,1),\left\{\sigma_{n}\right\} \in[a, b] \subset(0,1)$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{x}) of Θ_{3}.

The result follows from Theorem 4.1 with $S_{1}=I_{1}, S_{2}=I_{2}$ and $T_{1}:=J_{\lambda}^{F}$, $T_{2}:=J_{\lambda}^{G}$.

Remark 5.2. By taking $H_{1}=H_{2}=H_{3}=H, D_{1}=D_{2}=D$ and $A=B=I$ in the above theorem, we have

$$
\begin{array}{r}
\Theta=V I\left(F_{0}, G_{0}, D\right):=\left\{(z, z) \in D \times D:\left\langle z-u, F_{0}(z)\right\rangle \leq 0\right. \\
\left.\left\langle z-u, G_{0}(z)\right\rangle \leq 0, \quad \forall u \in D\right\}
\end{array}
$$

and

$$
\Gamma:=\left\{\left(x^{*}, x^{*}\right) \in V I\left(F_{0}, G_{0}, D\right): x^{*} \in \operatorname{Sol}(\operatorname{HFPP}(1.1)), x^{*} \in \operatorname{Sol}(\operatorname{HFPP}(1.2))\right\}
$$

Therefore, the above theorem provides an approximation scheme to the solution of the following common variational inequality problem:

$$
\text { find } z \in D \text { such that }\left\langle z-u, F_{0}(z)\right\rangle \leq 0,\left\langle z-u, G_{0}(z)\right\rangle \leq 0, \text { for all } u \in D .
$$

6. Numerical examples

Now, we give some examples which justify Theorem 4.1.
Example 6.1. Let $H_{1}=H_{2}=H_{3}=\ell_{2}$ be the space of all square summable sequences of real numbers, i.e.,

$$
\ell_{2}=\left\{x: x:=\left\{x_{1}, x_{2}, \cdots, x_{i}, \cdots\right\} \text { and } \sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty\right\}
$$

when an inner product $\langle\cdot, \cdot\rangle: \ell_{2} \times \ell_{2} \rightarrow \mathbb{R}$ defined by

$$
\langle\cdot, \cdot\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

where $x:=\left\{x_{i}\right\}_{i=1}^{\infty}, y:=\left\{y_{i}\right\}_{i=1}^{\infty} \in \ell_{2}$ and $\|\cdot\|: \ell_{2} \rightarrow \mathbb{R}$ defined by

$$
\|x\|_{2}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

Let the mappings $A: \ell_{2} \rightarrow \ell_{2}$ and $B: \ell_{2} \rightarrow \ell_{2}$ be defined by

$$
A(x)=\left\{2 x_{1}, 2 x_{2}, \cdots, 2 x_{i}, \cdots\right\}, \forall x=\left\{x_{i}\right\}_{i=1}^{\infty} \in \ell_{2}
$$

and

$$
B(y)=\left\{-2 y_{1},-2 y_{2}, \cdots,-2 y_{i}, \cdots\right\}, \forall y=\left\{y_{i}\right\}_{i=1}^{\infty} \in \ell_{2}
$$

respectively. Let the mappings $T_{1}: \ell_{2} \rightarrow \ell_{2}, S_{1}: \ell_{2} \rightarrow \ell_{2}$ be defined by

$$
\begin{gathered}
T_{1} x=\left\{\frac{x_{1}+2}{7}, \frac{x_{2}+2}{7}, \cdots, \frac{x_{i}+2}{7}, \cdots\right\}, \\
S_{1} x=\left\{x_{1}, x_{2} \cdots, x_{i}, \cdots\right\}, \forall x=\left\{x_{i}\right\}_{i=1}^{\infty} \in \ell_{2}
\end{gathered}
$$

and $T_{2}: \ell_{2} \rightarrow \ell_{2}, S_{2}: \ell_{2} \rightarrow \ell_{2}$ be defined by

$$
\begin{gathered}
T_{2} y=\left\{\frac{y_{1}-2}{7}, \frac{y_{2}-2}{7}, \cdots, \frac{y_{i}-2}{7}, \cdots\right\}, \\
S_{2} y=\left\{\frac{y_{1}-1}{4}, \frac{y_{2}-1}{4} \cdots, \frac{y_{i}-1}{4}, \cdots\right\}, \forall y=\left\{y_{i}\right\}_{i=1}^{\infty} \in \ell_{2},
\end{gathered}
$$

respectively. It is easy to observe that A and B are bounded linear operators on ℓ_{2} with their adjoint operators A^{*}, B^{*} and $\left\|A^{*}\right\|=\|A\|=2,\left\|B^{*}\right\|=\|B\|=2$. Further, the mappings $S_{1}, T_{1}, S_{2}, T_{2}$ are nonexpansive mappings with

$$
\begin{gathered}
\operatorname{Fix}\left(S_{1}\right)=\ell_{2}, \operatorname{Fix}\left(T_{1}\right)=\left\{\frac{1}{3}\right\}=\left\{\frac{1}{3}, \frac{1}{3}, \cdots, \frac{1}{3}, \cdots\right\}, \\
\operatorname{Fix}\left(S_{2}\right)=\operatorname{Fix}\left(T_{2}\right)=\left\{-\frac{1}{3}\right\}=\left\{-\frac{1}{3},-\frac{1}{3}, \cdots,-\frac{1}{3}, \cdots\right\} .
\end{gathered}
$$

Thus the operators $A, B, S_{1}, S_{2}, T_{1}, T_{2}$ satisfy all conditions of Theorem 4.1. Now, from (1.1)-(1.2), we have to find that $x^{*} \in \operatorname{Fix}\left(T_{1}\right)$ and $y^{*} \in \operatorname{Fix}\left(T_{2}\right)$ such that

$$
\begin{array}{r}
\left\langle x^{*}-x^{*}, x^{*}-x\right\rangle \leq 0, \forall x \in \operatorname{Fix}\left(T_{1}\right) \\
\left\langle 3 y^{*}+1, y^{*}-y\right\rangle \leq 0, \forall y \in \operatorname{Fix}\left(T_{2}\right) \\
\text { and } A\left\{\frac{1}{3}\right\}=B\left\{-\frac{1}{3}\right\} .
\end{array}
$$

This implies that $\Gamma=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)\right)=\left(\frac{1}{3},-\frac{1}{3}\right)$. In this case, Algorithm 3.1 is reduced to the following iterative algorithm:

Algorithm 6.1. Given initial value $x_{1}=\left\{x_{1}^{1}, x_{1}^{2}, \cdots, x_{1}^{i}, \cdots\right\}, y_{1}=\left\{y_{1}^{1}, y_{1}^{2}, \cdots, y_{1}^{i}, \cdots\right\}$. Let the iterative sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\}$, and $\left\{v_{n}\right\}$ be generated by the following schemes:

$$
\begin{array}{ll}
u_{n} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(\sigma_{n} x_{n}+\left(1-\sigma_{n}\right) \frac{x_{n}+2}{7}\right) \\
v_{n} & =\left(1-\alpha_{n}\right) y_{n}+\alpha_{n}\left(\sigma_{n} \frac{y_{n}-1}{4}+\left(1-\sigma_{n}\right) \frac{y_{n}-2}{7}\right) ; \tag{6.1}\\
x_{n+1} & =u_{n}-2 \gamma_{n}\left(2 u_{n}+2 v_{n}\right) ; \\
y_{n+1} & =v_{n}-2 \gamma_{n}\left(2 u_{n}+2 v_{n}\right)
\end{array}
$$

Now, setting $\alpha_{n}=\frac{0.99}{n^{2}}$ and $\sigma_{n}=\frac{0.99}{n}, \forall n \geq 1$ and $\gamma_{n}=0.02+\frac{0.02}{n}$, $\forall n$, then Theorem 4.1 implies that the iterative sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by Algorithm 6.1 converge to

$$
\begin{gathered}
x^{*}=\left\{\frac{1}{3}\right\}=\left\{\frac{1}{3}, \frac{1}{3}, \cdots, \frac{1}{3}, \cdots\right\}, \\
y^{*}=\left\{-\frac{1}{3}\right\}=\left\{-\frac{1}{3},-\frac{1}{3}, \cdots,-\frac{1}{3}, \cdots\right\},
\end{gathered}
$$

respectively, such that $\left(x^{*}, y^{*}\right)=\left(\left\{\frac{1}{3}\right\},\left\{-\frac{1}{3}\right\}\right) \in \Gamma$. We shall perform the computer programming in the next example in the setting of finite dimensional space.

Example 6.2. Let $H_{1}=H_{2}=H_{3}=\mathbb{R}$, the set of all real numbers, with the induced usual norm $|\cdot|$. Let the mappings $A: \mathbb{R} \rightarrow \mathbb{R}$ and $B: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
A(x)=2 x, \forall x \in \mathbb{R} \text { and } B(y)=-2 y, \forall y \in \mathbb{R}
$$

respectively. Let the mappings $T_{1}: \mathbb{R} \rightarrow \mathbb{R}, S_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
T_{1} x=\frac{x+2}{7}, S_{1} x=x, \forall x \in \mathbb{R}
$$

and $T_{2}: \mathbb{R} \rightarrow \mathbb{R}, S_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
T_{2} y=\frac{y-2}{7}, S_{2} y=\frac{y-1}{4}, \forall y \in \mathbb{R}
$$

respectively. Setting $\left\{\alpha_{n}\right\}=\left\{\frac{0.99}{n^{2}}\right\}$ and $\left\{\sigma_{n}\right\}=\left\{\frac{0.99}{n}\right\}, \forall n \geq 1$. Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by Algorithm 3.1 converge to $x^{*}=\frac{1}{3}, y^{*}=-\frac{1}{3}$, respectively, such that $\left(x^{*}, y^{*}\right)=\left(\frac{1}{3},-\frac{1}{3}\right) \in \Gamma$.

Proof. It is easy to observe that A and B are bounded linear operators on \mathbb{R} with adjoint operators A^{*}, B^{*} and $\|A\|=\left\|A^{*}\right\|=2,\|B\|=\left\|B^{*}\right\|=2$, and hence $\gamma_{n} \in$ $\left(\epsilon, \frac{1}{9}-\epsilon\right)$. Therefore, for $\epsilon=\frac{1}{100}$, we choose $\gamma_{n}=0.02+\frac{0.02}{n}, \forall n$. Further, it is easy to observe that S_{1}, S_{2} are nonexpansive mappings with

$$
\operatorname{Fix}\left(S_{1}\right)=H_{1}, \operatorname{Fix}\left(S_{2}\right)=\left\{-\frac{1}{3}\right\}
$$

and T_{1}, T_{2} are nonexpansive mappings with

$$
\operatorname{Fix}\left(T_{1}\right)=\left\{\frac{1}{3}\right\}, \operatorname{Fix}\left(T_{2}\right)=\left\{-\frac{1}{3}\right\}
$$

Furthermore, it is easy to prove that $\Gamma=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)\right)=\left(\frac{1}{3},-\frac{1}{3}\right)$. Next, using the software Matlab 7.8, we have the following figures (Fig.1, Fig.2) and

Table 1, which show that the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ converge to $x^{*}=\frac{1}{3}, y^{*}=-\frac{1}{3}$, respectively, such that $\left(x^{*}, y^{*}\right)=\left(\frac{1}{3},-\frac{1}{3}\right) \in \Gamma$.

Fig.1: Convergence for initial values $\mathrm{x}_{0}=10, \mathrm{y}_{\mathbf{0}}=\mathbf{- 1 0}$

Fig.2: Convergence for initial values $\mathrm{x}_{0}=1, \mathrm{y}_{0}=-1$

Table 1

No. of iterations	x_{n} $x_{0}=10$	y_{n} $y_{0}=-10$	$A x_{n}-B y_{n}$	x_{n} $x_{0}=1$	y_{n} $y_{0}=-1$	$A x_{n}-B y_{n}$
$\mathbf{1}$	9.390528	-3.949162	10.882731	0.957967	-0.582701	0.750533
$\mathbf{2}$	7.183582	-1.603348	11.160468	0.805764	-0.420921	0.769687
$\mathbf{3}$	5.091249	-0.860112	8.462273	0.661465	-0.369663	0.583605
$\mathbf{4}$	3.490858	-0.589547	5.802621	0.551094	-0.351003	0.400181
$\mathbf{5}$	2.370129	-0.470102	3.800054	0.473802	-0.342766	0.262073
$\mathbf{6}$	1.621913	-0.409685	2.424455	0.422201	-0.338599	0.167204
$\mathbf{7}$	1.137101	-0.376858	1.520486	0.388766	-0.336335	0.104861
$\mathbf{8}$	0.829323	-0.358402	0.941843	0.367540	-0.335062	0.064955
$\mathbf{9}$	0.636816	-0.347850	0.577932	0.354263	-0.334334	0.039857
$\mathbf{1 0}$	0.517760	-0.341765	0.351990	0.346052	-0.333915	0.024275
$\mathbf{1 5}$	0.347597	-0.333898	0.027398	0.334317	-0.333372	0.001890
$\mathbf{2 0}$	0.334362	-0.333371	0.001983	0.333404	-0.333336	0.000137
$\mathbf{2 5}$	0.333405	-0.333336	0.000138	0.333338	-0.333334	0.000009
$\mathbf{2 9}$	0.333342	-0.333334	0.000016	0.333334	-0.333333	0.000001
$\mathbf{3 0}$	0.333338	-0.333333	0.000009	0.333334	-0.333333	0.000001

It is worth mentioning that if we set $S_{1}=I_{1}, S_{2}=I_{2}\left(I_{1}, I_{2}\right.$ are identity operators on H_{1}, H_{2}, respectively) in Theorem 4.1 then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point $\left(x^{*}, y^{8}\right) \in \Omega$, a solution of split equality fixed point problem, $\mathrm{S}_{\mathrm{p}} \mathrm{EFPP}(1.3)$. In this case, Algorithm 3.1 with $\sigma_{n}=0, \forall n$, reduces to the following algorithm:
Algorithm 6.2. Choose initial guesses $x_{0} \in H_{1}, y_{0} \in H_{2}$ arbitrarily.
Let $\left\{\alpha_{n}\right\} \subset(0,1)$. Let the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\begin{cases}u_{n} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{1} x_{n} \tag{6.2}\\ v_{n} & =\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} T_{2} y_{n} \\ x_{n+1}=u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right) \\ y_{n+1} & =v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)\end{cases}
$$

for all $n \geq 0$, where the step size γ_{n} is chosen in such a way that for some $\epsilon>0$, $\gamma_{n} \in\left(\epsilon, \mu_{n}-\epsilon\right), n \in \Lambda$, otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where μ_{n} is given by (3.3)

Now, we demonstrate that Algorithm 6.2 with conditions given in Theorem 4.1, approximate a solution to $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$ for nonexpansive mappings. We also observe that this is more efficient than the iterative algorithm (3.1) due to [30] and the iterative algorithm (3.1) due to [31] for nonexpansive mappings which are as follows:
Algorithm 6.3. [30] Choose initial guesses $x_{0} \in H_{1}, y_{0} \in H_{2}$ arbitrarily. Let $\left\{\alpha_{n}\right\} \subset(0,1)$. Let the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\begin{array}{ll}
u_{n} & =x_{n}-\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right) \\
v_{n} & =y_{n}+\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right) \\
x_{n+1} & =\alpha_{n} u_{n}+\left(1-\alpha_{n}\right) T_{1} u_{n} \tag{6.3}\\
y_{n+1} & =\alpha_{n} v_{n}+\left(1-\alpha_{n}\right) T_{2} v_{n}
\end{array}
$$

for all $n \geq 0$, where the step size γ_{n} is chosen in such a way that for some $\epsilon>0$, $\gamma_{n} \in\left(\epsilon, \mu_{n}-\epsilon\right), n \in \Lambda$, otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where μ_{n} is given by (3.3).

Algorithm 6.4. [31] Choose initial guesses $x_{0} \in H_{1}, y_{0} \in H_{2}$ arbitrarily. Let $\left\{\alpha_{n}\right\} \subset$ $(0,1)$. Let the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\begin{align*}
u_{n} & =x_{n}-\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right) \\
v_{n} & =y_{n}+\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right) ; \tag{6.4}\\
x_{n+1} & =T_{1}\left(\alpha_{n} v+\left(1-\alpha_{n}\right) u_{n}\right) ; \\
y_{n+1} & =T_{2}\left(\alpha_{n} v+\left(1-\alpha_{n}\right) v_{n}\right) .
\end{align*}
$$

for all $n \geq 0$, where the step size γ_{n} is chosen in such a way that for some $\epsilon>0$, $\gamma_{n} \in\left(\epsilon, \mu_{n}-\epsilon\right), n \in \Lambda$, otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where μ_{n} is given by (3.3)

If the operators A, B, T_{1}, T_{2} and the control sequences $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\}$ are same as in Example 6.2, we can easily observe that the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by Algorithm 6.2, Algorithm 6.3 and Algorithm 6.4 converge to $x^{*}=\frac{1}{3}, y^{*}=-\frac{1}{3}$, such that $\left(x^{*}, y^{*}\right)=\left(\frac{1}{3},-\frac{1}{3}\right)$ is a solution to $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$.
Finally, using the software Matlab 7.8, we have following figure (Fig.3) and Table 2 , which show that the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ converge to $\left(x^{*}, y^{*}\right)=\left(\frac{1}{3},-\frac{1}{3}\right)$. It is evident from figures and table that the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by Algorithm 6.2 converge faster than the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by Algorithm 6.3 and Algorithm 6.4.

Fig.3: Convergence for initial values $\mathrm{x}_{0}=1, \mathrm{y}_{0}=-1$

Table 2

No.of itera- tions	x_{n} for (6.2)	y_{n} for (6.2)	$A x_{n}-B y_{n}$ for (6.2)	x_{n} for (6.3)	y_{n} for (6.3)	$A x_{n}-B y_{n}$ for (6.3)	x_{n} for (6.4)	y_{n} for (6.4)	$A x_{n}-B y_{n}$ for (6.4)
1	0.717143	-0.434286	0.565714	0.785714	-0.571429	0.428571	0.700000	-0.385714	0.628571
2	0.551728	-0.353760	0.395935	0.650952	-0.446395	0.409116	0.529156	-0.309333	0.439646
3	0.457467	-0.339624	0.235686	0.560811	-0.395957	0.39708	0.435369	-0.300525	0.269687
4	0.403907	-0.336070	0.135673	0.498313	-0.371758	0.253111	0.384337	-0.298889	0.170895
5	0.373470	-0.334734	0.077473	0.454031	-0.358620	0.190821	0.356650	-0.298033	0.117233
6	0.356167	-0.334093	0.044148	0.422200	-0.350778	0.142845	0.341638	-0.297352	0.088573
7	0.346326	-0.333754	0.025145	.399086	-0.345749	0.106675	0.333490	-0.296783	0.073414
8	0.340728	-0.333568	0.014319	0.382174	-0.342351	0.079645	0.329054	-0.296308	0.065492
9	0.337542	-0.333465	0.008154	0.36726	-0.339971	0.59510	0.32666	-0.295910	0.061432
10	0.335729	-0.333408	0.004643	0.360521	-0.338262	0.044519	0.325284	-0.295575	0.059418
15	0.333477	-0.333338	0.000278	0.339835	-0.334514	0.010643	0.323587	-0.294496	0.058183
20	0.333342	-0.333334	0.000017	0.334933	-0.333626	0.002613	0.323362	-0.293925	0.058874
25	0.333334	-0.333333	0.000001	0.333733	-0.333407	0.000652	0.323263	-0.293576	0.059375
29	0.333333	-0.333333	0.000000	.333466	-0.333358	0.00217	0.323210	-0.293380	0.059660
30	0.333333	-0.333333	0.000000	0.333434	-0.333352	0.000165	0.323199	-0.293339	0.059720

Remark 6.1. It is of further research effort to study the split equality hierarchical fixed point problem, $\mathrm{S}_{\mathrm{p}} \operatorname{EHFPP}(1.1)-(1.2)$, in the setting of Banach spaces.

Acknowledgment. Authors are thankful to the anonymous referees for their critical comments which led to substantial improvements in the original version of the manuscript.

References

[1] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.
[2] H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Alternating proximal algorithms for weakly coupled minimization problems, Applications to Dynamical Games and PDEs, J. Convex Anal., 15 (2008), 485-506.
[3] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer Science, New York, 2011.
[4] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland Mathematics Studies, No. 5, North Holland, Amsterdam, 1973.
[5] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20(2004), 103-120.
[6] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Physics in Medicine and Biology, 51(2006), 2353-2365.
[7] S.-S. Chang, J.C. Yao, C.F. Wen, L.C. Zhao, On the split equality fixed point problem of quasi-pseudo-contractive mappings without a prior knowledge of operator norms with applications, J. Optim. Theory Appl., 185(2020), no. 2, 343-360.
[8] H. Cui, L.C. Ceng, Iterative solutions of the split common fixed point problem for strictly pseudo-contractive mappings, J. Fixed Point Theory Appl., 20(2018), no. 2, Art.92, pp. 12.
[9] Q.L. Dong, S. He, J. Zhao, Solving split equality problem without prior knowledge of operator norms, Optimization, 64(9)(2015), 1887-1906.
[10] Q.L. Dong, K.R. Kazmi, R. Ali, X.H. Li, Inertial Krasnoseski-Mann type hybrid algorithms for solving hierarchical fixed point problems, J. Fixed Point Theory Appl., 21(2019):57 (https://doi.org/10.1007/s11784-019-0699-6).
[11] M. Eslamian, Y. Shehu, S.O. Iyioda, A strong convergence theorem for a general split equality problem with applications to optimization and equilibrium problem, Calcolo 55(2018), no. 4, Art. 48, pp. 31.
[12] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990.
[13] K.R. Kazmi, R. Ali, M. Furkan, Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem, Numer. Algorithms, 77(2018), 289-308.
[14] K.R. Kazmi, R. Ali, M. Furkan, Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings, Numer. Algorithms, 79(2018), 499-527.
[15] K.R. Kazmi, R. Ali, S. Yousuf, M. Shahzad, A hybrid iterative algorithm for solvingmonotone variational inclusion and hierarchical fixed point problems, Calcolo, 56(2019):34 (https://doi.org/10.1007/s10092-019-0331-6).
[16] K.R. Kazmi, S. Yousuf, R. Ali, Systems of unrelated generalized mixed equilibrium problems and unrelated hierarchical fixed point problems in Hilbert space, Fixed Point Theory, 21(2020), no. 2, 611-630.
[17] G. Lopez, V. Martin-Marquez, F. Wang, H.K. Xu, Solving the split feasibility problem without prior knowledge of operator norms, Inverse Probl., 28(2012), 085004.
[18] Z.Q. Luo, J.S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.
[19] A. Moudafi, Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Probl., 23(2007), 1635-1640.
[20] A. Moudafi, Alternating CQ-algorithm for convex feasibility and split fixed point problems, J. Nonlinear Convex Anal., 15(2014), 809-818.
[21] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problems, Trans. Math. Program. Appl., 1(2013), no. 2, 1-11.
[22] A. Moudafi, P.-E. Maige, Towards viscosity approximations of hierarchical fixed-point problems, Fixed Point Theory Appl., 2006(2006), Article ID 95453, pp. 10.
[23] A. Moudafi, P.-E. Mainge, Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific J. Optim., 3(2007), 529-538.
[24] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
[25] X. Qin, J.C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear Convex Anal., 20(2019), no. 8, 1497-1506.
[26] R.T. Rockafellar, J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer-Verlag, 1998.
[27] I. Yamada, N. Ogura, Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., $25(2004)$, 619-655.
[28] Q. Yang, J. Zhao, Generalized KM theorem and their applications, Inverse Probl., 22(2006), 833-844.
[29] Y. Yao, Y.C. Liou, Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Probl., 24(2008), 501-508.
[30] J. Zhao, Solving split equality fixed point problem of quasi-nonexpansive mappings without prior knowledge of operator norms, Optimization, 64(2015), 2619-2630.
[31] J. Zhao, Y. Jia, H. Zhang, General alternative regularization methods for split equality common fixed-point problem, Optimization, 67(2018), 619-635.

Received: May 16, 2020 ; Accepted: January 28, 2021.

