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1. Introduction

We are concerned with the following problem in a Banach space X

CDα
0 u(t)−Au(t) ∈ F (t, ut), t ≥ 0 (1.1)

u(s) = ϕ(s), s ∈ [−h, 0], (1.2)

where α ∈ (0, 1), and CDα
0 stands for the Caputo derivative of order α defined by

CDα
0 u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds.

In this model, A is a closed linear operator in X which generates a strongly continuous
semigroup W (·), F : R+×C([−h, 0];X)→ P(X) is a multivalued map. Here ut stands
for the history of the state function, i.e. ut(s) = u(t+ s) for s ∈ [−h, 0].

Fractional differential equations have recently proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering. Subse-
quently, there has been a great deal of research on this field. Without stressing to
wide list of references, we quote here some monographs about fractional differential
equations in Euclidean spaces and Banach spaces [5, 15, 24].
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Differential inclusions (DIs) as appearing in (1.1) arise, for instance, from control
theory in which control factor is taken in the form of feedbacks. In such control
problems, the presence of delay terms is an inherent feature. Recently, the theory of
differential variational inequalities (DVIs) has been an increasingly interesting subject
since DVIs come from various realistic problems (see [19]). In dealing with DVIs, an
effective method is converting them to DIs. These brief mentions tell us that the
study of DIs is able to range over many applications.

Problem (1.1)−(1.2) in case α = 1 (with/without retarded terms) has been studied
extensively. For a complete reference to DIs in infinite dimensional spaces, we refer
the reader to monograph [10]. In addition, there are many contributions for semilinear
DIs published in the last few years (see e.g. [1, 6, 7, 9, 11, 16, 18, 20]). Concerning
fractional DIs in infinite dimensional spaces, one can find a number of works devoted to
the questions of solvability, stability and controllability. References [2, 13, 17, 22, 23,
25] are the notable investigations that are close to the problem under consideration.

An important question raised for problem (1.1) − (1.2) is to study the existence
of decay global solutions. Up to now, to prove the existence of decay solution for a
semilinear problem, we have to assume that, the nonlinear is sublinear. The main
motivation of the present paper is to prove the existence of a compact set of solutions
to our problem under the assumption that F possibly superlinear. More precisely,
we will show that problem (1.1) − (1.2) has a compact set of decay solution if the
semigroup generated by A is compact and exponentially bounded; multivalued non-
linearity F have compact and convex valued is a Caratheodory function and satisfies

‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F (t, v)} ≤ p(t)G(‖v‖),∀t > 0, v ∈ C([−h, 0];X),

where p ∈ Lqloc(R+), (q > 1
α ) is nonnegative function and G ∈ C(R+) is a nonnegative

and nondecreasing function such that

lim sup
r→0

G(r)

r
. sup
t≥0

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds <
1

M
, (1.3)

and

lim
T→∞

sup
t≥T

∫ t/2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds = 0, (1.4)

in which, Eα,β(z) is the Mittag-Leffler function, i.e.

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

It easy to get that if G is superlinear, e.g. G(r) = rq for some q > 1, then condition
(1.3) is testified obviously. On the other hand, if p ∈ L∞(R+) then condition (1.4)
is satisfied. Therefore, conditions (1.3)− (1.4) of F assure that the problem contains
the case where F can be superlinear.

This paper is organized as follows. In the next section, we give the definition of
a solution to problem (1.1)-(1.2) and prove some existence results on the interval
(−h;T ], for arbitrary T > 0 under some different assumptions of the nonlinearity
F . Section 3 is devoted to proving the existence of a compact set of decay global
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solutions. In the last section, we apply the abstract results to a class of polytope
differential inclusions.

2. Solvability and dissipativity

Consider the linear problem

Dα
0 u(t) = Au(t) + f(t), t > 0, (2.1)

u(0) = u0. (2.2)

where f ∈ Lp(0, T ;X). Let {Sα(t), Pα(t)}t≥0 be the family of operators such that

λα−1(λαI −A)−1 =

∫ ∞
0

e−λtSα(t)dt, (2.3)

(λα−1I −A)−1 =

∫ ∞
0

e−λttα−1Pα(t)dt. (2.4)

By the same arguments as in [12] and [25], we have the following representation of
solution for the linear problem (2.1)− (2.2)

u(t) = Sα(t)u(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t > 0. (2.5)

Let {W (t)} be the C0-semigroup generated by A. Then we have the formulas for
Sα(t) and Pα(t) as follows (see [25])

Sα(t)x =

∫ ∞
0

φα(θ)W (tαθ)xdθ, (2.6)

Pα(t)x = α

∫ ∞
0

θφα(θ)W (tαθ)xdθ, x ∈ X, (2.7)

φα(θ) =
1

π

∞∑
n=1

(−θ)n−1

(n− 1)!
Γ(nα) sin(nπα).

We also give some important properties of the Mittag-Leffler function in the fol-
lowing proposition, as these important properties are useful for the later estimations
in this paper.
Proposition 2.1. [15] Let g1(β, t) = Eα,1(−βtα) and g2(β, t) = tα−1Eα,α(−βtα),
t > 0. Then for every β > 0, we have

1. g1(β, ·) and g2(β, ·) are nonnegative;
2. g1(β, ·), g2(β, ·) ∈ L1

loc(R+);
3. g1(β, ·) is nonincreasing, lim

t→∞
g1(β, t) = 0 and g1(β, t) ≤ 1,∀t ≥ 0;

4. the relationship of g1 and g2 is∫ t

0

g2(β, t− s)ds =

∫ t

0

g2(β, s)ds =
1− g1(β, t)

β
≤ 1

β
,∀t ≥ 0. (2.8)
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For a given ϕ ∈ C([−h, 0], X), denote Cϕ = {u ∈ C([0, T ];X) : u(0) = ϕ(0)}.
For u ∈ Cϕ, let u[ϕ] ∈ C([−h, T ];X) be defined as follows

u[ϕ](t) =

{
ϕ(t), t ∈ [−h, 0],

u(t), t ∈ (0, T ].

Hence, we have

u[ϕ]s(t) =

{
ϕ(t+ s), t+ s ∈ [−h, 0],

u(t+ s), t+ s ∈ [0, T ].

For u[ϕ] ∈ C([−h, T ];X), putting

PpF (u[ϕ]) = {f ∈ Lp(0, T ;X) : f(t) ∈ F (t, u[ϕ]t), for a.e. t ∈ [0, T ]}.

Based on the representation of solutions for the linear problem, we give the following
definition.
Definition 2.2. Let ϕ ∈ C([−h, 0];X) be given. A function u ∈ C([−h, T ];X) is
said to be an integral solution of problem (1.1)-(1.2) on the interval [−h, T ] if and
only if u(t) = ϕ(t) for t ∈ [−h, 0], and

u(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds,

for any t ∈ [0, T ], where f ∈ PpF (u[ϕ]).
In what follows, we use the notation ‖ · ‖∞ for the sup norm in the spaces

C([−h, 0];X), C([−h, T ];X), C([0, T ];X).
Let E be a Banach space. We recall the following notion

P(E) ={B ⊂ E : B 6= ∅},
Pb(E) ={B ∈ P(E) : B is bounded},
K(E) ={B ∈ P(E) : B is compact},
Kv(E) ={B ∈ P(E) : B is convex and compact}.

We defined the solution operator F : C([0, T ];X)→ P(C([0, T ];X)) as follows

F(u)(t) = Sα(t)ϕ(0) +
{∫ t

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u[ϕ])
}
.

It is obvious that u is a fixed point of F iff u is an integral solution of (1.1) − (1.2)
on [−h, T ].

Concerning problem (1.1)− (1.2), we give the following assumptions:

(A) The C0-semigroup {W (t)}t≥0 generated by A is compact and exponentially
bounded, i.e. there is M > 1, β > 0 such that

‖W (t)x‖ ≤Me−βt‖x‖,∀t ≥ 0,∀x ∈ X.

(F) The multivalued nonlinearity function F : R+ × C([−h, 0];X) → Kv(X)
satisfies that F (·, v) admits a strongly measurable selection for each v ∈
C([−h, 0];X) and F (t, ·) is u.s.c for each t ∈ [0, T ].
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Under the assumptions (A) and (F), we will prove the compactness of the solution
operator F . Because of the compactness of Sα(t), the remain is prove the compactness
of the Cauchy operator Q : C([0, T ];X)→ C([0, T ];X) defined as follows

Q(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (2.9)

Firstly, we give the definition of the measure of noncompactness.
Definition 2.3. [10] Let E be a Banach space. A function µ : Pb(E)→ R+ is said to
be a measure of noncompactness (MNC) if µ(coD) = µ(D) for all D ∈ Pb(E), here
the notation co denote the closure of convex hull of subsets in E . An MNC is called

• nonsingular if µ(D ∪ {x}) = µ(D) for all D ∈ Pb(E), x ∈ E .
• monotone if µ(D1) ≤ µ(D2) provided that D1 ⊂ D2.
• regular if µ(D) = 0 is equivalent to the relative compactness of D.

The MNC defined by

χ(D) = inf{ε > 0 : D admits a finite ε− net}

is called the Hausdorff measure of noncompactness.
Before proving the compactness property of operator Q, we need following result.

Proposition 2.4. [13] Let M ⊂ C([0, T ];X) be such that

(1) ‖f(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ] and for all f ∈M ;
(2) χ(M(t)) ≤ µ(t) for a.e. t ∈ [0, T ],

where ν, µ ∈ L1(0, T ) are nonnegative functions. Then we have

χ

(∫ t

0

M(s)ds

)
≤ 4

∫ t

0

χ(M(s))ds, t ∈ [0, T ],

here ∫ t

0

M(s)ds =

{∫ t

0

f(s)ds : f ∈M
}
.

Lemma 2.5. The Cauchy operator defined by (2.9) is compact.
Proof. Let D ⊂ C([0, T ];X) be a bounded set. We will prove Q(D) is compact.
We first testify that Q(D)(t) is compact in X for each t > 0. Since Proposition 2.4
and the compactness of Pα, we have

χ(Q(D)(t)) = χ

(∫ t

0

(t− s)α−1Pα(t− s)D(s)ds

)
= 0.

Now we prove that Q(D) is equicontinuous. Let f ∈ D, t ∈ (0, T ) and δ ∈ (0, T−t],
then

‖Q(f)(t+ δ)−Q(f)(t)‖ ≤
∫ t+δ

t

(t+ δ − s)α−1‖Pα(t+ δ − s)f(s)‖ds

+
∥∥∥ ∫ t

0

(t+ δ − s)α−1Pα(t+ δ − s)f(s)ds−
∫ t

0

(t− s)α−1Pα(t− s)f(s)ds
∥∥∥

= I1(t) + I2(t).
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We have

I1(t) ≤M
∫ t+δ

t

(t+ δ − s)α−1Eα,α(−β(t+ δ − s)α)‖f(s)‖ds

≤M‖f‖
∫ t+δ

t

(t+ δ − s)α−1Eα,α(−β(t+ δ − s)α)ds

= M‖f‖
∫ δ

0

τα−1Eα,α(−βτα)dτ = M‖f‖1− Eα,1(−βδα)

β
→ 0 as δ → 0,

thanks to (2.8).
We also have

I2(t) =
∥∥∥ ∫ t

0

τα−1Pα(τ)f(t+ δ − τ)dτ −
∫ t

0

τα−1Pα(τ)f(t− τ)dτ
∥∥∥

=
∥∥∥∫ t

0

τα−1Pα(τ)[f(t+ δ − τ)− f(t− τ)]dτ
∥∥∥

≤
∫ t

0

τα−1‖Pα(τ)[f(t+ δ − τ)− f(t− τ)]‖dτ

≤M
∫ t

0

τα−1Eα,α(−βτα)‖f(t+ δ − τ)− f(t− τ)‖dτ.

Because t > 0, we imply 1 − Eα,1(−βtα) > 0. Then since f ∈ D ⊂ C([0, T ];X), for
each ε > 0, there exists δ > 0 such that

‖f(t+ δ − τ)− f(t− τ)‖ < βε

M [1− Eα,1(−βtα)]
.

Thus, we imply

I2(t) < M

∫ t

0

τα−1Eα,α(−βτα)
βε

M [1− Eα,1(−βtα)]
dτ

<
βε

1− Eα,1(−βtα)

∫ t

0

τα−1Eα,α(−βτα)dτ = ε.

Hence, I2(t)→ 0 as δ → 0.
We also have

‖Q(f)(δ)−Q(f)(0)‖ ≤
∫ δ

0

(δ − s)α−1‖Pα(δ − s)f(s)‖ds

≤M
∫ δ

0

(δ − s)α−1Eα,α(−β(δ − s)α)‖f(s)‖ds

≤M‖f‖
∫ δ

0

(δ − s)α−1Eα,α(−β(δ − s)α)ds

=
M‖f‖
β

[1− Eα,1(−βδα)]→ 0 as δ → 0,

uniformly in f ∈ D. Hence, Q(D) is equicontinuous. From the Arzela-Ascoli theorem,
we imply the compactness of Cauchy operator.
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In the next theorems, we prove some global existence results for problem (1.1)−(1.2).
Theorem 2.6. Assume that (A) and (F) hold. Then there exists δ > 0 such that the
problem (1.1)− (1.2) has at least one integral solution on [−h, T ] provided ‖ϕ‖∞ < δ
and

(F1) ‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F (t, v)} ≤ p(t)G(‖v‖∞), for all v ∈ C([−h, 0];X),
where p ∈ Lqloc(R+), q > 1

α ; and G is a continuous and nonnegative function
such that

lim sup
r→0

G(r)

r
. sup
t∈[0,T ]

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds <
1

M
. (2.10)

Proof. Let

` = lim sup
r→0

G(r)

r
, I(t) =

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds, m = sup
[0,T ]

I(t).

Then by assumption, one can take ε > 0 such that

M(`+ ε)m < 1.

In addition, there exist η > 0 such that

G(r)

r
≤ `+ ε, ∀r ∈ (0, 2η].

Let

δ0 =
η

M
inf

t∈[0,T ]

1−M(`+ ε)I(t)

Eα,1(−βtα) + (`+ ε)I(t)
.

We have

inf
t∈[0,T ]

[1−M(`+ ε)I(t)] = 1−M(`+ ε) sup
t∈[0,T ]

I(t) = 1−M(`+ ε)m > 0

and

sup
t∈[0,T ]

[MEα,1(−βtα) +M(`+ ε)I(t)] ≤M + 1

(since property of Mittag-Leffler function: Eα,1(−βtα) ≤ 1, ∀t ≥ 0), so we imply
δ0 > 0. Put δ = min{δ0, η}. If ϕ ∈ C([−h, 0];X) such that ‖ϕ‖∞ ≤ δ, then

‖u[ϕ]s(τ)‖ ≤ ‖u‖∞ + ‖ϕ‖∞ ≤ η + δ ≤ 2η, ∀τ ∈ [−h, 0].

Denote by Bη the closed ball in Cϕ([0, T ];X) centered at origin and with radius
η. Considering F : Bη → P(Cϕ([0, T ];X)), with each z(t) ∈ F(u)(t), we can find
f ∈ PpF (u) such that:

z(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.
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We then have

‖z(t)‖ ≤ ‖Sα(t)ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)f(s)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖+

∫ t

0

(t− s)α−1MEα,α(−β(t− s)α)‖f(s)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)‖F (s, us)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)G(‖us‖∞)ds

≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)G( sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖)ds

≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)(`+ ε) sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)(`+ ε)(η + δ)ds

≤MEα,1(−βtα)δ

+M(`+ ε)(η + δ)

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

≤MEα,1(−βtα)δ +M(`+ ε)(η + δ)I(t).

Hence

MEα,1(−βtα)δ +M(`+ ε)(η + δ)I(t) ≤ η ⇔ δ ≤ η

M
.

1−M(`+ ε)I(t)

Eα,1(−βtα) + (`+ ε)I(t)
.

It is easy to check last inequality because

δ ≤ δ0 =
η

M
inf

t∈[0,T ]

1−M(`+ ε)I(t)

Eα,1(−βtα) + (`+ ε)I(t)
.

Thus, we get ‖F(u)(t)‖ ≤ η for all t ∈ [0, T ], and F(Bη) ⊂ Bη, provided ‖ϕ‖∞ ≤ δ.
Consider F : Bη → Bη. Since the compactness of F , the proof is complete by

applying the fixed point theorem for compact multi-valued map.
Theorem 2.6 deals with the case when F is possibly superlinear. In the next

theorem, we can relax the smallness condition on initial data, provide that F has a
sublinear growth.
Theorem 2.7. Assume that (A) and (F) hold. Moreover, F : R+×C([−h, 0];X)→
Kv(X) satisfies
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(F2) ‖F (t, v)‖ ≤ p(t)(1 + ‖v‖∞), for all t ∈ [0, T ] and v ∈ C([−h, 0];X), where
p ∈ L1(0, T ) is a nonnegative function and p is nondecreasing.

Then the problem (1.1)− (1.2) has at least one integral solution on [−h, T ].
Proof. Let ψ ∈ C([0, T ];R) be the unique solution of the integral equation

ψ(t) = M‖ϕ‖∞ +
M

Γ(α)

∫ t

0

(t− s)α−1p(s)(1 + ‖ϕ‖∞ + ψ(s))ds

and

D = {u ∈ Cϕ([0, T ];X) : sup
τ∈[0,t]

‖u(τ)‖ ≤ ψ(t),∀t ∈ [0, T ]}.

Then D is a closed and convex subset of Cϕ([0, T ];X). Since F is compact, it suffices
to show that F(D) ⊂ D.
Let u ∈ D, with each z(t) ∈ F(u)(t), we can find f ∈ PpF (u[ϕ]) such that:

z(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.

We have

‖z(t)‖ ≤ ‖Sα(t)ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)f(s)‖ds

and from Proposition 2.1, we get

‖z(t)‖ ≤M‖ϕ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1‖f(s)‖ds

≤M‖ϕ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1p(s)(1 + ‖us‖∞)ds

≤M‖ϕ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1p(s)(1 + ‖ϕ‖∞ + sup
[0,s]

‖u(τ)‖)ds

≤M‖ϕ‖∞ +
M

Γ(α)

∫ t

0

(t− s)α−1p(s)(1 + ‖ϕ‖∞ + ψ(s))ds.

Since the last integral is nondecreasing in t, we get

sup
τ∈[0,t]

‖z(τ)‖ ≤M‖ϕ‖∞ +
M

Γ(α)

∫ t

0

(t− s)α−1p(s)(1 + ‖ϕ‖∞ + ψ(s))ds

= ψ(t),

which ensures that F(u) ∈ D. The proof is complete.
The rest of this section is devoted to proving the existence of a bounded absorbing

set. To this end, we introduce a Halanay-type inequality in the following lemma.
Lemma 2.8. Let v be a continuous and nonnegative function satisfying

v(t) = ψ(t),∀t ∈ [−h, 0], ψ ∈ C([−h, 0];R+)
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and

v(t) ≤MEα,1(−βtα)v0

+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)[a+ bv(s) + c sup
[−h,s]

v(τ)]ds, t ≥ 0,

for M,β, a, c > 0, b ≥ 0 such that b+ c < β. Then

v(t) ≤ β − b
β − b− c

[
Mv0 + a

∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds
]

+ sup
[−h,0]

ψ(s)

and

lim sup
t→∞

v(t) =
M(β − b)v0 + a

β − b− c
+ sup

[−h,0]

ψ(s).

Proof. This lemma is a result of Proposition 3 [14] with

s(t, µ) = Eα,1(−µtα), r(t, µ) = tα−1Eα,α(−µtα).

We are now in a position to show the dissipativity of our problem.
Theorem 2.9. Let the hypotheses of Theorem 2.7 hold for all T > 0 and p ∈
L∞(0, T ), moreover ‖p‖∞ = esssupt>0p(t) < γ < β/M . Then there exists a bounded
absorbing set for the solutions of (1.1)− (1.2) with arbitrary initial data.
Proof. Let u be a solution of (1.1)− (1.2). Then

‖u(t)‖ ≤ ‖Sα(t)ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)f(s)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖+

∫ t

0

(t− s)α−1MEα,α(−β(t− s)α)‖f(s)‖ds

≤MEα,1(−βtα)‖u(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)(1 + ‖us‖∞)ds

≤MEα,1(−βtα)‖u(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)(1 + sup
[−h,s]

‖u(τ)‖)ds

≤MEα,1(−βtα)‖u(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)γ(1 + sup
[−h,s]

‖u(τ)‖)ds

≤MEα,1(−βtα)‖u(0)‖

+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)(Mγ +Mγ sup
[−h,s]

‖u(τ)‖)ds.

Applying Lemma 2.8 with a = Mγ, b = 0, c = Mγ, we have:

lim sup
t→∞

‖u(t)‖ ≤ Mβ||u(0)||+Mγ

β −Mγ
+ sup

[−h,0]

‖ϕ(s)‖.
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This implies that the ball B(0, R) ⊂ X with

R =
Mβ||ϕ(0)||+Mγ

β −Mγ
+ sup

[−h,0]

‖ϕ(s)‖+ 1

is an absorbing set for the solutions of (1.1)− (1.2) with arbitrary initial data.

3. Existence of decay integral solutions

Our goal in this section is to prove the existence of a compact set of decay solution
to the problem (1.1)− (1.2) under the assumption that the multivalued nonlinearity
is possibly superlinear. In this section, we assume that the condition (A) and (F) are
satisfied. Moreover,

(F3) F : R+ × C([−h, 0];X)→ Kv(X) is a continuous mapping such that

‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F (t, v)} ≤ p(t)G(‖v‖∞), ∀t > 0, v ∈ C([−h, 0];X),

where p ∈ Lqloc(R+) is nonnegative function and G ∈ C(R+) is a nonnegative
and nondecreasing function such that

lim sup
r→0

G(r)

r
. sup
t≥0

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds <
1

M
, (3.1)

and

lim
T→∞

sup
t≥T

∫ t/2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds = 0. (3.2)

In order to study the stability of solutions to problem (1.1) − (1.2), we consider
the function space

BC0 = {u ∈ C([−h,+∞);X) : lim
t→∞

u(t) = 0}

with the norm
‖u‖∞ = sup

t≥−h
‖u(t)‖.

Then BC0 is a Banach space.
Given ϕ ∈ C([−h, 0];X), let

BCϕ0 = {u ∈ BC0 : u(·, 0) = ϕ(·, 0)}.
Then BCϕ0 with the supremum norm ‖ · ‖ is a closed subspace of BC0.

To study the existence of decay solutions to (1.1)− (1.2), we make use of the fixed
point theory for condensing maps.
Definition 3.1. [10] Let E be a Banach space and D ⊆ E. A multimap Φ : D →
K(E) is said to be condensing relative to a MNC µ (or µ-condensing) if for every
Ω ⊆ D that is not relatively compact we have, respectively

µ(Φ(Ω)) ≤ µ(Ω).

We recall a fixed point principle for condensing multi-valued maps, which is the
main tool for our purpose.
Theorem 3.2. [10] Let M be a bounded convex closed subset of E and Φ : M →
Kv(M) be a closed and µ-condensing. Then Fix Φ = {x ∈ M : x ∈ Φ(x)} is
nonempty.
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Let πT , T > 0 be the truncated function on BC0, i.e., for D ⊂ BC0, πT (D) is the
restriction of D on the interval [−h, T ]. Then one can see that the MNC χ∞ and d∞
in BC0, defined by

χ∞(D) = sup
T>0

χT (πT (D));

d∞(D) = lim
T→∞

sup
t≥T

sup
x∈D
‖x(t)‖,

satisfies all properties given in Definition 2.3, except regularity. The following MNC
defined in [3],

χ∗(D) = χ∞(D) + d∞(D),

possesses all properties stated in Definition 2.3. In addition, if χ∗(D) = 0 then D is
relatively compact in BC0.
Lemma 3.3. Let (A), (F) and (F3) hold and ‖ϕ‖∞ < δ > 0.

Then d∞(F(D)) < d∞(D) for all bounded set D ∈ BCϕ0 .
Proof. Let

` = lim sup
r→0

G(r)

r
, m = sup

t≥0
I(t), I(t) =

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds.

Then by assumption, one can take ε > 0 such that

M(`+ ε)m < 1. (3.3)

In addition, there exist η > 0 such that

G(r)

r
≤ `+ ε, ∀r ∈ (0, 2η].

We show that d∞(F(D)) ≤M(`+ ε)md∞(D) for all bounded set D ⊂ BCϕ0 .
Let v ∈ F(D) and u ∈ D be such that v ∈ F(u). We have

‖v(t)‖ ≤MEα,1(−βtα)‖ϕ‖∞

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)G(‖us‖∞)ds

≤MEα,1(−βtα)‖ϕ‖∞

+M(`+ ε)

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)‖us‖∞ds

≤MEα,1(−βtα)‖ϕ‖∞

+M(`+ ε)

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s) sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖ds

+M(`+ ε)

∫ t

t/2

(t− s)α−1Eα,α(−β(t− s)α)p(s) sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖ds.
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We get sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖ ≤ 2η by the similar arguments as in the proof of Theorem

2.6. So we imply

‖v(t)‖ ≤MEα,1(−βtα)‖ϕ‖∞ + 2M(`+ ε)η

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

+M
[

sup
s≥t/2

sup
τ∈[−h,0]

‖u[ϕ]s(τ)‖
]
(`+ ε)

∫ t

t/2

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds.

Noting that, for a given T > 0, we choose T1 = 2(T + h) and for t ≥ T1 we have

‖v(t)‖ ≤MEα,1(−βtα)‖ϕ‖∞ + 2M(`+ ε)η

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

+M
[

sup
s≥T
‖u[ϕ](s)‖

]
(`+ ε)

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

≤MEα,1(−βtα)‖ϕ‖∞ + 2M(`+ ε)η

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

+M
[

sup
u∈D

sup
s≥T
‖u[ϕ](s)‖

]
(`+ ε)

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds.

Combining with Eα,1(−βtα) is nonincreasing when t ≥ 0, we get

sup
t≥T1

‖v(t)‖ ≤MEα,1(−βTα1 )‖ϕ‖∞ +M
[

sup
u∈D

sup
s≥T
‖u[ϕ](s)‖

]
(`+ ε) sup

t≥T1

I(t)

+ 2M(`+ ε)η sup
t≥T1

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds.

Since v ∈ F(D) is taken arbitrarily, we get

sup
v∈F(D)

sup
t≥T1

‖v(t)‖ ≤MEα,1(−βTα1 )‖ϕ‖∞ +M
[

sup
u∈D

sup
s≥T
‖u[ϕ](s)‖

]
(`+ ε)m

+ 2M(`+ ε)η sup
t≥T1

∫ t
2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds.

Let T →∞ then T1 →∞ and we obtain

d∞(F(D)) ≤M(`+ ε)md∞(D) < d∞(D),

thanks to (3.2), (3.3) and the fact that Eα,1(−βTα1 )→ 0 as T1 →∞.
The proof is complete.

Theorem 3.4. If hypothesis of Lemma 3.3 hold, then the problem (1.1)− (1.2) has a
compact set of decay solutions.
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Proof. We show that there exists η > 0 such that F(Bη) ⊂ Bη. Assume to the contrary
that, for each n ∈ N, there is un ∈ BCϕ0 such that ‖un‖ ≤ n but ‖F(un)‖ > n. Then

‖F(un)(t)‖ ≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)G(‖uns ‖∞)ds

≤MEα,1(−βtα)‖ϕ‖∞

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)(`+ ε)‖uns ‖∞ds

≤MEα,1(−βtα)‖ϕ‖∞

+M(`+ ε)(‖ϕ‖∞ + n)

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

≤M‖ϕ‖∞ +M(`+ ε)(‖ϕ‖∞ + n)m.

So we imply

1 <
1

n
‖F(un)‖ ≤ M

n

[
1 + (`+ ε)m

]
‖ϕ‖∞ +M(`+ ε)m.

Passing to the limit as n→∞, we have a contradiction.
Considering F : Bη → Bη, we show that F is χ∗-condensing. If D ⊂ Bη then

χT (D) = 0⇒ χ∞(D) = 0. Using the result of Lemma 3.3, we have

χ∗(F(D)) = χ∞(F(D)) + d∞(F(D)) = d∞(F(D)) ≤M(`+ ε)md∞(D)

≤M(`+ ε)m[d∞(D) + χ∞(D)] = M(`+ ε)mχ∗(D) < χ∗(D).

Thus F is χ∗-condensing and it admits a fixed point, according to Theorem 3.2.
Denote by D the set of fixed points of F in Bη. Then D is closed and D ⊂ F(D).
Hence,

χ∗(D) ≤ χ∗(F(D)) ≤M(`+ ε)mχ∗(D),

which ensures that χ∗(D) = 0 and D is a compact set. The proof is complete.

4. Application

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We consider the
following polytope fractional differential system:

∂αt u(t, x) = ∆u(t, x) + f(t, x), x ∈ Ω, t > 0, (4.1)

f(t, x) = ηf̃1(t, u(t− h, x)) + (1− η)f̃2(t, u(t− h, x)), η ∈ [0, 1] (4.2)

u(t, x) = 0, x ∈ ∂Ω, t > 0, (4.3)

u(s, x) = ϕ(x, s), x ∈ Ω, s ∈ [−h, 0], (4.4)

where f̃i : [0, T ]× R→ R, i = 1, 2, are continuous functions.
Let

X = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω},
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endowed with the norm ‖v‖ = sup
x∈Ω

|v(x)|.

Let A = ∆ with D(A) = {v ∈ C0(Ω) ∩H1
0 (Ω) : ∆v ∈ C0(Ω)}, and

Ch = C([−h, 0];C0(Ω)).

Then it is known that A is the generator of a compact semigroup on X (see [4],
Theorem 2.3).

Let λ1 be the first eigenvalue of ∆ on H1
0 (Ω), that is,

λ1 = sup

{∫
Ω
|∇u|2dx∫
Ω
u2dx

: u ∈ H1
0 (Ω), u 6= 0

}
.

Following Theorem 4.2.2 of [8], we have

‖S(t)‖ ≤Me−λ1t, M = exp

(
λ1|Ω|2/n

4π

)
where |Ω| is the volume of Ω. Hence (A) is satisfied with β = λ1 and M as above.

Assume the following on functions f̃i : R+ × R→ R, i ∈ {1; 2}

(i) f̃i(·, z) is measurable for each z ∈ R; f̃i(t, ·) is continuous for a.e. t ∈ [0, T ];

(ii) |f̃i(t, z)| ≤ p(t)|z|γ , ∀(t, z) ∈ [0, T ]× R, where p ∈ L∞(R+) and γ > 1.

Let fi : [0, T ]× Ch → X be the functions defined by

fi(t, v)(x) = f̃i(t, v(−h, x)), i ∈ {1; 2},

and F (t, v) = co{f1(t, v), f2(t, v)}. Then F : R+ × Ch → P(X) is a multimap with
closed convex values. It is easy to check that for each (t, v), F (t, v) is a bounded set
in the finite dimensional space spanned by {f1, f2}, and so F has compact values.
Now, we show that F (t, ·) is u.s.c. Let {vk} ⊂ Ch converge to v. Then by the

continuity of f̃i, we get fi(t, vk) → fi(t, v) in X. For ε > 0, there exists n ∈ N such
that fi(t, vk) ∈ fi(t, v) + εBX ,∀k ≥ n, i ∈ {1; 2}, where BX is the unit ball in X
centered at origin. This implies F (t, vk) ⊂ F (t, v) + εBX ,∀k ≥ n, and since F has
compact values, we have upper-semicontinuity of F (t, ·). Hence (F) is satisfied.

Let z ∈ F (t, v), we have

|z(x)| ≤ η|f̃1(t, v(−h, x))|+ (1− η)|f̃2(t, v(−h, x))|
≤ ηp(t)|v(−h, x)|γ + (1− η)p(t)|v(−h, x)|γ

≤ p(t)|v(−h, x)|γ .

Therefore, ‖z‖ ≤ p(t)‖v(−h, ·)‖γ ≤ p(t)‖v‖γ . And thus, ‖F (t, v)‖ ≤ p(t)‖v‖γ . This
mean that G(‖v‖) = ‖v‖γ and condition (3.1) is satisfied.

Now we check condition (3.2). Let p ∈ L∞(R+) and ‖p‖ = esssupt≥0|p(t)|, then



308 DO LAN AND VU NAM PHONG

we have

sup
t≥T

∫ t/2

0

(t− s)α−1Eα,α(−β(t− s)α)p(s)ds

≤ ‖p‖ sup
t≥T

∫ t/2

0

(t− s)α−1Eα,α(−β(t− s)α)ds

= ‖p‖ sup
t≥T

∫ t

t/2

sα−1Eα,α(−βsα)ds

≤ ‖p‖
∫ ∞
T/2

sα−1Eα,α(−βsα)ds→ 0 as T →∞,

thanks to the fact that sα−1Eα,α(−βsα) ∈ L1(R+) is followed from (2.8). Now we
get that (3.2) is fulfilled and we obtain the existence of a decay solution to problem
(4.1)-(4.4).
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