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1. INTRODUCTION
The variational inequality problem (VIP) is to find z* € C such that
(Fa*,x —a*) >0 Vo e C, (1.1)

where C' is a nonempty closed convex subset of a real Hilbert space H and F' : C' — H
is a mapping. We denote the solutions set of (1.1) by VI(C, F'). Variational inequality
problem has a great impact and influence in the classes of mathematical problems
and it is widely studied in many fields of pure and applied sciences. Several iterative
schemes have been proposed for solving variational inequality (see [2, 12, 13, 16, 20, 24,
26]). Among all the iterative methods for VIP, the simplest one is gradient projection
method as follows:
Tn+1 = Pc(f — )\F)acn,

for each n € N, where P¢ is the metric projection of H into C' and A is a positive real
number. The convergence of this method can be proved under a strong condition that
the mapping F' is strongly monotone and Lipschitz continuous. It requires repetitive
use of P, that it works only when the explicit form of P is known (e.g., C is a
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closed ball or a closed cone). In 2001, Yamada [29] introduced the following so-called
hybrid steepest descent method:

Tpte1 = (I — po, )Ty, (1.2)

for each n € N. Under certain conditions, the sequence {z,} generated by (1.2)
converges strongly to the unique point in VI(Fiz(T),F). This method does not
require the closed form expression of Po but instead requires a closed form expression
of a nonexpansive mapping 7', whose fixed point set is C'.

Let C' and @ be two nonempty closed convex subsets of two real Hilbert spaces
H, and H,, respectively, and let A : H; — Hs be a bounded linear operator. Given
mappings F': Hy — H; and G : Hy — H,. The split variational inequality problem
(SVIP) introduced first by Censor et al. [8] can be formulated as follows:
find

zreC:(F(x*),z—z*y>0 Vel

such that

yr=Ar" € Q: (G ),y—yH) =0 WyeQ.
So SVIP is the problem of finding z* € VI(C,F) such that Az* € VI(Q,G). A
special case of the SVIP, when F = G = 0, is the split feasibility problem (SFP)
which has been studied by many authors (see [3, 4, 6, 7, 11, 18, 21, 22, 23]).
In [19], Moudafi introduced the following split equality fixed point problem (SEFP).
Let A: Hy — Hs, B: Hy — Hj be two bounded linear operators and let C' and @
be two nonempty closed convex subsets of H; and Hs, respectively, let S : Hy — H;
and T : Hy — Hy be two nonlinear operators such that Fiz(S) # 0 and Fix(T) # 0.
The split equality fixed point problem (SEFP) is to find

x € Fiz(S), ye Fix(T) such that Az = By. (1.3)

In addition, let F' : H; — H; be a monotone and L- Lipschitz continuous operator
on C and G : H, — Hy be a monotone and K- Lipschitz continuous operator on @
such that Fiz(S)NVI(C,F) # 0 and Fiz(T) N VI(Q,G) # (. The split equality
variational inequality and fixed point problem (SEVIP) introduced by Eslamian [9] is
to find points

z € Fix(S)NVI(C,F), ye Fiz(T)NnVI(Q,G) such that Ax = By. (1.4)

If F =G =0, then the SEVIP reduces to the split equality fixed point problem.
Motivated by the above works, the purpose of this paper is to introduce a new algo-
rithm for finding a solution of split equality variational inequality problem for inverse
strongly monotone operators and a common fixed points of a finite family of quasi-
nonexpansive mappings which does not require any knowledge of the operator norms.
A numerical example to support our main theorem will be exhibited.

2. PRELIMINARIES AND LEMMAS

Throughout this paper, we always assume that H is a real Hilbert space with
inner product (.,.) and norm ||.||. Let C be a nonempty closed convex subset of H.
we denote the strong convergence and the weak convergence of a sequence {z,} to x
in H by z,, = « and x,, — =z, respectively. By Po, we denote the metric projection
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from H onto C. Namely, for each € H, Po(x) is the unique element in C such that

lo —Pe@) < lle —yll, VyeC.

Let T be a mapping of C into H. We use Fixz(T) to stand for the fixed point set of
T. A mapping T : C — H is said to be
e Firmly nonexpansive if

1T () = T)|* + (I = T)(x) — (I = T)(y)|* < Iz —yll, Va,y € C;

e Nonexpansive if

1T(x) = T ()l < llz —yll, Va,y € C;
e Quasi-nonexpansive if Fiz(T) # () and

1T(z) —pll < [z —pl|, Vo € C, p€ Fia(T);

e Lipschitz continuous with constant L > 0 if

IT(x) = T(y)|l < Lljx -yl Vz,y € C;
e monotone if

(T'(x) =T(y),z —y) 20, Va,y € C;
e Inverse-strongly monotone with constant o > 0, («« — ism) if

(T(x) = T(y),z —y) > af|T(x) = T(y)|*, Va,y € C.

It is not hard to see that a-inverse-strongly monotone mappings are Lipschitz con-
tinuous. A mapping T : H — H is called a-averaged if there exists a € (0, 1) such
that

T=(1-a)l+as,

where S : H — H is nonexpansive mapping. More information on metric projections,
firmly nonexpansive mappings and averaged mappings can be found in the book by
Goebel and Reich [14].

Definition 2.1. Let T : H — H be a mapping, then I —T is said to be demiclosed at
zero if for any sequence {x,, } in H, the conditions x,, — z and lim,,_, ||z,—T2,| = 0,
imply z = Tz.

We will use the following lemmas.
Lemma 2.2. ([1]) Let C be a nonempty closed convex subset of H and T : C — H
be a quasi-nonexpansive mapping. Then Fixz(T) is closed and conver.

Lemma 2.3. ([1]) Let T : H — 28 . The resolvent of T is Jp = (I +T)~'. Then the
following hold:

(i) Jr is firmly nonexpansive if and only if T is monotone,
(ii) Fiz(Jr)=T"%0).

Lemma 2.4. ([27]) Let H be a real Hilbert space and T : H — H be a nonexpansive
mapping with Fix(T) # 0. If {xz,} is a sequence in H weakly converging to x and if
{(I =T)x,} converges strongly to y, then (I — T)x = y.
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Lemma 2.5. ([28]) Assume that {a,} is a sequence of nonnegative real numbers such
that

An+1 S (1 - ﬁn)an + 19716717 n Z 07
where {9, } is a sequence in (0,1) and {6,} is a sequence in R such that
(1) 2252 I = o0,
(i) Hmsup,, . 6, <0 or D07 [9,6,] < oc.
Then lim,,_, a,, = 0.
Lemma 2.6. ([17]) Let {t,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} such that t,, < tn,+1 for all i € N. Then there exists a

nondecreasing sequence {T(n)} C N such that 7(n) — oo and the following properties
are satisfied by all (sufficiently large) numbers n € N:

t‘r(n) < tT(n)+17 tp < tT(n,)+1~
In fact
7(n) = max{k <m:tp < tpt1}-

Lemma 2.7. ([10]) Let H be a Hilbert space and x; € H, (1 < i < m). Then for
any given {\}7, C (0,1) with Y i~ \; = 1 and for any positive integer k,j with
1<k <j<m, we have

m m
1Y " Nizill® <O Nillall? = Al — ;1%
=1 =1

Lemma 2.8. ([5]) Let T : H — H be a mapping.
1

(i) T is nonexpansive if and only if the complement I — T is 5-inverse strongly

monotone.

(ii) If T is v-inverse strongly monotone, then for v > 0, vT is %—im}erse strongly
monotone.

(iii) For a € (0,1), T is a-averaged if and only if I — T is i-inverse strongly
monotone.

3. MAIN RESULTS

Now we state and prove our main results of this paper.

Theorem 3.1. Let Hy, Hy and H3 be real Hilbert spaces, A : Hy — Hz and B : Hy —
Hj be bounded linear operators. Let fori=1,2,....m, F; : Hi — Hy be a finite family
of ki-tnverse strongly monotone mappings and G; : Hy — Hs be a finite family of ;-
inverse strongly monotone mappings. Let {T;}™, : Hy — H;y and {S;}™, : Hy — H>
be two finite families of quasi-nonexpansive mappings such that S; — I and T; — I are
demiclosed at 0. Suppose

Q= {(z,y):x e (Fiz(T)NF1(0), ye [ |(Fiz(S)NG;(0), Ax= By} # 0.

=1 =1
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Let {x,} and {y,} be sequences generated by xo,¥ € Hy, yo, v € Hy and by

Zn = Ty — Y A*(Ax,, — Byyn)
th = ag,,o)zn + 30, ag)Tizn
Up = (I = ™™ F)o.oo(I—p@0PFy) o (I— MoV F)t,,
Tny1 = B + (1= Bn)uy
W = Yn + Y B*(Azn — Byn)
sn = aDw, + Py oY) Siw,
v = (I = p™sT™G) 0.0 (I — pP5PGa) o (I - pM5GY)sy,
Yn+1 = Bav + (1 — ﬂn)vnv
for all n > 0, where the step-size vy, is chosen in such a way that
2|| Az, — By ||®
|B*(Azn — Byn)|* + [|A*(Azn, — Byy)|?
otherwise v, = (v being any nonnegative value), where the index set

II ={n: Az, — By, # 0}.

%e(e,| —e),nell

Let the sequences {ag)}, {Bn}, {(57(li)} and {eﬁf)} satisfy the following conditions:
1) >, ol =1 and liminf, o!¥al > 0, for each i € {1,2,...,m},
(ii) {Bn} € (0,1), limy o0 By = 0 and 377 Bn = 00,
(iii) {,u(i)@(f)} C lai,bi] C (0,2k;) and {p(i)&(f)} C lei,di] € (0,2¢;) for each
ie{l,2,...,m}.

Then, the sequences {(zy,yn)} converge strongly to (x*,y*) € L.
Proof. Put

z,(Ll) ={U- ,u(l)e,(ll)Fl)tn
A2 = (I — M(Q)Hy(lz)Fg)z,(ll)

.zﬁbm) =u, = - u(m)ﬁ,(lm)Fm)z,(lm_l)
and
) = (1= pW6VGh)s,

D = (1= p6P Ga)yl

y7(1m) =uv, =1 — p(m)é?(lm)Gm)yﬁlm_l)
By using Lemma 2.8, since F} is ki-inverse strongly monotone and G is ¢1-inverse
strongly monotone, we can rewrite 27(11) and y%l) as

2 = (1= AW, + XDy Dy (3.2)

and
D = (1= €0, + €W,
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where V,Sl) is a nonexpansive mapping of H; into Hy, W,E” is a nonexpansive mapping
of Hy into Hs,

AL — M and £V = p(l)(s’(})
" 2

K1 2L1

for all n € N. Take (z*,y*) € Q. We have

2 =22 =11 = At + APV, — a2
<1 = At — 2% |2 + AP Vil b, — 27|
AL A=AV, — )12

<t — 2> = A (1= AV, — 2%

By a similar argument for ¢ € {2,3,4,...,m}, we get

1250 — 2% < |57 — 2|2 = AP @ = AD) VDL — 2002, (3.3)
and
Iy — g2 <yl — |12 = €0 (1 = €)Wy — yi=0) 12, (3.4)

where Véi) are nonexpansive mappings of H; into H; and Wr(f) are nonexpansive
mappings of Hy into Hs for all n € N. From (3.1) we have
lzn —2*|I> =llzn — A" (Azn — Byn) — 2*||
=|lzn — ¥ + 72l A* (Azn — Byy)|?
— 29, (xy — x*, A*(Az), — By,))
=|lzn — 2" + 721 A* (Azn — By)|? (3.5)
— 2y (Ax,, — Ax*, (Az,, — Byy))
=lzn — &*|* + 72 A" (Azn — Byn)|I* — yall Azy — Az*||?
—YnllAzn = Byn |l + | Byn — Az*|1%.

Similarly, we also have

lwn = y* 1> =|yn + 1 B*(Azy — Bys) — y*||?

=lyn = y*I* + 72l B*(Azn — Byn)|? = wllByn — By*|I*  (3.6)
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By adding equalities (3.5), (3.6) and by taking into account the fact that Ax* = By*,
we obtain

1z = 2|1 + llwn — g7 1* = llzn — 2" + llyn — v*|I?
75 (|A*(Bzn — Byn)||* + [|B*(Azy — Byn)|?)

27, || Az, — Bynl?.

Using Lemma 2.7 for each i € {1,2,...,m}, we have 0
Ita —2*I2 = llof” 20 + T2, b Tizn — 2|
< oz — 2P + 0, o || Tz — 2
o0l [Tz, = 2.2 o
< lzn —a*|? = Oév(zo)ag)HTizn — zp|?
Similarly, we can obtain
s =9I = ||a<°>w + 3y o Siwn — |
< o lwn =y + 0 0 [[Siwn — y |2
(3.9)

ol ol || Swn — wal?

< wn —y*|? = ol | Siw, — w,|?

From (3.3) and (3.4), we have
|2ni1 — a2 =1Ba9 + (1 = Bp)uty — 2*||2
=Bl — 2*||2 + (1 = Bu)l[un — &*)|> = Bu(1 = Bp)[un — 0|
<Balld = a*|2 + (1 = B[t — 2*||2 = Ba(1 = Ba)[un — 92
— (1= B @ = A Vit — 1,12 —
— (1= Ba)AT (1= ATV 2D )2,

and
lyns1 =512 =11Bav + (1 = Bu)vn — 7|12
=Ballo = y* 12 + (1 = Ba)llvn — ¥*II2 = Ba(1 = Bu) v — ]2
<Bullv =y II2 + (1 = Ballsn — y* 11> = Ba(l = Ba)llvn — 0]
— (1= 8,01 = &) W5, — 5,2 -
— (1= B)e (1 — gl WAy Y — i,
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By adding the two last inequalities and using (3.7), (3.8) and (3.9), we have

lnsr = 2|

Thus ||2n11 —2*||? + |yns1 —v*||? is bounded. Therefore {x,,} and {y, } are bounded.

F Y1 =yl

<Bn(ll? = 2* | + flv = y*[I)

+ (1= Bu)(lltn — 21 + lsn = v[1%)

< Bull9 = * |2+ [lv = y*?)

+ (1= Bo)(llzn — 212 + llyn — y*11?)

< max{([[0 — 2|1 + [lo = y*1?), (lzn — 2" + lym — v* %)}

< max{([[J = z*[|* + [lo = y*|1*), (lzo — 2™ + llyo — y*[I*)}-

Consequently {z,}, {wn}, {sn} and {¢,} are all bounded.

|nsr =2 + lynss = "I < (1= Ba)(ltn — 271 + llsn — y"11%)

+ Bn(ll9 =2 + [lv = y" %)
= Bu(1 = Ba)[lun = 92
- (1 - Bn))‘g)(l - /\gzl))llvrgl)tn - thQ

= (1= B (L = AV 2D — 2D

n

= Bn(1 = Bu)llvn — U||2
- (1~ ﬁn)g’r(ll)(l - ffp)”W,gl)sn - 3n||2

= (L= B (= Wyt = g

< (1= Ba)(llzn = 2™1* + llyn — y"[I)

+Bu(ll0 — 2| + v —y7||*)

= (1= Bn) w2l Az — BynH2

= n(|B*(Azy = Byn)|* + [|A* (Azy — Byn)|*)]
-(1- Bn)ago)ag)HTizn — z1?

-(1- ﬂn)a(o)aﬁf)llsz’wn —wy?

n

+ Bn(1 = Bn)lun — 19”2

(3.10)
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— (1= B)AP A= AVt —

(1= BN ATV - s
— Bn(1 = Bn)llvn — U”2
— (1= BN (1 = M)W M s, — sl

— (1= Bu)elm (1 = elm)|[Wimym=t — ym=1|12,

By our assumption that

v (e 2||Az,, — By,|? B )
"\ B (Azy, — Bya)|I? + [|A* (A2 — Bya) |12 ’

we have
(n + (1B (Azn — Byn)|* + A" (Azy — Byn)|1?) < 2||Azn — Bya|*.
From above inequality and inequality (3.10), we can obtain
(1= Ba)me(|B* (Azy — Byn)|I” + | A*(Azn — Bya)|?)

< (1= Bu)ml2llAzn — Bya |
— (I B*(Azy, — Byn)|I* + [ A*(Azn, — Bya)|?)]
<1 =Bu)(lzn — 21 + llyn — y*I1?)
—llznsr =217 = lynsr — y*|1?

+Bn(ll9 = 2|7 + v —y*[1*)-

(3.11)

Set(¥*,v*) = Po (9,v). Put Ty, = ||z, — 9*||? + |lyn — v*||* for all n € N. We finally
analyze the inequality (3.11) by considering the following two cases.

Case A. Suppose that I',, 11 < T, for all n > ng ( for ng large enough). In this case,
since T, is bounded, the lim,, ., I';, exists. Since lim, _~ B, = 0, from (3.11) and
by our assumption on {v,}, we have

Tim (| B* (A, — By)|? + | A*(Az, — Bya)|?) = 0.

So we obtain that lim,,_, || B*(Az, — By, )| = 0 and lim,,_, ||A*(Az, — By,)|| = 0.
This implies that lim,, . ||Az, — Byx,|| = 0. Since {v,} is bounded, we deduce

lim ||z, — 2,| = lim ~,||4"(Az, — By,)| =0, (3.12)
n—oo n—roo

and
n— oo n—oo

By assumption (i) and (3.10), we get

lim ||S;w, — wy|| = lim | Tiz, — 2,|| =0, i€{1,2,...m}.
n— oo n—oo
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Hence
[tn = 2nll = l0{ 20 + > a2y — 2] < 0| Tizn — 2] — 0
i=1 i=1
lzn = tall < 2 — 2ull + 120 — tall = 0. (3.14)
Now we claim that (wy,(2,), ww(yn)) C Q, where
wy(xy) = {x € Hy : x,, — xfor some subsequence {x,,} of {xn}}.

Since the sequences {z,} and {y,} are bounded, we have wy(x,) and w,(y,) are
nonempty. Now, take T € wy, () and ¥ € w,,(y,). Thus, there exists a subsequences
{zn,} of {z,} and {yn,} of {y,} which z,, — Z and y,, — ¥ . Without loss of
generality, we can assume that z, — Z and y, — 3. From (3.12) and (3.13), we
have z, — T and w, — ¥. On the other hand, demiclosedness of T; — I in 0, for
each i € {1,2,...,m} implies that Z € (-, Fiz(T}). By similar argument, we obtain
that g € i~ Fiz(S;). Since {97(11)} is bounded, we can fined a subsequence {07(113}
converging to (1) such that uM0M) € [ay,b]. From (3.14) we have tn,, — @. Since
{tmj} is bounded and Fj is inverse strongly monotone, we know that {Fltmj} is
bounded.

(7 = D0 Fijty, — (I = g0 Ryt || < |uMof — u oW At .
From 97(1173 — ), we have
(I - M(l)eﬁii Fy)tn,, — (I — M(1)9(1)F1)tnij | = 0.
From (3.10) and (3.2) we have

125" — tull =0,

hence
I = w0 Fi)tn,, —tn, [ = 0.

Since

”(I - M(l)e(l)Fl)tnij - tnij

< = p OO Fy)tn, —to,,

|
(I = MOV Fy, — (1= p MO Fy)t,,

)

we get
(I — ,u(l)e(l)Fl)tmj —tn,, =0, n—oo.
From Lemmas 2.4 and 2.8, we obtain that
z e Fiz(I — pMoV ) = F7H(0).
By similar argument for ¢ € {2,3,...,m}, we get

Ze () F'(0)and g e ()G H(0).
=1

i=1
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On the other hand, AZ — By € wy,(Ax,, — By,) and weakly lower semi continuity of
the norm imply that

|AZ — By|| < liminf ||Az, — By,|| = 0.
n—roo

Thus (Z,y) € Q. We also have the uniqueness of the weak cluster point of {x,} are
{yn}, (see [30] for details) which implies that the whole sequences {(z,,y.)} weakly
convergence to a point (z,7) € Q. Next we prove that the sequences {(zy,yn)}
converges strongly to (9*,v*). Now, we show that

limsup((¢ — 9%, 2, — ¥*) 4+ (v — V™, y, — V")) < 0.

n— oo

Choose a subsequence {zn, }, {yn, } of {z,} and {y,} respectively such that

limsup((9 — 9%, 2,, — 9*) + (v — V™, y, — V"))

n—oo

= lim ((9 — 9", 2, — ") + (U — V", Yn, — V")).

n— oo

Since the sequences {zn, } and {yn,} are bounded, there exist subsequences {zn, },
{ynkj} of {xn, } and {yn, }, respectively such that converges Ty, = T, Yni, = 7, and
(Z,9) € Q. Without loss of generality, we can assume that z,, — Z, yn, — U

It follows from prperties of projection that

lim sup,,_, ((9 — 9, x,, — 9*) + (v — V*, y, — V*))
=limy, o0 ((¥ — V", 2y, — %) + (v — V*, yp, — V"))
= —9*, 2 —9%) + (v —v*,y — v*)
=((¢ — ¥, v —v*), (T — 9,7 —v*))
=((0,v) = (9", 0"), (&) — (9", v")) <0.
From the inequality, ||z + y||?> < ||z||* + 2{y, * + y), we find that
21 =02 =Ba? + (1 = Bn)un — 9*|?
< (1= Bn)*llun — 9% +280(9 — 9%, Tng1 — 9%).
Similarly we obtain that
[yn+1 = v*[? < (1= Ba)?llon — 0|7 + 280 (v = 0%, Y1 — v7).
By adding the two last inequalities, we have that

lZns1 =912+ llynsr —v*|
< (1= B0)2lun = 9% + [Jvn — v*[?)
280 (0 = 0", g1 = 97) + (V= 0" yng1 —0")).
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It immediately follows that
Pot1 < (1= Bn)?Tn + 2Bu1m
(1= 2B,)Tn + BT + 285m0
(1—28.)0y + 2B, {22~ +n,,)
(1= pn)n + pndn,

IN

IN

where
N = (0 =0, 2p 1 —0%) + (V= 0", Ypy1 — V"),
N = sup{[|zn — O*|* + [lyn — v*||* : n > 0},

BN
2

Pn = 208, and 6, = + M.

It is easy to see that p,, — 0,

an = oo and limsupd, < 0.

n—o00
n=1

Hence, all conditions of Lemma 2.5 are satisfied. Therefore, we immediately deduce
that lim,, o, I';, = 0. Consequently lim,,— o || — 9*|| = lim, 00 ||yn — v*|| = 0, that
is (Tn,yn) — (0*,0%).

Case B. Assume that {T',} is not a monotone sequence. Then, we can define an
integer sequence {7(n)} for all n > ny (for some ng large enough) by

7(n) = max{k <n:Tp < Tk}

Clearly, 7 is a nondecreasing sequence such that 7(n) — oo as n — oo and for all
n > ng, I'7(n) < Tr(ny41. Now, it follows from (3.10) that

Crimy+1 = Drmy < Balll9 = 9717 + [lo — 0*[1?) = BuTr(n)-
Since lim,— 0 B, = 0 and {x,,} and {y,} are bounded, we derive that

lim (T ()41 — Drny) = 0. (3.15)

n—oo

Following an argument similar to that in Case A, we have
FT(n)+1 < (1 - pT(n))FT(n) + p’r(n)ér(n)7
where limsup,, ., d7(») < 0. Since I'7(,) < T'7(n)41, we have
Pr)Lr(n) < Pr(n)Or(n)-
Since pr(n) > 0 we deduce that

From limsup,, ., 0-n) < 0, we get lim, ,oo ;) = 0. This together with (3.15),
implies that lim, o0 I'7(n)41 = 0. Thus by Lemma 2.6, we have

0 < Ty < max{Tr(n), Tn} < Tr(ny41-

Therefore (2, y,) — (9*,v*). This completes the proof.
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4. COROLLARIES

Putting ¥ = v = 0 in 3.1 we obtain the following result.

Theorem 4.1. Let Hy,Hs and Hs be real Hilbert spaces, A : Hy — Hs and B :
Hy; — Hs be bounded linear operators. Let F' : Hi — Hp be a k-inverse strongly
monotone mapping and G : Hy — Hs be a t-inverse strongly monotone mapping.
Let {T;}™, : HA — Hy and {S;}>, : Ho — Hy be two finite families of quasi-
nonezxpansive mappings such that S; — I and T; — I are demiclosed at 0. Suppose
Q= {(z,y)  x € (M (Fiz(T3)) N F~1(0)),
y € (N, (Fin(S)) N G1(0), Az = By} # 0.
Let {x,} and {y,} be sequences generated by xo € Hy,yo € Ha and by:
Zn = xn Y A*(Ax,, — Byy)
ty = Oén Zn + Zz 1 an)nzn
Tpy1 = (1— ﬁn)(—r 10, Fy )ty
Sp = aglo)wn + Zz 1 an)S Wy,
Yn+1 = (1 - Bn)(I pénGl)sna
for all n > 0, where the step-size v, is chosen in such a way that
2| Az, — By |?
|B*(Azy, — Byn)||* + [|A*(Azn — Byn)|?
otherwise v, =y (v being any nonnegative value), where the index set
IT={n: Az, — By, # 0}.
Let the sequences {an)} {Bn}, {0n} and {6,,} satisfy the following conditions:
(i) Z:"Oa&” =1 and liminf, ! > 0, for each i € {1,2,...,m},
(i) {B.} € (0,1), lim;,— 00 B = 0 and ano Bn = 00,
(iil) {6} C [a,b] C (0,2k) and {pd,} C [c,d] C (0,2¢) for each i € {1,2,...,m}.
Then, the sequences {(zn,yn)} converge strongly to (z*,y*) € Q, where (z*,y*) is
also a point in

{(z,y): zeVINZ,(Fiz(T;), F), ye VI(N~,(Fiz(S;),q)), Az = By}.

(4.1)

—e€),nell

Tn € (6,

Let f be a continuously Fréchet differentiable and convex functional on H and let
Vf be the gradient of f. If Vf is 1/a-Lipschitz continuous, then Vf is a-inverse
strongly monotone, ( see [15]).

Theorem 4.2. Let Hy, Hy and H3 be real Hilbert spaces, A: Hi — Hz and B : Hy —
Hj3 be bounded linear operators. Let for i = 1,2,....m, f; be continuously Fréchet
differentiable convex functionals on Hy such that Vfl be ——szschztz continuous and
g; be continuously Fréchet differentiable convex functzonals on Hs such that Vg; be
L%—Lipschitz continuous. Let {T;}™, : Hy — Hy and {S;}*, : Hy — Hy be two finite
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families of quasi-nonexpansive mappings such that S; — I and T; — I are demiclosed
at 0. Suppose

m

Q= {(z,y):z € [ (Fiz(T;) N (V£)7(0)),

y € [\(Fia(S) N (Vg) 7 (0), Aw =By} #0.

Let {x,} and {y,} be sequences generated by xg,¥ € Hy,yo, v € Ha and by:

Zn = Tpn — Y A*(Az, — Byy)
t, =al®2, + Oy a2,
Up = (I — pm™OV ) 0.0 (I — p@0PV fs) o (I — MoV f1)t,,
Tpt1 = Bt + (1 — Bn)un
Wy, = Yn + YuB*(Az,, — Byy)
sn = aQw, + POy o9 Sw,,
v, = (I — p(m)&(lm)ng) o..o(l— p(2)5,(12)ng) o(I-— p(1)5§11)Vg1)5n,
Yn+1 = Bt + (1 = Bn)vn,
for all n > 0, where the step-size 7, is chosen in such a way that
2|| Az, — Byal?
|B*(Azn, — Byn)|* + | A*(Azy — Byy)|?
otherwise v, =7 (v being any nonnegative value), where the index set

IT={n: Az, — By, # 0}.

%G(e,| —¢),nell,

Let the sequences {ozgf)}, {Bn}, {553)} and {9,@} satisfy the following conditions:
1) >, o) =1 and liminf, Vo > 0, for each i € {1,2,...,m},
(ll) {ﬁn} C (07 1)7 limy, 00 B = 0 and ZZOZO Brn = 00,

(iii) {p @0} < Jas,b;] C (0,2k;) and {pD6} € Jeidi] C (0,20) for each
ie{1,2,..,m}.
Then, the sequences {(xy,yn)} converge strongly to (x*,y*) € L.

Let C' be a closed convex subset of a real Hilbert space H. Then a mapping
T :C — C is called strictly pseudocontractive if there exists k with 0 < k£ < 1 such
that

T2 = Tyl* < llz = yl* + k(I = T)x = (I = T)y||?, for all z,y € C.
Put A=1T1—T. Then A is (1 — k)/2-inverse-strongly-monotone (see [25]).
Theorem 4.3. Let Hy, Hy and Hs be real Hilbert spaces, A : Hy — Hz and B : Hy —
Hj be bounded linear operators. Let fori=1,2,....,m, F; : Hi — Hy be a finite family

of ki-strictly pseudocontractive mappings and G; : Hy — Hy be a finite family of ;-
strictly pseudocontractive mappings. Let {T;}7, : Hy — Hy and {S;}7*, : Hy — H>
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be two finite families of quasi-nonexpansive mappings such that S; —I and T; — I are
demiclosed at 0. Suppose

Q={(z,y):z € ﬂ(Fm(Tl) N Fiz(Fy)),
Y€ ﬂ(sz(Sl) N Fix(G;)), Az = By} #0.

Let {z,} and {y,} be sequences generated by xo,9 € Hy, yo, v € Ha and by:

Zn = Tp — Y A*(Az, — Byyn)

te =iz, + > Tz,

up = ((1— u(m)b‘%m))l + u(m)b‘%m)Fm) o..o((1— u(l)eg))l + u(l)eg)Fl)tm
Tpy1 = Bl + (1 = Bn)un

Wy, = Yn + Y B*(Azx,, — By,)

sn = aDw, + Dy oV Sw,

v = (1= p™T NI + pm ™G ) 0.0 (1= pWSENT + pMsGy) sy,
Yn+1 = Bnv + (1 = Bn)vn,

for all n > 0, where the step-size 7, is chosen in such a way that
2| Azy — Bynl®

|B*(Azn — Byn)||* + [|A*(Azn — Bya)|?

otherwise v, =y (v being any nonnegative value), where the index set

IT={n: Az, — By, # 0}.

7n€(€,| —€e),nell

Let the sequences {ag)}, {Bn}; {5,(1i)} and {07(5)} satisfy the following conditions:
1) >, o) =1 and liminf, of ) > 0, for each i € {1,2,...,m},
(ii) {Bn} € (0,1), limy, 00 By = 0 and 377 Bn = 00,
(iii) {w)e;")} C [ai, b)) € (0,1 — K;) and {p(i)&(f)} C [eisdi] € (0,1 — ;) for each
i€ {1,2,..,m}.
Then, the sequences {(zy,yn)} converge strongly to (z*,y*) € Q.

By setting T; = S; = I (i = 1,2,...,m), in Theorem 4.3, we have the following
result.

Theorem 4.4. Let Hy,Hy and Hs be real Hilbert spaces, A : Hy — Hs and B :
Hy — Hj be bounded linear operators. Let fori=1,2,...,m, F; : Hi — Hy be a finite
family of k;-inverse strongly monotone mappings and G; : Hy — Hs be a finite family
of t;-inverse strongly monotone mappings. Suppose

Q= {(.y) 2 € () F7(0)
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ye ()G (0), Az =By} #0.
=1

Let {x,} and {y,} be sequences generated by xo,¥ € Hy, yo, v € Hy and by:
Zn = Tn — YnA*(Az, — Byy)
U = (I = p™O™ F) oo (I —u@0PFy) o (I — pMoY Fy)z,,
Tpt1 = B+ (1 = Bp)uy,
Wy, = Yn + Y B*(Az,, — By,)
v = — p(m)&(lm)Gm) o..o(l— p(2)57(12)G2) o(l — p(l)(s,(ll)Gl)wn,
Yn+1 = Bnv + (1 — Bn)vn,
for all n > 0, where the step-size v, is chosen in such a way that

2| Azy — Bynl®
“B*(Az, — Byn)[? + [|A*(Azy, — Byn)|?
otherwise v, = v (v being any nonnegative value), where the index set

IT={n: Az, — By, # 0}.

Yn € ( —¢e),nell

Let the sequences {f,}, {6%1)} and {97(5)} satisfy the following conditions:
(i) {Bn} - (0,1), limy 00 B, = 0 and > " 6", = 00,
i) {0} < [aibi) C (0,2k5) and {pD8} C [es,di] € (0,2u5) for each
i€ {1,2,...,m}.
Then, the sequences {(xy,yn)} converge strongly to (x*,y*) € .

5. NUMERICAL EXAMPLE

In this section, we will present a numerical example in the two-dimensional space
of real numbers to show that our algorithm is efficient.
Example 5.1. Let H; = Hy, = H3 = R? with the Euclidean norm. We take m = 2
in Theorem 4.1. Assume that

(3 (3

(21, 29) = (Sm(f‘l)m(@“z))

arctan(zy) arctan(zs) )

Si(z1,22) = < ,

2 2

Fi(z) = i and G;(z) =

“w
2 3

Also we define

hence



SPLIT EQUALITY 235

Put . )
’771 27 ﬁn nln(4n)’ M (7’+ )7
. 1 NS 2
g L o _itl w2
i) 2 O T 1)

and o2 = !, = % It can be observed that all the assumptions of Theorem 4.1 are
satisfied and 2 = {(0,0)}.

Taking (zo,1,Z0,2) = (Y0,1,Y0,2) = (0.5,0.5) and ¥ = v = (0.01,0.01), we obtain the
following algorithm:

|: J}(n+1)’1 :| e |: 1 100n11n4n —’—1(1 - 1n1r14n)(2ix”71 + %18111(%133”)1)) 1 :|

T(n+1),2 wonman T (1~ 7man) (27802 + 57Un2 + 35I0(32n2 + 3Un2)) |’

[ Ynt+1)1 } = [ . To0n T ir (1~ nlr}4n)(%y"vl +3 arctan(%/ml)) ) ] .
Y(n+1),2 Toonman T (1= 7 ) (5202 + 55Yn2 + § arctan(3en 2 + 54n,2))

So we have the numerical results in Tables 1 and 2 and Figures 1 and 2.

Table 1. Numerical results of Example 5.1

n Tn [[2n 2

1 (0.50000000, 0.50000000) 0.70710678

2 (0.02163620, 0.03552313) 0.04159348

3 (0.00411632,0.00968892) 0.01052708

4 (0.00171269, 0.00359991) 0.00398656

5 (0.00106400, 0.00175051) 0.00204851

98 (1.9329¢ — 5,2.2440e — 5) 2.9617e — 05
99 (1.9099¢ — 05,2.2172¢ — 05) 2.9263e — 05
100 (1.8873e — 05,2.1910e — 05) 2.8918e — 05

Table 2. Numerical results of Example 5.1

n Yn ||ynH2

1 (0.50000000, 0.50000000) 0.70710678

2 (0.05656474,0.05656474) 0.07999463

3 (0.01830684,0.01535186) 0.02389184

4 (0.00721181,0.00535644) 0.00898341

5 (0.00333185,0.00241107) 0.00411251

98 (2.7638¢ — 05, 2.6441e — 05) 3.8249¢ — 05
99 (2.7308¢ — 05,2.6125¢ — 05) 3.7792e — 05

100 (2.6984e — 05,2.5816e — 05) 3.7345e — 05
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