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1. Introduction

The variational inequality problem (VIP) is to find x∗ ∈ C such that

〈Fx∗, x− x∗〉 ≥ 0 ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H and F : C → H
is a mapping. We denote the solutions set of (1.1) by V I(C,F ). Variational inequality
problem has a great impact and influence in the classes of mathematical problems
and it is widely studied in many fields of pure and applied sciences. Several iterative
schemes have been proposed for solving variational inequality (see [2, 12, 13, 16, 20, 24,
26]). Among all the iterative methods for VIP, the simplest one is gradient projection
method as follows:

xn+1 = PC(I − λF )xn,

for each n ∈ N, where PC is the metric projection of H into C and λ is a positive real
number. The convergence of this method can be proved under a strong condition that
the mapping F is strongly monotone and Lipschitz continuous. It requires repetitive
use of PC , that it works only when the explicit form of PC is known (e.g., C is a
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closed ball or a closed cone). In 2001, Yamada [29] introduced the following so-called
hybrid steepest descent method:

xn+1 = (I − µαnF )Txn, (1.2)

for each n ∈ N. Under certain conditions, the sequence {xn} generated by (1.2)
converges strongly to the unique point in V I(Fix(T ), F ). This method does not
require the closed form expression of PC but instead requires a closed form expression
of a nonexpansive mapping T , whose fixed point set is C.

Let C and Q be two nonempty closed convex subsets of two real Hilbert spaces
H1 and H2, respectively, and let A : H1 → H2 be a bounded linear operator. Given
mappings F : H1 → H1 and G : H2 → H2. The split variational inequality problem
(SVIP) introduced first by Censor et al. [8] can be formulated as follows:
find

x∗ ∈ C : 〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ C
such that

y∗ = Ax∗ ∈ Q : 〈G(y∗), y − y∗〉 ≥ 0 ∀y ∈ Q.
So SVIP is the problem of finding x∗ ∈ V I(C,F ) such that Ax∗ ∈ V I(Q,G). A
special case of the SVIP, when F = G = 0, is the split feasibility problem (SFP)
which has been studied by many authors (see [3, 4, 6, 7, 11, 18, 21, 22, 23]).
In [19], Moudafi introduced the following split equality fixed point problem (SEFP).
Let A : H1 → H3, B : H2 → H3 be two bounded linear operators and let C and Q
be two nonempty closed convex subsets of H1 and H2, respectively, let S : H1 → H1

and T : H2 → H2 be two nonlinear operators such that Fix(S) 6= ∅ and Fix(T ) 6= ∅.
The split equality fixed point problem (SEFP) is to find

x ∈ Fix(S), y ∈ Fix(T ) such that Ax = By. (1.3)

In addition, let F : H1 → H1 be a monotone and L- Lipschitz continuous operator
on C and G : H2 → H2 be a monotone and K- Lipschitz continuous operator on Q
such that Fix(S) ∩ V I(C,F ) 6= ∅ and Fix(T ) ∩ V I(Q,G) 6= ∅. The split equality
variational inequality and fixed point problem (SEVIP) introduced by Eslamian [9] is
to find points

x ∈ Fix(S) ∩ V I(C,F ), y ∈ Fix(T ) ∩ V I(Q,G) such that Ax = By. (1.4)

If F = G = 0, then the SEVIP reduces to the split equality fixed point problem.
Motivated by the above works, the purpose of this paper is to introduce a new algo-
rithm for finding a solution of split equality variational inequality problem for inverse
strongly monotone operators and a common fixed points of a finite family of quasi-
nonexpansive mappings which does not require any knowledge of the operator norms.
A numerical example to support our main theorem will be exhibited.

2. Preliminaries and lemmas

Throughout this paper, we always assume that H is a real Hilbert space with
inner product 〈., .〉 and norm ‖.‖. Let C be a nonempty closed convex subset of H.
we denote the strong convergence and the weak convergence of a sequence {xn} to x
in H by xn → x and xn ⇀ x, respectively. By PC , we denote the metric projection
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from H onto C. Namely, for each x ∈ H, PC(x) is the unique element in C such that

‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.
Let T be a mapping of C into H. We use Fix(T ) to stand for the fixed point set of
T . A mapping T : C −→ H is said to be
• Firmly nonexpansive if

‖T (x)− T (y)‖2 + ‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖x− y‖, ∀x, y ∈ C;

• Nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C;

• Quasi-nonexpansive if Fix(T ) 6= ∅ and

‖T (x)− p‖ ≤ ‖x− p‖, ∀x ∈ C, p ∈ Fix(T );

• Lipschitz continuous with constant L > 0 if

‖T (x)− T (y)‖ ≤ L‖x− y‖, ∀x, y ∈ C;

• monotone if

〈T (x)− T (y), x− y〉 ≥ 0, ∀x, y ∈ C;

• Inverse-strongly monotone with constant α > 0, (α− ism) if

〈T (x)− T (y), x− y〉 ≥ α‖T (x)− T (y)‖2, ∀x, y ∈ C.

It is not hard to see that α-inverse-strongly monotone mappings are Lipschitz con-
tinuous. A mapping T : H → H is called α-averaged if there exists α ∈ (0, 1) such
that

T = (1− α)I + αS,

where S : H → H is nonexpansive mapping. More information on metric projections,
firmly nonexpansive mappings and averaged mappings can be found in the book by
Goebel and Reich [14].
Definition 2.1. Let T : H → H be a mapping, then I−T is said to be demiclosed at
zero if for any sequence {xn} inH, the conditions xn ⇀ x and limn→∞ ‖xn−Txn‖ = 0,
imply x = Tx.

We will use the following lemmas.
Lemma 2.2. ([1]) Let C be a nonempty closed convex subset of H and T : C → H
be a quasi-nonexpansive mapping. Then Fix(T ) is closed and convex.

Lemma 2.3. ([1]) Let T : H → 2H . The resolvent of T is JT = (I +T )−1. Then the
following hold:

(i) JT is firmly nonexpansive if and only if T is monotone,
(ii) Fix(JT ) = T−1(0).

Lemma 2.4. ([27]) Let H be a real Hilbert space and T : H → H be a nonexpansive
mapping with Fix(T ) 6= ∅. If {xn} is a sequence in H weakly converging to x and if
{(I − T )xn} converges strongly to y, then (I − T )x = y.
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Lemma 2.5. ([28]) Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− ϑn)an + ϑnδn, n ≥ 0,

where {ϑn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞
n=1 ϑn =∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞
n=1 |ϑnδn| <∞.

Then limn→∞ an = 0.

Lemma 2.6. ([17]) Let {tn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that tni < tni+1 for all i ∈ N. Then there exists a
nondecreasing sequence {τ(n)} ⊂ N such that τ(n)→∞ and the following properties
are satisfied by all (sufficiently large) numbers n ∈ N:

tτ(n) ≤ tτ(n)+1, tn ≤ tτ(n)+1.

In fact

τ(n) = max{k ≤ n : tk < tk+1}.

Lemma 2.7. ([10]) Let H be a Hilbert space and xi ∈ H, (1 ≤ i ≤ m). Then for
any given {λi}mi=1 ⊂ (0, 1) with

∑m
i=1 λi = 1 and for any positive integer k, j with

1 ≤ k < j ≤ m, we have

‖
m∑
i=1

λixi‖2 ≤
m∑
i=1

λi‖xi‖2 − λkλj‖xk − xj‖2.

Lemma 2.8. ([5]) Let T : H → H be a mapping.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -inverse strongly

monotone.
(ii) If T is ν-inverse strongly monotone, then for γ > 0, γT is ν

γ -inverse strongly
monotone.

(iii) For α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -inverse strongly

monotone.

3. Main results

Now we state and prove our main results of this paper.
Theorem 3.1. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 →
H3 be bounded linear operators. Let for i = 1, 2, ...,m, Fi : H1 → H1 be a finite family
of κi-inverse strongly monotone mappings and Gi : H2 → H2 be a finite family of ιi-
inverse strongly monotone mappings. Let {Ti}mi=1 : H1 → H1 and {Si}mi=1 : H2 → H2

be two finite families of quasi-nonexpansive mappings such that Si − I and Ti − I are
demiclosed at 0. Suppose

Ω = {(x, y) : x ∈
m⋂
i=1

(Fix(Ti)∩F−1
i (0)), y ∈

m⋂
i=1

(Fix(Si)∩G−1
i (0)), Ax = By} 6= ∅.
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Let {xn} and {yn} be sequences generated by x0, ϑ ∈ H1, y0, υ ∈ H2 and by

zn = xn − γnA∗(Axn −Byn)

tn = α
(0)
n zn +

∑m
i=1 α

(i)
n Tizn

un = (I − µ(m)θ
(m)
n Fm) ◦ ... ◦ (I − µ(2)θ

(2)
n F2) ◦ (I − µ(1)θ

(1)
n F1)tn,

xn+1 = βnϑ+ (1− βn)un

wn = yn + γnB
∗(Axn −Byn)

sn = α
(0)
n wn +

∑m
i=1 α

(i)
n Siwn

vn = (I − ρ(m)δ
(m)
n Gm) ◦ ... ◦ (I − ρ(2)δ

(2)
n G2) ◦ (I − ρ(1)δ

(1)
n G1)sn,

yn+1 = βnυ + (1− βn)vn,

(3.1)

for all n ≥ 0, where the step-size γn is chosen in such a way that

γn ∈ (ε,
2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε), n ∈ Π

otherwise γn = γ (γ being any nonnegative value), where the index set

Π = {n : Axn −Byn 6= 0}.

Let the sequences {α(i)
n }, {βn}, {δ(i)

n } and {θ(i)
n } satisfy the following conditions:

(i)
∑m
i=0 α

(i)
n = 1 and lim infn α

(0)
n α

(i)
n > 0, for each i ∈ {1, 2, ...,m},

(ii) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑∞
n=0 βn =∞,

(iii) {µ(i)θ
(i)
n } ⊂ [ai, bi] ⊂ (0, 2κi) and {ρ(i)δ

(i)
n } ⊂ [ci, di] ⊂ (0, 2ιi) for each

i ∈ {1, 2, ...,m}.
Then, the sequences {(xn, yn)} converge strongly to (x∗, y∗) ∈ Ω.
Proof. Put

z
(1)
n = (I − µ(1)θ

(1)
n F1)tn

z
(2)
n = (I − µ(2)θ

(2)
n F2)z

(1)
n

.

.

.
z

(m)
n = un = (I − µ(m)θ

(m)
n Fm)z

(m−1)
n

and 
y

(1)
n = (I − ρ(1)δ

(1)
n G1)sn

y
(2)
n = (I − ρ(2)δ

(2)
n G2)y

(1)
n

.

.

.
y

(m)
n = vn = (I − ρ(m)δ

(m)
n Gm)y

(m−1)
n

By using Lemma 2.8, since F1 is κ1-inverse strongly monotone and G1 is ι1-inverse

strongly monotone, we can rewrite z
(1)
n and y

(1)
n as

z(1)
n = (1− λ(1)

n )tn + λ(1)
n V (1)

n tn, (3.2)

and

y(1)
n = (1− ξ(1)

n )sn + ξ(1)
n W (1)

n sn.
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where V
(1)
n is a nonexpansive mapping of H1 into H1, W

(1)
n is a nonexpansive mapping

of H2 into H2,

λ(1)
n =

µ(1)θ
(1)
n

2κ1
and ξ(1)

n =
ρ(1)δ

(1)
n

2ι1

for all n ∈ N. Take (x∗, y∗) ∈ Ω. We have

‖z(1)
n − x∗‖2 =‖(1− λ(1)

n )tn + λ
(1)
n V

(1)
n tn − x∗‖2

≤ (1− λ(1)
n )‖tn − x∗‖2 + λ

(1)
n ‖V (1)

n tn − x∗‖2

−λ(1)
n (1− λ(1)

n )‖V (1)
n tn − tn‖2

≤‖tn − x∗‖2 − λ(1)
n (1− λ(1)

n )‖V 1
n tn − tn‖2.

By a similar argument for i ∈ {2, 3, 4, ...,m}, we get

‖z(i)
n − x∗‖2 ≤ ‖z(i−1)

n − x∗‖2 − λ(i)
n (1− λ(i)

n )‖V (i)
n z(i−1)

n − z(i−1)
n ‖2, (3.3)

and

‖y(i)
n − y∗‖2 ≤ ‖y(i−1)

n − y∗‖2 − ξ(i)
n (1− ξ(i)

n )‖W (i)
n y(i−1)

n − y(i−1)
n ‖2, (3.4)

where V
(i)
n are nonexpansive mappings of H1 into H1 and W

(i)
n are nonexpansive

mappings of H2 into H2 for all n ∈ N. From (3.1) we have

‖zn − x∗‖2 =‖xn − γnA∗(Axn −Byn)− x∗‖2

=‖xn − x∗‖2 + γ2
n‖A∗(Axn −Byn)‖2

−2γn〈xn − x∗, A∗(Axn −Byn)〉

=‖xn − x∗‖2 + γ2
n‖A∗(Axn −Byn)‖2

−2γn〈Axn −Ax∗, (Axn −Byn)〉

=‖xn − x∗‖2 + γ2
n‖A∗(Axn −Byn)‖2 − γn‖Axn −Ax∗‖2

−γn‖Axn −Byn‖2 + γn‖Byn −Ax∗‖2.

(3.5)

Similarly, we also have

‖wn − y∗‖2 =‖yn + γnB
∗(Axn −Byn)− y∗‖2

=‖yn − y∗‖2 + γ2
n‖B∗(Axn −Byn)‖2 − γn‖Byn −By∗‖2

−γn‖Axn −Byn‖2 + γn‖Axn −By∗‖2.
(3.6)
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By adding equalities (3.5), (3.6) and by taking into account the fact that Ax∗ = By∗,
we obtain

‖zn − x∗‖2 + ‖wn − y∗‖2 =‖xn − x∗‖2 + ‖yn − y∗‖2

+γ2
n(‖A∗(Bxn −Byn)‖2 + ‖B∗(Axn −Byn)‖2)

−2γn‖Axn −Byn‖2.

(3.7)
Using Lemma 2.7 for each i ∈ {1, 2, ...,m}, we have

‖tn − x∗‖2 = ‖α(0)
n zn +

∑m
i=1 α

(i)
n Tizn − x∗‖2

≤ α
(0)
n ‖zn − x∗‖2 +

∑m
i=1 α

(i)
n ‖Tizn − x∗‖2

−α(0)
n α

(i)
n ‖Tizn − zn‖2

≤ ‖zn − x∗‖2 − α(0)
n α

(i)
n ‖Tizn − zn‖2

(3.8)

Similarly, we can obtain

‖sn − y∗‖2 = ‖α(0)
n wn +

∑m
i=1 α

(i)
n Siwn − y∗‖2

≤ α
(0)
n ‖wn − y∗‖2 +

∑m
i=1 α

(i)
n ‖Siwn − y∗‖2

−α(0)
n α

(i)
n ‖Siwn − wn‖2

≤ ‖wn − y∗‖2 − α(0)
n α

(i)
n ‖Siwn − wn‖2

(3.9)

From (3.3) and (3.4), we have

‖xn+1 − x∗‖2 =‖βnϑ+ (1− βn)un − x∗‖2

=βn‖ϑ− x∗‖2 + (1− βn)‖un − x∗‖2 − βn(1− βn)‖un − ϑ‖2

≤βn‖ϑ− x∗‖2 + (1− βn)‖tn − x∗‖2 − βn(1− βn)‖un − ϑ‖2

− (1− βn)λ
(1)
n (1− λ(1)

n )‖V (1)
n tn − tn‖2 − ...

− (1− βn)λ
(m)
n (1− λ(m)

n )‖V (m)
n z

(m−1)
n − z(m−1)

n ‖2,

and

‖yn+1 − y∗‖2 =‖βnυ + (1− βn)vn − y∗‖2

=βn‖υ − y∗‖2 + (1− βn)‖vn − y∗‖2 − βn(1− βn)‖vn − υ‖2

≤βn‖υ − y∗‖2 + (1− βn)‖sn − y∗‖2 − βn(1− βn)‖vn − υ‖2

− (1− βn)ξ
(1)
n (1− ξ(1)

n )‖W (1)
n sn − sn‖2 − ...

− (1− βn)ξ
(m)
n (1− ξ(m)

n )‖W (m)
n y

(m−1)
n − y(m−1)

n ‖2.
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By adding the two last inequalities and using (3.7), (3.8) and (3.9), we have

‖xn+1 − x∗‖2 +‖yn+1 − y∗‖2

≤βn(‖ϑ− x∗‖2 + ‖υ − y∗‖2)

+ (1− βn)(‖tn − x∗‖2 + ‖sn − y∗‖2)

≤ βn(‖ϑ− x∗‖2 + ‖υ − y∗‖2)

+ (1− βn)(‖xn − x∗‖2 + ‖yn − y∗‖2)

≤ max{(‖ϑ− x∗‖2 + ‖υ − y∗‖2), (‖xn − x∗‖2 + ‖yn − y∗‖2)}
...

≤ max{(‖ϑ− x∗‖2 + ‖υ − y∗‖2), (‖x0 − x∗‖2 + ‖y0 − y∗‖2)}.

Thus ‖xn+1−x∗‖2 +‖yn+1−y∗‖2 is bounded. Therefore {xn} and {yn} are bounded.
Consequently {zn}, {wn}, {sn} and {tn} are all bounded.

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ (1− βn)(‖tn − x∗‖2 + ‖sn − y∗‖2) (3.10)

+ βn(‖ϑ− x∗‖2 + ‖υ − y∗‖2)

− βn(1− βn)‖un − ϑ‖2

− (1− βn)λ(1)
n (1− λ(1)

n )‖V (1)
n tn − tn‖2

...

− (1− βn)λ(m)
n (1− λ(m)

n )‖V (m)
n z(m−1)

n − z(m−1)
n ‖2

− βn(1− βn)‖vn − υ‖2

− (1− βn)ξ(1)
n (1− ξ(1)

n )‖W (1)
n sn − sn‖2

...

− (1− βn)ξ(m)
n (1− ξ(m)

n )‖W (m)
n ym−1

n − ym−1
n ‖2

≤ (1− βn)(‖xn − x∗‖2 + ‖yn − y∗‖2)

+ βn(‖ϑ− x∗‖2 + ‖υ − y∗‖2)

− (1− βn)γn[2‖Axn −Byn‖2

− γn(‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2)]

− (1− βn)α(0)
n α(i)

n ‖Tizn − zn‖2

− (1− βn)α(0)
n α(i)

n ‖Siwn − wn‖2

+ βn(1− βn)‖un − ϑ‖2
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− (1− βn)λ(1)
n (1− λ(1)

n )‖V (1)
n tn − tn‖2

...

− (1− βn)λ(m)
n (1− λ(m)

n )‖V (m)
n z(m−1)

n − z(m−1)
n ‖2

− βn(1− βn)‖vn − υ‖2

− (1− βn)ξ(1)
n (1− ξ(1)

n )‖W (1)
n sn − sn‖2

...

− (1− βn)ξ(m)
n (1− ξ(m)

n )‖W (m)
n ym−1

n − ym−1
n ‖2.

By our assumption that

γn ∈
(
ε,

2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε
)
,

we have

(γn + ε)(‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2) ≤ 2‖Axn −Byn‖2.

From above inequality and inequality (3.10), we can obtain

(1− βn)γnε(‖B∗ (Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2)

≤ (1− βn)γn[2‖Axn −Byn‖2

−γn(‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2)]

≤ (1− βn)(‖xn − x∗‖2 + ‖yn − y∗‖2)

−‖xn+1 − x∗‖2 − ‖yn+1 − y∗‖2

+βn(‖ϑ− x∗‖2 + ‖υ − y∗‖2).

(3.11)

Set(ϑ∗, υ∗) = PΩ (ϑ, υ). Put Γn = ‖xn − ϑ∗‖2 + ‖yn − υ∗‖2 for all n ∈ N. We finally
analyze the inequality (3.11) by considering the following two cases.
Case A. Suppose that Γn+1 ≤ Γn for all n ≥ n0 ( for n0 large enough). In this case,
since Γn is bounded, the limn→∞ Γn exists. Since limn→∞ βn = 0, from (3.11) and
by our assumption on {γn}, we have

lim
n→∞

(‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2) = 0.

So we obtain that limn→∞ ‖B∗(Axn−Byn)‖ = 0 and limn→∞ ‖A∗(Axn−Byn)‖ = 0.
This implies that limn→∞ ‖Axn −Byn‖ = 0. Since {γn} is bounded, we deduce

lim
n→∞

‖zn − xn‖ = lim
n→∞

γn‖A∗(Axn −Byn)‖ = 0, (3.12)

and

lim
n→∞

‖wn − yn‖ = lim
n→∞

γn‖B∗(Axn −Byn)‖ = 0. (3.13)

By assumption (i) and (3.10), we get

lim
n→∞

‖Siwn − wn‖ = lim
n→∞

‖Tizn − zn‖ = 0, i ∈ {1, 2, ...,m}.
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Hence

‖tn − zn‖ = ‖α(0)
n zn +

m∑
i=1

α(i)
n Tizn − zn‖ ≤

m∑
i=1

α(i)
n ‖Tizn − zn‖ → 0

‖xn − tn‖ ≤ ‖xn − zn‖+ ‖zn − tn‖ → 0. (3.14)

Now we claim that (ωw(xn), ωw(yn)) ⊂ Ω, where

ωw(xn) = {x ∈ H1 : xni
⇀ x for some subsequence {xni

} of {xn}}.

Since the sequences {xn} and {yn} are bounded, we have ωw(xn) and ωw(yn) are
nonempty. Now, take x̂ ∈ ωw(xn) and ŷ ∈ ωw(yn). Thus, there exists a subsequences
{xni
} of {xn} and {yni

} of {yn} which xni
⇀ x̂ and yni

⇀ ŷ . Without loss of
generality, we can assume that xn ⇀ x̂ and yn ⇀ ŷ. From (3.12) and (3.13), we
have zn ⇀ x̂ and wn ⇀ ŷ. On the other hand, demiclosedness of Ti − I in 0, for
each i ∈ {1, 2, ...,m} implies that x̂ ∈

⋂m
i=1 Fix(Ti). By similar argument, we obtain

that ŷ ∈
⋂m
i=1 Fix(Si). Since {θ(1)

ni } is bounded, we can fined a subsequence {θ(1)
nij
}

converging to θ(1) such that µ(1)θ(1) ∈ [a1, b1]. From (3.14) we have tnij
⇀ x̂. Since

{tnij
} is bounded and F1 is inverse strongly monotone, we know that {F1tnij

} is

bounded.

‖(I − µ(1)θ(1)
nij
F1)tnij

− (I − µ(1)θ(1)F1)tnij
‖ ≤ |µ(1)θ(1)

nij
− µ(1)θ(1)|‖F1tnij

‖.

From θ
(1)
nij
→ θ(1), we have

‖(I − µ(1)θ(1)
nij
F1)tnij

− (I − µ(1)θ(1)F1)tnij
‖ → 0.

From (3.10) and (3.2) we have

‖z(1)
n − tn‖ → 0,

hence

‖(I − µ(1)θ(1)
nij
F1)tnij

− tnij
‖ → 0.

Since

‖(I − µ(1)θ(1)F1)tnij
− tnij

‖ ≤‖(I − µ(1)θ
(1)
nij
F1)tnij

− tnij
‖

+‖(I − µ(1)θ(1)F1)tnij
− (I − µ(1)θ

(1)
nij
F1)tnij

‖,

we get

‖(I − µ(1)θ(1)F1)tnij
− tnij

‖ → 0, n→∞.
From Lemmas 2.4 and 2.8, we obtain that

x̂ ∈ Fix(I − µ(1)θ(1)F1) = F−1
1 (0).

By similar argument for i ∈ {2, 3, ...,m}, we get

x̂ ∈
m⋂
i=1

F−1
i (0) and ŷ ∈

m⋂
i=1

G−1
i (0).
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On the other hand, Ax̂−Bŷ ∈ ωw(Axn −Byn) and weakly lower semi continuity of
the norm imply that

‖Ax̂−Bŷ‖ ≤ lim inf
n→∞

‖Axn −Byn‖ = 0.

Thus (x̂, ŷ) ∈ Ω. We also have the uniqueness of the weak cluster point of {xn} are
{yn}, (see [30] for details) which implies that the whole sequences {(xn, yn)} weakly
convergence to a point (x̂, ŷ) ∈ Ω. Next we prove that the sequences {(xn, yn)}
converges strongly to (ϑ∗, υ∗). Now, we show that

lim sup
n→∞

(〈ϑ− ϑ∗, xn − ϑ∗〉+ 〈υ − υ∗, yn − υ∗〉) ≤ 0.

Choose a subsequence {xnk
}, {ynk

} of {xn} and {yn} respectively such that

lim sup
n→∞

(〈ϑ− ϑ∗, xn − ϑ∗〉+ 〈υ − υ∗, yn − υ∗〉)

= lim
n→∞

(〈ϑ− ϑ∗, xnk
− ϑ∗〉+ 〈υ − υ∗, ynk

− υ∗〉).

Since the sequences {xnk
} and {ynk

} are bounded, there exist subsequences {xnkj
},

{ynkj
} of {xnk

} and {ynk
}, respectively such that converges xnkj

⇀ x̂, ynkj
⇀ ŷ, and

(x̂, ŷ) ∈ Ω. Without loss of generality, we can assume that xnk
⇀ x̂, ynk

⇀ ŷ.
It follows from prperties of projection that

lim supn→∞(〈ϑ− ϑ∗, xn − ϑ∗〉+ 〈υ − υ∗, yn − υ∗〉)

= limn→∞(〈ϑ− ϑ∗, xnk
− ϑ∗〉+ 〈υ − υ∗, ynk

− υ∗〉)

= 〈ϑ− ϑ∗, x̂− ϑ∗〉+ 〈υ − υ∗, ŷ − υ∗〉

= 〈(ϑ− ϑ∗, υ − υ∗), (x̂− ϑ∗, ŷ − υ∗)〉

= 〈(ϑ, υ)− (ϑ∗, υ∗), (x̂, ŷ)− (ϑ∗, υ∗)〉 ≤ 0.

From the inequality, ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, we find that

‖xn+1 − ϑ∗‖2 =‖βnϑ+ (1− βn)un − ϑ∗‖2

≤ (1− βn)2‖un − ϑ∗‖+ 2βn〈ϑ− ϑ∗, xn+1 − ϑ∗〉.

Similarly we obtain that

‖yn+1 − v∗‖2 ≤ (1− βn)2‖vn − v∗‖2 + 2βn〈v − v∗, yn+1 − v∗〉.

By adding the two last inequalities, we have that

‖xn+1 − ϑ∗‖2 +‖yn+1 − v∗‖2

≤ (1− βn)2(‖un − ϑ∗‖2 + ‖vn − v∗‖2)

+ 2βn(〈ϑ− ϑ∗, xn+1 − ϑ∗〉+ 〈v − v∗, yn+1 − v∗〉).
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It immediately follows that

Γn+1 ≤ (1− βn)2Γn + 2βnηn

= (1− 2βn)Γn + β2
nΓn + 2βnηn

≤ (1− 2βn)Γn + 2βn{βnN
2 + ηn)

≤ (1− ρn)Γn + ρnδn,

where

ηn = 〈ϑ− ϑ∗, xn+1 − ϑ∗〉+ 〈v − v∗, yn+1 − v∗〉,
N = sup{‖xn − ϑ∗‖2 + ‖yn − v∗‖2 : n ≥ 0},

ρn = 2βn and δn =
βnN

2
+ ηn.

It is easy to see that ρn → 0,
∞∑
n=1

ρn =∞ and lim sup
n→∞

δn ≤ 0.

Hence, all conditions of Lemma 2.5 are satisfied. Therefore, we immediately deduce
that limn→∞ Γn = 0. Consequently limn→∞ ‖xn−ϑ∗‖ = limn→∞ ‖yn− v∗‖ = 0, that
is (xn, yn)→ (ϑ∗, v∗).
Case B. Assume that {Γn} is not a monotone sequence. Then, we can define an
integer sequence {τ(n)} for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Clearly, τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and for all
n ≥ n0, Γτ(n) < Γτ(n)+1. Now, it follows from (3.10) that

Γτ(n)+1 − Γτ(n) ≤ βn(‖ϑ− ϑ∗‖2 + ‖v − v∗‖2)− βnΓτ(n).

Since limn→∞ βn = 0 and {xn} and {yn} are bounded, we derive that

lim
n→∞

(Γτ(n)+1 − Γτ(n)) = 0. (3.15)

Following an argument similar to that in Case A, we have

Γτ(n)+1 ≤ (1− ρτ(n))Γτ(n) + ρτ(n)δτ(n),

where lim supn→∞ δτ(n) ≤ 0. Since Γτ(n) < Γτ(n)+1, we have

ρτ(n)Γτ(n) ≤ ρτ(n)δτ(n).

Since ρτ(n) > 0 we deduce that

Γτ(n) ≤ δτ(n).

From lim supn→∞ δτ(n) ≤ 0, we get limn→∞ Γτ(n) = 0. This together with (3.15),
implies that limn→∞ Γτ(n)+1 = 0. Thus by Lemma 2.6, we have

0 ≤ Γn ≤ max{Γτ(n),Γn} ≤ Γτ(n)+1.

Therefore (xn, yn)→ (ϑ∗, v∗). This completes the proof.
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4. Corollaries

Putting ϑ = υ = 0 in 3.1 we obtain the following result.

Theorem 4.1. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B :
H2 → H3 be bounded linear operators. Let F : H1 → H1 be a κ-inverse strongly
monotone mapping and G : H2 → H2 be a ι-inverse strongly monotone mapping.
Let {Ti}mi=1 : H1 → H1 and {Si}mi=1 : H2 → H2 be two finite families of quasi-
nonexpansive mappings such that Si − I and Ti − I are demiclosed at 0. Suppose

Ω = {(x, y) : x ∈ (∩mi=1(Fix(Ti)) ∩ F−1(0)),

y ∈ (∩mi=1(Fix(Si)) ∩G−1(0)), Ax = By} 6= ∅.
Let {xn} and {yn} be sequences generated by x0 ∈ H1, y0 ∈ H2 and by:

zn = xn − γnA∗(Axn −Byn)

tn = α
(0)
n zn +

∑m
i=1 α

(i)
n Tizn

xn+1 = (1− βn)(I − µθnF1)tn

wn = yn + γnB
∗(Axn −Byn)

sn = α
(0)
n wn +

∑m
i=1 α

(i)
n Siwn

yn+1 = (1− βn)(I − ρδnG1)sn,

(4.1)

for all n ≥ 0, where the step-size γn is chosen in such a way that

γn ∈ (ε,
2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε), n ∈ Π

otherwise γn = γ (γ being any nonnegative value), where the index set

Π = {n : Axn −Byn 6= 0}.

Let the sequences {α(i)
n }, {βn}, {δn} and {θn} satisfy the following conditions:

(i)
∑m
i=0 α

(i)
n = 1 and lim infn α

(0)
n α

(i)
n > 0, for each i ∈ {1, 2, ...,m},

(ii) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑∞
n=0 βn =∞,

(iii) {µθn} ⊂ [a, b] ⊂ (0, 2κ) and {ρδn} ⊂ [c, d] ⊂ (0, 2ι) for each i ∈ {1, 2, ...,m}.
Then, the sequences {(xn, yn)} converge strongly to (x∗, y∗) ∈ Ω, where (x∗, y∗) is
also a point in

{(x, y) : x ∈ V I(∩mi=1(Fix(Ti), F ), y ∈ V I(∩mi=1(Fix(Si), G)), Ax = By}.

Let f be a continuously Fréchet differentiable and convex functional on H and let
∇f be the gradient of f . If ∇f is 1/α-Lipschitz continuous, then ∇f is α-inverse
strongly monotone, ( see [15]).

Theorem 4.2. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 →
H3 be bounded linear operators. Let for i = 1, 2, ...,m, fi be continuously Fréchet
differentiable convex functionals on H1 such that ∇fi be 1

κi
-Lipschitz continuous and

gi be continuously Fréchet differentiable convex functionals on H2 such that ∇gi be
1
ιi

-Lipschitz continuous. Let {Ti}mi=1 : H1 → H1 and {Si}mi=1 : H2 → H2 be two finite
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families of quasi-nonexpansive mappings such that Si − I and Ti − I are demiclosed
at 0. Suppose

Ω = {(x, y) : x ∈
m⋂
i=1

(Fix(Ti) ∩ (∇fi)−1(0)),

y ∈
m⋂
i=1

(Fix(Si) ∩ (∇gi)−1(0)), Ax = By} 6= ∅.

Let {xn} and {yn} be sequences generated by x0, ϑ ∈ H1, y0, υ ∈ H2 and by:

zn = xn − γnA∗(Axn −Byn)

tn = α
(0)
n zn +

∑m
i=1 α

(i)
n Tizn

un = (I − µ(m)θ
(m)
n ∇fm) ◦ ... ◦ (I − µ(2)θ

(2)
n ∇f2) ◦ (I − µ(1)θ

(1)
n ∇f1)tn,

xn+1 = βnϑ+ (1− βn)un

wn = yn + γnB
∗(Axn −Byn)

sn = α
(0)
n wn +

∑m
i=1 α

(i)
n Siwn

vn = (I − ρ(m)δ
(m)
n ∇gm) ◦ ... ◦ (I − ρ(2)δ

(2)
n ∇g2) ◦ (I − ρ(1)δ

(1)
n ∇g1)sn,

yn+1 = βnυ + (1− βn)vn,

for all n ≥ 0, where the step-size γn is chosen in such a way that

γn ∈ (ε,
2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε), n ∈ Π,

otherwise γn = γ (γ being any nonnegative value), where the index set

Π = {n : Axn −Byn 6= 0}.

Let the sequences {α(i)
n }, {βn}, {δ(i)

n } and {θ(i)
n } satisfy the following conditions:

(i)
∑m
i=0 α

(i)
n = 1 and lim infn α

(0)
n α

(i)
n > 0, for each i ∈ {1, 2, ...,m},

(ii) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑∞
n=0 βn =∞,

(iii) {µ(i)θ
(i)
n } ⊂ [ai, bi] ⊂ (0, 2κi) and {ρ(i)δ

(i)
n } ⊂ [ci, di] ⊂ (0, 2ιi) for each

i ∈ {1, 2, ...,m}.
Then, the sequences {(xn, yn)} converge strongly to (x∗, y∗) ∈ Ω.

Let C be a closed convex subset of a real Hilbert space H. Then a mapping
T : C → C is called strictly pseudocontractive if there exists k with 0 ≤ k < 1 such
that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.

Put A = I − T . Then A is (1− k)/2-inverse-strongly-monotone (see [25]).

Theorem 4.3. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 →
H3 be bounded linear operators. Let for i = 1, 2, ...,m, Fi : H1 → H1 be a finite family
of κi-strictly pseudocontractive mappings and Gi : H2 → H2 be a finite family of ιi-
strictly pseudocontractive mappings. Let {Ti}mi=1 : H1 → H1 and {Si}mi=1 : H2 → H2
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be two finite families of quasi-nonexpansive mappings such that Si − I and Ti − I are
demiclosed at 0. Suppose

Ω = {(x, y) : x ∈
m⋂
i=1

(Fix(Ti) ∩ Fix(Fi)),

y ∈
m⋂
i=1

(Fix(Si) ∩ Fix(Gi)), Ax = By} 6= ∅.

Let {xn} and {yn} be sequences generated by x0, ϑ ∈ H1, y0, υ ∈ H2 and by:

zn = xn − γnA∗(Axn −Byn)

tn = α
(0)
n zn +

∑m
i=1 α

(i)
n Tizn

un = ((1− µ(m)θ
(m)
n )I + µ(m)θ

(m)
n Fm) ◦ ... ◦ ((1− µ(1)θ

(1)
n )I + µ(1)θ

(1)
n F1)tn,

xn+1 = βnϑ+ (1− βn)un

wn = yn + γnB
∗(Axn −Byn)

sn = α
(0)
n wn +

∑m
i=1 α

(i)
n Siwn

vn = ((1− ρ(m)δ
(m)
n )I + ρ(m)δ

(m)
n Gm) ◦ ... ◦ ((1− ρ(1)δ

(1)
n )I + ρ(1)δ

(1)
n G1)sn,

yn+1 = βnυ + (1− βn)vn,

for all n ≥ 0, where the step-size γn is chosen in such a way that

γn ∈ (ε,
2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε), n ∈ Π

otherwise γn = γ (γ being any nonnegative value), where the index set

Π = {n : Axn −Byn 6= 0}.

Let the sequences {α(i)
n }, {βn}, {δ(i)

n } and {θ(i)
n } satisfy the following conditions:

(i)
∑m
i=0 α

(i)
n = 1 and lim infn α

(0)
n α

(i)
n > 0, for each i ∈ {1, 2, ...,m},

(ii) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑∞
n=0 βn =∞,

(iii) {µ(i)θ
(i)
n } ⊂ [ai, bi] ⊂ (0, 1 − κi) and {ρ(i)δ

(i)
n } ⊂ [ci, di] ⊂ (0, 1 − ιi) for each

i ∈ {1, 2, ...,m}.
Then, the sequences {(xn, yn)} converge strongly to (x∗, y∗) ∈ Ω.

By setting Ti = Si = I (i = 1, 2, ...,m), in Theorem 4.3, we have the following
result.

Theorem 4.4. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B :
H2 → H3 be bounded linear operators. Let for i = 1, 2, ...,m, Fi : H1 → H1 be a finite
family of κi-inverse strongly monotone mappings and Gi : H2 → H2 be a finite family
of ιi-inverse strongly monotone mappings. Suppose

Ω = {(x, y) : x ∈
m⋂
i=1

F−1
i (0),
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y ∈
m⋂
i=1

G−1
i (0), Ax = By} 6= ∅.

Let {xn} and {yn} be sequences generated by x0, ϑ ∈ H1, y0, υ ∈ H2 and by:

zn = xn − γnA∗(Axn −Byn)

un = (I − µ(m)θ
(m)
n Fm) ◦ ... ◦ (I − µ(2)θ

(2)
n F2) ◦ (I − µ(1)θ

(1)
n F1)zn,

xn+1 = βnϑ+ (1− βn)un

wn = yn + γnB
∗(Axn −Byn)

vn = (I − ρ(m)δ
(m)
n Gm) ◦ ... ◦ (I − ρ(2)δ

(2)
n G2) ◦ (I − ρ(1)δ

(1)
n G1)wn,

yn+1 = βnυ + (1− βn)vn,

for all n ≥ 0, where the step-size γn is chosen in such a way that

γn ∈ (ε,
2‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2 + ‖A∗(Axn −Byn)‖2
− ε), n ∈ Π

otherwise γn = γ (γ being any nonnegative value), where the index set

Π = {n : Axn −Byn 6= 0}.

Let the sequences {βn}, {δ(i)
n } and {θ(i)

n } satisfy the following conditions:

(i) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑∞
n=0 βn =∞,

(ii) {µ(i)θ
(i)
n } ⊂ [ai, bi] ⊂ (0, 2κi) and {ρ(i)δ

(i)
n } ⊂ [ci, di] ⊂ (0, 2ιi) for each

i ∈ {1, 2, ...,m}.
Then, the sequences {(xn, yn)} converge strongly to (x∗, y∗) ∈ Ω.

5. Numerical example

In this section, we will present a numerical example in the two-dimensional space
of real numbers to show that our algorithm is efficient.
Example 5.1. Let H1 = H2 = H3 = R2 with the Euclidean norm. We take m = 2
in Theorem 4.1. Assume that

Ti(x1, x2) =

(
sin(x1)

i
,

sin(x2)

i

)
,

Si(x1, x2) =

(
arctan(x1)

i
,

arctan(x2)

i

)
,

Fi(x) =
ix

2
and Gi(x) =

ix

3
.

Also we define

A =

[
1 0
−1 1

]
, B =

[
0 1
0 0

]
,

hence

A∗ =

[
1 −1
0 1

]
, B∗ =

[
0 0
1 0

]
,
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Put

γn =
1

2
, βn =

1

n ln(4n)
, µ(i) = (i+ 1),

θ(i)
n =

1

i(1 + i)
, ρ(i) =

i+ 1

2
, δ(i)

n =
2

i(1 + i)

and α0
n = αin = 1

3 . It can be observed that all the assumptions of Theorem 4.1 are
satisfied and Ω = {(0, 0)}.
Taking (x0,1, x0,2) = (y0,1, y0,2) = (0.5, 0.5) and ϑ = υ = (0.01, 0.01), we obtain the
following algorithm:[
x(n+1),1

x(n+1),2

]
=

[
1

100n ln 4n + (1− 1
n ln 4n )( 1

24xn,1 + 1
8 sin( 1

2xn,1))
1

100n ln 4n + (1− 1
n ln 4n )( 1

24xn,2 + 1
24yn,2 + 1

8 sin( 1
2xn,2 + 1

2yn,2))

]
,[

y(n+1),1

y(n+1),2

]
=

[
1

100n ln 4n + (1− 1
n ln 4n )( 4

27yn,1 + 2
9 arctan(yn,1))

1
100n ln 4n + (1− 1

n ln 4n )( 2
27xn,2 + 2

27yn,2 + 2
9 arctan( 1

2xn,2 + 1
2yn,2))

]
.

So we have the numerical results in Tables 1 and 2 and Figures 1 and 2.

Table 1. Numerical results of Example 5.1

n xn ‖xn‖2
1 (0.50000000, 0.50000000) 0.70710678
2 (0.02163620, 0.03552313) 0.04159348
3 (0.00411632, 0.00968892) 0.01052708
4 (0.00171269, 0.00359991) 0.00398656
5 (0.00106400, 0.00175051) 0.00204851
...

...
...

98 (1.9329e− 5, 2.2440e− 5) 2.9617e− 05
99 (1.9099e− 05, 2.2172e− 05) 2.9263e− 05
100 (1.8873e− 05, 2.1910e− 05) 2.8918e− 05

Table 2. Numerical results of Example 5.1

n yn ‖yn‖2
1 (0.50000000, 0.50000000) 0.70710678
2 (0.05656474, 0.05656474) 0.07999463
3 (0.01830684, 0.01535186) 0.02389184
4 (0.00721181, 0.00535644) 0.00898341
5 (0.00333185, 0.00241107) 0.00411251
...

...
...

98 (2.7638e− 05, 2.6441e− 05) 3.8249e− 05
99 (2.7308e− 05, 2.6125e− 05) 3.7792e− 05
100 (2.6984e− 05, 2.5816e− 05) 3.7345e− 05
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Figure 1. Plotting of
‖xn‖2 in Table 1
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Figure 2. Plotting of
‖yn‖2 in Table 2
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