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Abstract. In [6], Moudafi introduced the so-called viscosity iterative method to approximate a

fixed point of a nonexpansive mapping and proved the strong convergence of the generated sequence.

Since then, several authors extended the convergence result in different settings and for mappings
satisfying general metric conditions. Anyway, to the best of our knowledge and beside numerical

simulations, little is known about the speed of convergence of the method itself. In this paper,

we propose a step in this direction by giving an estimate for the rate of convergence of viscosity
sequences generated by quasi-nonexpansive mappings in the setting of q-uniformly smooth Banach

spaces.
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1. Introduction

Iterative methods for approximating fixed points have a long story and their study
had been one of the most prolific field in fixed point theory in the last decades. For
a comprehensive introduction on the topic, we refer to books [2] and [4]. Despite
the intensive literature on the subject, very little had been written about the rate of
convergence of the generated sequences. One of the first results in this direction had
been given by Baillon ad Bruck in [1] (see also [3] for a simpler proof) and it can be
expressed as follows.
Theorem 1.1. Let X be a Banach space with a closed, convex and nonempty set
C, let λ ∈ (0, 1) be a fixed parameter and let T : C → C be a nonexpansive map
with nonempty fixed point set Fix(T ). Fix x0 ∈ C and let {xn} be defined by the
Krasnoselskii iteration

xn+1 = λxn + (1− λ)Txn. (1.1)

Then the rate of asymptotic stability is given by

‖xn − Txn‖ ≤
diam(C)√
πλ(1− λ)n

.

211



212 VITTORIO COLAO

In [1], the authors conjectured that a similar results holds for the Krasnoselskii-
Mann (or segmenting Mann) iteration, generated by the inductive step

xn+1 = αnxn + (1− αn)Txn,

where {αn} ⊂ (0, 1) is a real sequence. The conjecture was then positively solved in
2014 by Cominetti, Soto and Vaisman (see [5]). Their proof exploits some properties
of special functions together with an identity for Catalan numbers.

Focusing on other classical results, Halpern and viscosity iterations had been widely
studied in literature for several classes of mappings and in different settings and
their importance resides on the strong convergence to a fixed point of the produced
sequence.

The aim of this article is to provide a convergence rate of the iterative viscosity ap-
proximation for quasi-nonexpansive mappings in a q-uniformly smooth Banach space
X. Our result shows that the convergence rate depends not only on the smoothness
of X (i.e., on q), but also on the coefficient of the contraction used in the viscosity
approximation.

2. Preliminaries

2.1. Uniformly smooth spaces. We briefly recall some facts and notations regard-
ing Banach spaces and, in particular, q-uniformly smooth spaces which will represent
the natural setting for our results .

Let (X, ‖ · ‖) be a Banach space and let J : X → 2X
∗
be the normalized duality

mapping given by

J(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖2 and ‖f‖∗ = ‖x‖},
where 〈·, ·〉 denotes the usual duality pairing. In the sequel, we shall denote single-
valued duality mappings by j. Given q > 1, we shall use Jq to denote the generalized
duality mapping given by

Jq(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖q and ‖f‖∗ = ‖x‖q−1}.
We recall the following relation

Jq(x) := ‖x‖q−2J(x).

The modulus of smoothness ρ : [0,+∞)→ [0,+∞) is defined by

ρ(t) := sup

{
‖x+ y‖ − ‖x− y‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

X is said to be uniformly smooth if lim ρ(t)/t = 0 and q-uniformly smooth (with
q > 1) if there exists a constant c with the property that ρ(t) ≤ ctq.

We cite Hilbert spaces, Sobolev spaces Wm,q(Ω), as well as Lebesgue spaces Lq(Ω)
and lq, with q ∈ (1,∞), as examples of q-uniformly smooth Banach spaces. Also
every superreflexive Banach space admits an equivalent renorming for which it is q-
uniformly smooth (see [7]). For a proof of previous facts and for more examples, we
refer to [9].

The following proposition summarizes some useful properties of q-uniformly smooth
spaces, we refer to [13] and the book [4] for a proof and discussions.
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Proposition 2.1. Let q > 1 and let (X, ‖ · ‖) be q-uniformly smooth. Then

(1) X is a reflexive Banach space,
(2) The generalized duality mapping is single-valued and norm to norm uniformly

continuous. Moreover jq(λx) = λq−1jq(x) for any λ > 0.
(3) There exists a constant Kq > 0 such that

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+Kq‖y‖q (2.1)

(4) If q > 2 then X is 2−uniformly smooth.

2.2. Nonexpansive maps and iterations. Let C be a nonempty, convex and closed
subset of the Banach space X. Recall that a self-mapping T : C → C is said to be
non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C
and quasi non-expansive, whenever the above inequality holds when y = Ty is a fixed
point of T. We shall use Fix(T ) to denote the fixed point set of T. Throughout the
paper we assume that Fix(T ) is not empty.

The viscosity approximation method of selecting a point in Fix(T ) was first intro-
duced by Moudafi [6], who proved the following.
Theorem 2.2. In a Hilbert space H, let C ⊂ H be closed, convex and nonempty
and let T, f : C → C be a nonexpansive mapping with a fixed point and a contraction
respectively. Define {xn} by x1 ∈ C and

xn+1 = αnf(xn) + (1− αn)Txn.

Suppose that {αn} satisfies the conditions

(M1) limn→∞ αn = 0;

(M2)
∑∞
n=1 αn =∞;

(M3) limn→∞ |1/αn − 1/αn−1| = 0.

Then {xn} converges strongly to the unique solution p̃ ∈ Fix(T ) of the variational
inequality

〈(I − f)p̃, p− p̃〉 ≥ 0 ∀p ∈ Fix(T ). (2.2)

In other words, p̃ is the unique fixed point of the map PFix(T )f.

Later, Xu improved the above result by generalizing it to the setting of uniformly
smooth Banach spaces:
Theorem 2.3. [16] Let X be a uniformly smooth Banach space and C ⊂ X be closed,
convex and nonempty, let T, f and {xn} as in the previous theorem and suppose that
{αn} satisfies conditions (M1),(M2) and the following

(M3∗) either
∑∞
n=1 |αn+1 − αn| < +∞ or limn→∞ αn+1/αn = 1.

Then {xn} converges strongly to the unique solution p̃ ∈ Fix(T ) of the variational
inequality

〈(I − f)p̃, jq(p− p̃)〉 ≥ 0 ∀p ∈ Fix(T ).

Remark 2.4. We stress that conditions (M1),(M2) and (M3∗) allow the natural
choice αn = 1

n+1 , which is excluded by (M1)-(M3). Further remarks on the necessity
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of conditions (M1)-(M3) and (M3∗) and their role in optimization can be found in
[14], [15],[10] and [11]. See [12] also for a recent on finding zeros of nonexpansive,
accretive mappings in Banach spaces.

The following lemma is used in the original proof of Theorem 2.3.
Lemma 2.5. [14] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and δn is a sequence in R such that

(1) limn→∞ γn = 0;

(2)
∑∞
n=1 γn =∞;

(3) lim supn→∞ δn/γn ≤ 0 or
∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

For the convergence rate we also need a lemma due to Chung which can be found
in [8].
Lemma 2.6. (Chung, cf. [8, Lemma 4, p. 45]) Assume a nonnegative sequence (un)
satisfies the condition

un+1 ≤
(

1− c

n

)
un +

d

np+1
, n > 0, (2.3)

where d > 0, p > 0, c > 0 are constants. Then

un ≤ d(c− p)−1n−p + o (n−p) , if c > p,
un = O (n−c log n) , if c = p,
un = O (n−c) , if c < p.

3. Main results

Theorem 3.1. Let q ∈ (1, 2] and κ ∈ [0, 1) be given. Let (X, ‖ · ‖) be a q-uniformly
smooth Banach space, C a nonempty, closed and convex subset of X, T : C → C a
quasi-nonexpansive map with Fix(T ) 6= ∅, and f : C → C a κ-contraction. Suppose
that there exists p̃ ∈ Fix(T ) such that

〈(I − f)p̃, jq(y − p̃)〉 ≥ 0 (3.1)

for y ∈ T (C). Then the viscosity iteration with initial guess x1 ∈ C and

xn+1 = αnf(xn) + (1− αn)Txn, n = 1, 2, · · · , (3.2)

converges strongly to p̃, which also solves (2.2), whenever {αn} ⊂ (0, 1) satisfies the
conditions (M1) and (M2) of Theorem 2.2. Moreover, if αn = 1

n for n > 0, we have
the convergence rate:

‖xn − p̃‖ ≤


O

(
1

n
1− 1

q

)
if κ < 1

q ,

O

(
(logn)1/q

n
1− 1

q

)
if κ = 1

q ,

O
(

1
n1−κ

)
if κ > 1

q .

(3.3)
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Proof. By following a standard argument, it holds that

‖xn − p̃‖ ≤ max{‖x1 − p‖, (1− κ)−1‖f(p̃)− p̃‖}.

Consequently, the sequences {xn}, {Txn}, {f(xn)} are all bounded.
Applying (2.1) to (3.2) arrives at

‖xn+1 − p̃‖q = ‖(1− αn)(Txn − p̃) + αn(f(xn)− p̃)‖q

≤ ‖(1− αn)(Txn − p̃)‖q + qαn〈f(xn)− p̃, jq ((1− αn)(Txn − p̃))〉
+Kq‖αn(f(xn)− p̃)‖q

≤ (1− αn)q‖Txn − p̃‖q − qαn(1− αn)q−1〈(I − f)p̃, jq(Txn − p̃)〉
+ qαn(1− αn)q−1‖f(xn)− f(p̃)‖‖Txn − p̃‖q−1 + αqnKq‖f(xn)− p̃‖q

≤ (1− αn)q‖xn − p̃‖q + qκαn(1− αn)q−1‖xn − p̃‖q

+ αqnKq sup
k≥1
‖f(xk)− p̃‖q.

Setting un := ‖xn − p̃‖q and K̃q := Kq supk≥1 ‖f(xk)− p̃‖q, we get

un+1 ≤ (1− αn)q−1(1− αn(1− κq))un + K̃qα
q
n. (3.4)

Since (1− αn)q−1 ≤ 1− (q − 1)αn and since

(1− (q − 1)αn)(1− αn(1− κq)) = 1− q(1− κ)αn + (q − 1)(1− κq)α2
n,

(3.4) is reduced to

un+1 ≤ (1− q(1− κ)αn)un + (q − 1)(1− κq)α2
nun + K̃qα

q
n. (3.5)

An easy application of Lemma 2.5 to (3.5) immediately implies that un → 0, namely,
xn → p̃ in norm.
Now if κ < 1

q (i.e., κq < 1), then we infer from (3.5) that (noting α2
n ≤ αqn)

un+1 ≤ (1− q(1− κ)αn)un + dqα
q
n. (3.6)

where dq := (q− 1)(1− κq) supn≥1 un + K̃q. In particular, if αn = 1
n , we may rewrite

(3.6) as

un+1 ≤
(

1− q(1− κ)

n

)
un +

dq
nq
. (3.7)

Since κq < 1, which is equivalent to q(1−κ) > q− 1, we can apply Lemma 2.6 to the
case where c := q(1− κ), p := q − 1 and d := dp to get

un ≤ dq(1− κq)n−(q−1) + o(n−(q−1)).

This proves the first case of (3.3).
Next assume κq ≥ 1; then (3.5) is reduced to

un+1 ≤ (1− q(1− κ)αn)un + K̃qα
q
n. (3.8)

In particular, if αn = 1
n , we obtain from (3.8)

un+1 ≤
(

1− q(1− κ)

n

)
un +

K̃q

nq
. (3.9)
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Further, if κq = 1, then q(1− κ) = q − 1. Applying Lemma 2.2 yields

un = O(log n/nq−1).

This proves the second case of (3.3).
Finally, if κq > 1, then q(1− κ) < q − 1, and we can again apply Lemma 2.2 to get

un = O(1/nq(1−κ)).

This proves the third case of (3.3).

Corollary 3.2. Let X,C, {αn} and T be as in the previous theorem. Fix u ∈ C and
let {zn} be the Halpern iteration defined by z1 ∈ C and

zn+1 = αnu+ (1− αn)Txn.

Suppose that the following inequality is satisfied for some p̃ ∈ Fix(T ),

〈p̃− u, jq(y − p̃)〉 ≥ 0 ∀y ∈ T (C).

Then {zn} converges strongly to p̃. Moreover, if αn = 1
n , then we have the convergence

rate:

‖zn − p̃‖ ≤
[(q − 1) supn≥1 ‖zn − p̃‖q +Kq‖u− p̃‖q]1/q

n(q−1)/q
+ o

(
1

n(q−1)/q

)
(3.10)

for n ≥ 1.

Proof. We take the contraction f in Theorem 3.1 to be f(x) ≡ u and thus κ = 0. It
turns out that (3.7) is reduced to (recalling αn = 1/n)

un+1 ≤
(

1− q

n

)
un +

dq
nq
, (3.11)

where

dq = (q − 1) sup
n≥1
‖zn − p̃‖q +Kq‖u− p̃‖q.

Applying Lemma 2.2 (the case of c > p with c = q and p = q−1) to (3.11) immediately
yields

un ≤
dp
nq−1

+ o

(
1

nq−1

)
.

This is equivalent to (3.10).

Remark 3.3. We remark that condition 3.1 can be lowered by assuming existence
of p̃ ∈ Fix(T ) such that

〈(I − f)p̃, jq(xn − p̃)〉 ≥ 0, n ∈ N.
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