
Fixed Point Theory, 23(2022), No. 1, 199-210

DOI: 10.24193/fpt-ro.2022.1.12

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

∆-CONVERGENCE OF CONVEX COMBINATIONS OF TWO

MAPS ON p-UNIFORMLY CONVEX METRIC SPACES

BYOUNG JIN CHOI

Department of Mathematics Education, Jeju National University,

Jeju 63243, Korea
E-mail: choibj@jejunu.ac.kr

Abstract. In this paper, we first study some properties of the convex combination metric and

the convex combination of two maps on a p-uniformly convex metric space. Also, we study the

∆-convergence of an iterative sequence for a convex combination of two maps on p-uniformly convex
metric spaces.

Key Words and Phrases: Convex feasibility problem, p-uniformly convex metric spaces, convex

combination of two maps, weighted average projection method, ∆-convergence, fixed point.
2020 Mathematics Subject Classification: 41A65, 47H09, 47J25, 47N10, 47H10.

1. Introduction

The problem to finding a point in the intersection of two closed convex sets has
been studied by many mathematicians, e.g, [29, 8, 2, 6, 15, 7, 18, 5, 1, 10, 12, 13] and
references cited therein. Actually, it is called the convex feasibility problem which
arises in many mathematical objects, e.g, optimization theory and image reconstruc-
tion problems etc., (see [6]). One of famous methods to solving convex feasibility
problems in Hilbert spaces is the averaged projection method. More precisely, for two
closed convex subsets A,B of a Hilbert space H with A ∩ B 6= ∅, we can define the
iterative sequence {xn} by

xn :=
1

2
(PAxn−1 + PBxn−1) , x0 ∈ H, (1.1)

where PA and PB are corresponding metric projections for A and B, respectively,
which is called the averaged projection sequence. In [2] the author proved that the
sequence {xn} in (1.1) weakly converges (in Hilbert space sense) to some point in
A ∩ B. In [7], the authors proved that there exists an averaged projection sequence
which weakly converges, but does not converge in the norm-sense.

The convex feasibility problem has been extended to general geodesic metric spaces
and general maps by many mathematicians. For example, CAT(κ)-space with κ ≥ 0
(see [3, 10]) and p-uniformly convex metric space (see [13, 11]). In metric spaces, we
can not define the averaged projection sequence since there are no linear structures.
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But, fortunately, in a geodesic metric space X, using the notion of geodesic, we can
define the averaged projection sequence as follows:

xn := PAxn−1#1/2PBxn−1, (1.2)

where x0 is a given starting point and x#1/2y is the point γ(1/2) on a geodesic
γ : [0, 1]→ X joining γ(0) = x and γ(1) = y.

The main purpose of this paper is to prove ∆-convergence of an iterative sequence
for convex combinations of two maps T and S on a p-uniformly convex metric space
X as follows:

Kx := (T#λS)x := Tx#λSx

for λ ∈ (0, 1). Indeed, the averaged projection sequence (1.2) can be rewritten as

xn = Knx0, (1.3)

where K = PA#1/2PB . Thus the convergence of (1.2) can be proved by the con-
vergence of the sequence {xn} in (1.3). For the proof of the ∆-convergence, we first
study some properties of the convex combination metric and convex combinations of
two maps on a p-uniformly convex metric space. Using the properties we also prove
that the sequence given as in (1.3) is asymptotically regular.

This paper is organized as follows. In Section 2, we recall the basic notion of a
p-uniformly convex metric space and some properties, and we study several proper-
ties of the convex combination of two maps on a p-uniformly convex metric space for
our study. In Section 3, we first recall the notion of ∆-convergence and their prop-
erties, and then we study the ∆-convergence of an iterative sequence for a convex
combination of two maps on p-uniformly convex metric spaces.

2. The convex combination metric on p-uniformly convex metric spaces

Let (X, d) be a metric space. A metric space X is called a geodesic metric space
if for any two point x, y ∈ X, there exists a geodesic γ joining them. For 2 ≤ p <∞,
a geodesic metric space (X, d) is said to be a p-uniformly convex metric space with
parameter cX > 0 [21, 23, 24] if there exists a constant cX := c(p) ∈ (0, 1] such that
for any z ∈ X and geodesic γ : [0, 1]→ X,

d(z, γ(t))p ≤ (1−t)d(z, γ(0))p+td(z, γ(1))p−cXt(1−t)d(γ(0), γ(1))p, t ∈ [0, 1]. (2.1)

Now, we give important examples of p-uniformly convex metric spaces.

Example 2.1. A Banach space B with a norm ‖ · ‖B is called uniformly convex if
δB(ε) > 0 for all ε ∈ (0, 2], where

δB(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
B

∣∣∣ ‖x‖B = ‖y‖B = 1, ‖x− y‖B ≥ ε, x, y ∈ B
}

which is called the modulus of convexity of B. A Banach space B is called p-uniformly
convex with p > 1 if there exists a constant cB > 0 such that δB(ε) ≥ cB · εp for all
0 < ε ≤ 2. In particular, Lp-spaces (p ≥ 2) are p-uniformly convex Banach spaces,
in fact, δLp(ε) ≥ εp/(p2p) (see [14, 25]). If B is a p-uniformly convex Banach space
for p ≥ 2, then B is a p-uniformly convex metric space with parameter 4c/2p, where
c = c(cB , p) > 0 (see [21] for more details).
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Example 2.2. Let (X, d) be a Hadamard space (or complete CAT(0)-space). Then
(X, d) is a 2-uniformly convex metric space with parameter cX = 1. Indeed, for any
x, y, z ∈ X and any geodesic γ joining x and y,

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − t(1− t)d(x, y)2,

holds (see [28]). If (X, d) is a complete p-uniformly convex metric space with cX = 1,
using Proposition 2.5 in [21], then we have p = 2. Thus, (X, d) becomes a Hadamard
space.

For a non-empty subset F ⊆ X, the diameter of F is defined by

diam(F ) := sup
x,y∈F

{d(x, y)}.

Example 2.3. For κ > 0, let (M,d) be a CAT(κ) space with diam(M) < π
2
√
κ

.

Then for any x, y, z ∈M and any geodesic γ joining x and y, there exists a constant
cM ∈ (0, 1) such that

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − cM t(1− t)d(x, y)2, t ∈ [0, 1] (2.2)

holds. (see [21, 24]). Therefore, any CAT(κ) space M with diam(M) < π
2
√
κ

is a

2-uniformly convex metric space with parameter cM ∈ (0, 1).

Let (X, d) be a p-uniformly convex metric space with parameter cX ∈ (0, 1] and
λ ∈ (0, 1) be given. We now define the metric function dλ : X2 ×X2 → R+ by

dλ ((a, b), (x, y)) := p
√

(1− λ)d(a, x)p + λd(b, y)p, (a, b), (x, y) ∈ X ×X.
Note that (X2, dλ) is also a p-uniformly convex metric space with same parameter
cX2 ∈ (0, 1). Since it is well known that (X2, dλ) is a geodesic metric space if (X, d)
is a geodesic metric space (see [9, 27]), we only check that (2.1) for dλ. But it is
immediate using the definition of dλ and (2.1).

Remark 2.4. If X is a complete CAT(κ) space with κ ≥ 0 (we assume that X has
a diameter π/2

√
κ if κ > 0, and ∞ if κ = 0), then by using Exercise 1.9. (1c) in [9],

(X2, dλ) is also CAT(κ) space.

A map T : C ⊆ X → X is said to satisfy property (P1) ([1]) if Fix(T ) 6= ∅ and
there exists β > 0 such that for x ∈ C and z ∈ Fix(T )

d(Tx, z)p ≤ d(x, z)p − βd(Tx, x)p.

Example 2.5. Let (X, d) be a complete p-uniformly convex metric space. Every
firmly nonexpansive map T : X → X satisfies (P1) with β = cX/2 (see [1]).

Proposition 2.6. Let (X, d) be a p-uniformly convex metric space with parameter
cX ∈ (0, 1] and λ ∈ (0, 1) be given. Let T, S : X → X be two maps which satisfy the
property (P1). Define a map V : X2 → X2 by for any (x, y) ∈ X ×X

V (x, y) := (Tx, Sy).

Then V also satisfies the property (P1) with respect to dλ.

Proof. Using the definition of dλ and the property (P1) of T and S, it is immediate.
�
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Now, we recall the notion of the metric projection operator on a p-uniformly convex
metric space X. Let F be a closed convex subset of X. Then for any x ∈ X, there
exists a unique point PFx ∈ F such that

d(x, F ) := inf
y∈F

d(x, y) = d(x, PFx)

hold. (see [21]). We call PF : X → F the metric projection operator onto F .

Proposition 2.7. Let λ ∈ (0, 1) be given and (X, d) be a p-uniformly convex metric
space with parameter cX ≥ λp−1 + (1 − λ)p−1. Consider the closed convex subset of
X ×X

∆X := {(x, x) | x ∈ X} .
and define the map P : X2 → X2 by for any (x, y) ∈ X ×X

P (x, y) := (x#λy, x#λy) ,

where x#λy is the point γ(λ) of geodesic γ connecting x and y. Then P is the metric
projection operator to ∆X ⊆ X ×X, i.e. P = P∆X

.

Proof. The proof is a simple modification of the proof in [27]. To prove the result, we
only show that for any x, y, u ∈ X

dλ ((x, y), (x#λy, x#λy)) ≤ dλ ((x, y), (u, u)) .

Indeed, by (2.1), we have

cX(1− λ)λd(x, y)p ≤ (1− λ)d(u, x)p + λd(u, y)p. (2.3)

We also obtain that by definition of dλ,

dλ ((x, y), (x#λy, x#λy))
p

= (1− λ)d(x, x#λy)p + λd(y, x#λy)p

= (1− λ)λpd(x, y)p + λ(1− λ)pd(y, x)p

= λ(1− λ)(λp−1 + (1− λ)p−1)d(x, y)p.

Thus by (2.3) and the assumption of cX , we have

dλ ((x, y), (x#λy, x#λy))
p ≤ (1− λ)d(u, x)p + λd(u, y)p

= dλ ((x, y), (u, u))
p
.

The proof is complete. �

Proposition 2.8. Let (X, d) be a p-uniformly convex metric space with parameter
cX ∈ (0, 1) and λ ∈ (0, 1) be given. Let T, S : X → X be two maps. Define the map
K : X → X by

Kx = (T#λS)x := Tx#λSx,

V : X2 → X2 and P : X2 → X2 are given by in Proposition 2.6 and Proposition 2.7,
respectively. Then we have the following properties:

(i) Fix(P ◦ V ) = {(z, z) | z ∈ Fix(K)};
(ii) for any x, y ∈ X, dλ((x, x), (y, y)) = d(x, y);
(iii) for any x ∈ X and any n ∈ N, (P ◦ V )n = (Knx,Knx).

Proof. It is immediate, using the definitions of dλ, K, V and P . �
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Proposition 2.9. Let λ ∈ (0, 1) be given and (X, d) be a p-uniformly convex metric
space with parameter cX = λp−1 + (1 − λ)p−1 < 1. Let ε ≥ 0 be given and A,B be
two subsets of X and z ∈ X. Suppose that a ∈ A and b ∈ B are elements in X such
that for any x ∈ X, y ∈ A and w ∈ B

dλ((z, z), (a, b))p ≤ dλ((x, x), (y, w))p +
εp

2p
λ(1− λ)cX . (2.4)

Then for any y ∈ A and w ∈ B, we have

d(a, b) ≤ d(y, w) + ε.

Proof. We take x := a#λb, y := a and w := b in the assumption (2.4), then we have

(1− λ)d(z, a)p + λd(z, b)p ≤ λ(1− λ)cXd(a, b)p +
εp

2p
λ(1− λ)cX ,

where cX = λp−1 + (1− λ)p−1. By using (2.1), we obtain that

d(z, a#λb)
p ≤ εp

2p
λ(1− λ)cX . (2.5)

On the other hand, we have

dλ((z, z), (a, b)) ≤ dλ((y#λw, y#λw), (y, w)) +
ε

2
p
√
λ(1− λ)cX .

Thus we obtain that

dλ((a#λb, a#λb), (a, b)) ≤ dλ((a#λb, a#λb), (z, z)) + dλ((z, z)(a, b))

≤ ε

2
p
√
λ(1− λ)cX + dλ((y#λw, y#λw), (y, w)) +

ε

2
p
√
λ(1− λ)cX

=
ε

2
p
√
λ(1− λ)cX + p

√
λ(1− λ)cXd(y, w) +

ε

2
p
√
λ(1− λ)cX .

Therefore, we have

p
√
λ(1− λ)cXd(a, b) ≤ p

√
λ(1− λ)cXd(y, w) + ε p

√
λ(1− λ)cX .

The proof is complete. �

Let A and B be two subsets of X. Let SA,B be the set of all pairs (x, y) such that

d(x, y) = d(A,B) := inf
(a,b)∈A×B

d(a, b).

Proposition 2.10. Let λ ∈ (0, 1) be given and (X, d) be a p-uniformly convex metric
space with parameter cX ≥ λp−1 + (1 − λ)p−1. Let A and B be two subsets of X.
Then

S∆X ,A×B ⊇ {((a#λb, a#λb), (a, b)) | (a, b) ∈ SA,B} . (2.6)

In particular, if cX = λp−1 + (1− λ)p−1, then we have

S∆X ,A×B = {((a#λb, a#λb), (a, b)) | (a, b) ∈ SA,B} . (2.7)

Proof. We first prove (2.6). For (a, b) ∈ SA,B , put z := a#λb. Then we only show
that

dλ((z, z), (a, b)) ≤ dλ((x, x), (y, w)), x ∈ X, y ∈ A,w ∈ B
i.e.,

λ(1− λ)(λp−1 + (1− λ)p−1)d(a, b)p ≤ (1− λ)d(x, y)p + λd(x,w)p.
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By using (2.1) for γ(t) := y#λw, we have

cXλ(1− λ)d(y, w)p ≤ (1− λ)d(x, y)p + λd(x,w)p,

where cX ≥ λp−1 +(1−λ)p−1. Since (a, b) ∈ SA,B , we have for any y ∈ A and w ∈ B,
d(a, b) ≤ d(y, w). It gives the proof of (2.6). By Proposition 2.9 with ε = 0 in (2.5),
the converse inclusion of (2.7) is immediate. �

3. Convergence results for convex combinations of two maps

Now, we recall the notion of a weak type convergence in general geodesic metric
spaces for our study. A notion of weak type convergence of (geodesic) metric spaces
was first introduced by T. Lim in [22]. It is called the ∆-convergence. Many authors
studied the ∆-convergence of several sequences of maps in geodesic metric spaces,
e.g., CAT(κ) spaces with κ ≥ 0 and p-unifomly convex metric spaces, etc, see [20,
16, 5, 17, 4, 3, 12, 13, 11, 10]. In Hilbert spaces, it is well known the ∆-convergence
coincides with the weak convergence of the Hilbert space sense.

Let (X, d) be a geodesic metric space and {xn} ⊆ X be a bounded sequence. For
a given point x ∈ X, put

r(x, {xn}) := lim sup
n→∞

d(x, xn).

The asymptotic center A({xn}) of {xn} is defined by

A({xn}) :=

{
x ∈ X | r(x, {xn}) = inf

x∈X
r(x, {xn})

}
.

It is clear that z ∈ A({xn}) if and only if lim sup
n→∞

d(z, xn) ≤ lim sup
n→∞

d(x, xn) for any

x ∈ X.
We now recall the notion of ∆-convergence in X. A sequence {xn} ⊆ X is said

to ∆-converge (or weakly converge) to x ∈ X if for any subsequence {xnk
} of {xn},

the point x is the unique asymptotic center of {xnk
}, and in this case, x is called the

∆-limit of {xn}. A point x ∈ X is called a ∆-cluster point of {xn} ⊆ X if there exists
a subsequence {xnk

} of {xn} such that {xnk
} ∆-converges to x.

The following proposition is one of the important results to obtain the ∆-
convergence results in p-uniformly convex metric spaces.

Proposition 3.1 ([1]). Let (X, d) be a complete p-uniformly convex metric space.
Let {xn} be a bounded sequence in X. Then we have the following properties:

(i) A({xn}) has only one point.
(ii) {xn} has a ∆-convergent subsequence i.e., {xn} has a ∆-cluster point x ∈ X.

We recall the notion of Fejér monotone sequences in (geodesic) metric spaces. Let
F be a non-empty subset of a metric space (X, d) and let {xn} be a sequence in X.
A sequence {xn} is said to be Fejér monotone with respect to F if

d(xn+1, z) ≤ d(xn, z), z ∈ F n ∈ N.

It is clear that if {xn} is Fejér monotone with respect to (w.r.t) F , then {xn} is a
bounded sequence.



∆-CONVERGENCE OF CONVEX COMBINATIONS OF TWO MAPS 205

Lemma 3.2. Let (X, d) be a complete p-uniformly convex metric space with parameter
cX ∈ (0, 1] and let F be a nonempty subset of X. Suppose that a sequence {xn} ⊆ X
is Fejér monotone w.r.t F , and any ∆-cluster point of {xn} belongs to F , then {xn}
∆-converges to a point in F .

Proof. The proof is exactly same as the proof of [17, Lemma 3.2], using Proposition
3.1. �

Now, we recall the notion of ∆-demiclosedness of functions. Let (X, d) be a ge-
odesic metric space. A function T : X → X is said to be ∆-demiclosed if for
any ∆-convergent sequence {xn}, its ∆-limit belongs to Fix(T ) whenever limn→∞
d(T (xn), xn) = 0. It is clear that the identity function I on X is ∆-demiclosed.

Example 3.3.
(i) Let (X, d) be a complete p-uniformly convex metric space. Every firmly nonexpan-
sive map T : X → X, (that is,

d(Tx, Ty) ≤ d(x#tTx, y#tTy), x, y ∈ X, t ∈ [0, 1)

is ∆-demiclosed (see [13]).
(ii) Let (M,d) be a complete CAT(κ) space with κ ≥ 0 and F be a non-empty closed
convex subset of M . Then the metric projection map PF is ∆-demiclosed (see [19]).

Lemma 3.4 ([11]). Let (M,d) be a complete CAT(κ) space with κ ≥ 0 (diam(M) <
π

2
√
κ

if κ > 0). Let A1 and A2 be two closed convex subsets of M with A1∩A2 6= ∅ and

PA1
and PA2

be corresponding (metric) projections, respectively. Then PA1
#tPA2

is
also ∆-demiclosed for all t ∈ [0, 1].

Proof. The proof can be found in [11]. But for the convenience and completeness, we
give the proof. Put P = PA1#tPA2 for t ∈ (0, 1). Let {xn} be a (bounded) sequence
in M and z an element of X such that d(Pxn, xn) → 0 as n → ∞ and suppose that
{xn} ∆-converges to z. Note that since for any q ∈ A1 ∩A2,

0 ≤ d(xn, q)− d(Pxn, q) ≤ d(Pxn, xn)

we have

d(xn, q)− d(Pxn, q)→ 0

as n→∞ which implies that

lim
n→∞

d(xn, q)
2 − d(Pxn, q)

2 = 0.

Since for any q ∈ A1 ∩A2,

d(Pxn, q)
2 ≤ (1− t)d(PA1

xn, q)
2 + td(PA2

xn, q)
2 − cM t(1− t)d(PA1

xn, PA2
xn)2

≤ d(xn, q)
2 − cM t(1− t)d(PA1

xn, PA2
xn)2,

which implies that

lim
n→∞

d(PA1
xn, PA2

xn) = 0.

Thus we have

d(PA1xn, Pxn) = td(PA1xn, PA2xn)→ 0
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as n→∞ which implies that PA1
z = z since PA1

is ∆-demiclosed. By similar method,
we have PA2z = z. Since

lim sup
n→∞

d(Pz, xn)2 ≤ lim sup
n→∞

[
(1− t)d(PA1

z, xn) + td(PA1
z, xn)2

]
= lim sup

n→∞
d(z, xn)2,

by uniqueness of ∆-limit, we conclude that P (z) = z. The proof is complete. �

For our study, we now introduce some assumption in p-uniformly convex metric
spaces. Let (X, d) be a complete p-uniformly convex metric space with parameter
cX ∈ (0, 1]. We consider the following condition:

(A) For any closed convex set F of (X, d), the metric projection map PF : X → F
satisfies the property (P1).

Remark 3.5. For κ ≥ 0, every complete CAT(κ) space, Hilbert space and Banach
space satisfies the property (A) (see, e.g, [1]). Therefore, every metric projection
map on a complete CAT(κ) space satisfies the property (P1).

From now on, we always assume that every complete p-uniformly convex metric
space satisfies the property (A) (i.e., every metric projection map on complete p-
uniformly convex metric spaces satisfies the property (P1)).

Now, we recall the notion of asymptotic regularity of a sequence in metric
spaces. A sequence {xn} in a metric space (X, d) is called asymptotic regular if
limn→∞ d(xn+1, xn) = 0.

Theorem 3.6. Let λ ∈ (0, 1) be given and (X, d) be a complete p-uniformly convex
metric space with parameter cX ≥ λp−1 + (1 − λ)p−1. Let T, S : X → X be maps
satisfying the property (P1). Define the map K : X → X by

Kx = (T#λS)x := Tx#λSx.

If Fix(K) 6= ∅ then we have that K is asymptotically regular. (i.e., {xn := Knx} for
x ∈ X is asymptotic regular).

Proof. Let x ∈ X and define

xn := Knx, n ∈ N.

We only show that

lim
n→∞

d(xn, xn+1) = 0.

Define V : X2 → X2 and P : X2 → X2 by in Proposition 2.6 and Proposition 2.7,
respectively. Then by (i) in Proposition 2.8, we have Fix(P ◦ V ) 6= ∅. On the other
hands, we define

x̂n := (P ◦ V )n(x, x).

Since P is a metric projection map to ∆X ⊆ X×X (see Proposition 2.7), by assump-
tion, P satisfies the condition (A) which implies that P also satisfies the property
(P1). So by Corollary 3.1 in [1], we have that

lim
n→∞

dλ(x̂n, x̂n+1) = 0.
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Since, by (iii) in Proposition 2.8,

x̂n = (xn, xn),

by (ii) in Proposition 2.8, we conclude that

lim
n→∞

d(xn, xn+1) = 0.

The proof is complete. �

Theorem 3.7. Let λ ∈ (0, 1) be given and (X, d) be a complete p-uniformly convex
metric space with parameter cX ≥ λp−1 + (1− λ)p−1. Let T, S : X → X be two maps
satisfying the property (P1). Suppose that T#λS is ∆-demiclosed and Fix(T#λS) =
Fix(T ) ∩ Fix(S). Put xn := (T#λS)nx0, for an initial point x0 ∈ X. Then {xn}
∆-converges to a point in Fix(T#λS).

Proof. Let x0 ∈ X be given. Define the sequence {xn} by

xn := Knx0 = (T#λS)nx0

for all n ∈ N. Since, T and S satisfy the property (P1), T and S are quasi-
nonexpansive maps i.e.,

d(Tx, z) ≤ d(x, z), z ∈ Fix(T )

d(Sx, z) ≤ d(x,w), w ∈ Fix(S).

So, for any z ∈ Fix(T#λS) = Fix(T ) ∩ Fix(S) we have

d((T#λS)x, z)p ≤ (1− λ)d(Tx, z)p + λd(Sx, z)p

≤ d(x, z)p.

Therefore, we have

d(xn+1, z) = d((T#λS)((T#λS)nx0), z) ≤ d((T#λS)nx0) = d(xn, z).

Thus {xn} is is Fejér monotone w.r.t Fix(T#λS). Also, by Theorem 3.6, we have

lim
n→∞

d(xn,Kxn) = 0. (3.1)

Since {xn} is bounded, by Proposition 3.1, there exists a subsequence {xnk
} of {xn}

such that {xnk
} ∆-converges to a point z ∈ M . Since K is a ∆-demiclosed (by

assumption), by combining (3.1), we have that z ∈ Fix(T#λS). Therefore, by Lemma
3.2, we conclude that {xn}∆-converges to some point z ∈ Fix(T#λS) as n −→∞. �

Note that in the case of a complete 2-uniformly convex metric spaces X, it is clear
that for any λ ∈ (0, 1), 1 = cX = λ2−1 + (1 − λ)2−1 (i.e., X is a CAT(0) space) and
that Fix(PA#tPB) = Fix(PA) ∩ Fix(PB) = A ∩ B for all t ∈ (0, 1) (see [11]). The
following result is clear by Remark 3.5, Lemma 3.4 and the above note.

Corollary 3.8. Let λ ∈ (0, 1) be given. Let (X, d) be a complete CAT(0) space (or
complete 2-uniformly convex metric space with parameter cX = 1). Let A and B be
two closed convex subsets of X with A ∩ B 6= ∅ and PA and PB be corresponding
(metric) projection maps, respectively. Put xn := (PA#λPB)nx0 for an initial point
x0 ∈ X. Then {xn} ∆-converges to a point in A ∩B.
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Remark 3.9. In CAT(0) spaces, every firmly nonexpansive map having fixed points
is strongly nonexpansive (see [26, Lemma 3.2]) and T1#tT2 for t ∈ (0, 1) also strongly
nonexpansive for two firmly nonexpansive map T1, T2(see [26, Lemma 3.5]) and so
T1#tT2 is ∆-demiclosed by nonexpansiveness of T1#tT2 (see [13]).

The following result is clear by Example 2.5, Remark 3.9 and [26, Lemma 3.5].

Corollary 3.10. Let λ ∈ (0, 1) be given. Let (X, d) be a complete CAT(0) space. Let
T1 and T2 be two firmly nonexpansive maps on X. Put xn := (T1#λT2)nx0 for an
initial point x0 ∈ X.

Then {xn} ∆-converges to a point in Fix(T1#λT2) = Fix(T1) ∩ Fix(T1).
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