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Abstract. Stochastic production planning problems were studied in several works; the model with

one production good was discussed in [3]. The extension to several economic goods is not a trivial

issue as one can see from the recent works [8], [9] and [13]. The following qualitative aspects of the
problem are analyzed in [9]: the existence of a solution and its characterization through dynamic

programming/Hamilton Jacobi Bellman (HJB) equation, as well as the verification (i.e., the solution

of the HJB equation yields the optimal production of the goods). In this paper, we stylize the
model of [8] and [9] in order to provide some quantitative answers to the problem. This is possible

especially because we manage to solve the HJB equation in closed form. We point to a fixed point
characterization of the optimal production rates. Among other results, we find that the optimal

production rates adjusted for demand are the same across all the goods and they also turn to be

independent of some model parameters. Moreover we show that production rates (adjusted for
demand) are increasing in the aggregate number of goods produced, and they are also uniformly

bounded. Numerical experiments show some patterns of the output.
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1. Introduction

Production planning problems were studied for quite some time. [21] considered
a stochastic production-inventory model to determine optimal production rates, i.e.,
the ones which minimize a discounted quadratic loss function. Their solution has
three terms: the initial inventory, a steady state of the solution and a correction
term which kicks in when time approaches maturity. This work was extended from
a deterministic to a stochastic framework by [3] and [19] which added randomness to
the dynamics of the inventory process. In a follow up work [22] added constraints
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on the production inventory. The work of [12] looks at the infinite horizon stochastic
production planning problem in which a continuous-time Markov chain models the
demand. A more recent work on this topic is [5]. They look at optimal production-
inventory problem when there is a stochastic demand which depends on the business
cycle.

The aforementioned papers consider in general the production planning problem
with one economic good only. The extension to several economic goods makes the
problem more mathematically involved as one can see from the recent works of [8]
and [9]. Moreover, [9] characterized the solution through dynamic programming/HJB
equation; using regularity and estimate results from the area of partial differential
equations a classical solution of the HJB was established, and the verification result
was proved. Since these works deal with the infinite horizon, a transversality condition
was imposed on the value function, and it was shown that the value function verifies
it. The paper [13] is within the paradigm of multiple goods’ production. Because of
the complexity of HJB equations, the goal is not to solve the HJB equations, but to
offer an approximate solution.

Still in the realm of production-inventory management is [4]. The authors look at
finding the optimal inventory given a mean-reverting inventor.

In this paper we specialized the model of [8] and [9] to make it more tractable
and to obtain quantitative results. Our main contribution is that we solved in closed
form the HJB equation and the optimal production rate. The solution displays a
mean field structure; the optimal production rate of some good is a function of the
number of that specific produced good and an average of all the goods produced (this
average is expressed by a norm of the vector of goods produced). By exploiting the
structure of our closed form solution we can see that the optimal production rates
adjusted for demand are the same across all goods and they do not depend on some
model parameters. Moreover, the optimal production rates are zeros when there are
no goods produced, and they are of order O( 1

N ) (N here stands for the number of
goods). We show that production rates are increasing in the aggregate number of
goods produced, and they are also uniformly bounded. Numerical experiments reveal
that the production rate is a decreasing function of the number of goods’ type N and,
the variance of the number of goods produced.

Finally, the HJB equation characterizing the optimal production rates appears in
other practical applications as we mention in the last section of the paper.

A new class of optimal decisions has arisen in financial and economic problems.
They are called time consistent decisions and are a substitute of the optimal decisions
when the later are time inconsistent; for more on this see [11], [10] and [16]. The
time consistent decisions are the fixed points of certain functionals. In our setting,
since the time discounting is exponential, the optimal production rates coincide with
the time consistent ones. This allows for a fixed point characterization of the optimal
production rates.

Now we are ready to present the organization of this paper. Section 2 describes
the model. Section 3 provides the methodology. Section 4 presents other practical
applications of the mathematics developed.
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2. The model

Consider a factory producing N types of economic goods which stores them in an
inventory designated place.

Next, we describe the model mathematically. There exists a complete probability
space (Ω,F , {Ft}0≤t≤∞, P ), on which lives a N -dimensional Brownian motion de-
noted by w = (w1, ..., wN ). The filtration {Ft}0≤t≤∞, is the natural filtration of the
Brownian motion.

Let
p (t) = (p1(t), ..., pN (t)) ,

represent the production rate at time t (control variable). Next, let us introduce the
control variables. Let the threshold

p0 =
(
p0

1, ..., p
0
N

)
,

be a vector standing for the factory optimal production level. This level can be
optimal from a technological standpoint, but its implementation may not be optimal
because of inventory costs.

Next, let
l = (l1, ..., lN ) ,

be the factory-optimal inventory level which can be attained but not maintained since
there is noise in the system. In order to simplify the notations we assume that

p0 = l = (0, ..., 0) .

This simplification is obtained by considering deviations from the factory-optimal
inventory level and the factory-optimal production level. The deviations may be
negative.

Next, let us describe the inventories. There exists a constant demand rate for every
economic good, demand rate represented by the vector

ξ = (ξ1, ..., ξN ) .

Again, to simplify the notations we take ξ = (0, ..., 0) meaning that we consider devi-
ations from the constant demand rate. In other words we consider demand adjusted
production rates.

Let y0
i denote the initial inventory level of good i, and yi(t) the inventory level

of good i, at time t. These inventory levels are modelled by the following system of
stochastic differential equations

dyi (t) = (pi − ξi)dt+ σdwi, yi (0) = y0
i , i = 1, ..., N, (2.1)

where σ is a constant (non-zero) diffusion coefficient. Let us recall that the stochas-
ticity here is due to inventory spoilages which are random in nature. Another cause of
stochasticity may be a random demand rate which is often the case in several practical
applications.

Let τ be the stopping time representing the moment when the inventory level
reaches some threshold R, i.e.,

τ = inf
t>0
{|y(t)| ≥ R}.
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Here, | · | stands for the Euclidian norm, and this way of limiting the inventory level
is imposed for tractability. The factory may consider stopping the production when
the inventory level R is attained and/or exceeded.

2.1. The Objective. The performance over time of a production

p (t) = (p1(t), ..., pN (t)) ,

is measured by means of its cost. At this point we introduce the cost functional which
yields the cost:

J (p1, ..., pN ) := E

∫ τ

0

(|p(t)|2 + |y(t)|2)dt, (2.2)

which measures the quadratic loss. Again let us recall that we measure deviations
from an optimal state, whence the loss. At this point we are ready to frame our
objective, which is to minimize the cost functional. i.e.,

inf
p∈RN

{J (p1, ..., pN )}, (2.3)

subject to the Itô equation (2.1).

3. The methodology

Having presented the problem we want to solve, now we provide our means to
tackle it. Our approach is based on the value function and dynamic programming
which leads to the HJB equation. Let z denote the value function, i.e.,

z(y0
1 , y

0
2 , . . . y

0
N ) = inf

p∈RN
{J (p1, ..., pN )},

subject to the Itô equation (2.1). We apply probabilistic techniques to characterize
the value function; that is we search for a function U (x) such that the stochastic
process Mp(t) defined below

Mp (t) = U (y (t))−
∫ t

0

[|p(s)|2 + |y(s)|2] ds,

is supermartingale for all
p (t) = (p1(t), ..., pN (t)) ,

and martingale for the optimal control

p∗ (t) = (p∗1(t), ..., p∗N (t)) .

Once such a function is found it turns out that −U = z.
We search for U a C2 [0, R] function and the supermartingale/martingale require-

ment yields by means of Itô’s Lemma the Hamilton-Jacobi-Bellman (HJB) equation
which characterizes the value function

−σ
2

2
∆z − |x|2 = inf

p∈RN
{p∇z + |p|2}, (3.1)

where x ∈ RN assumes values (y1 (0) , ..., yN (0)). This HJB can be turned into a
partial differential equation (PDE) since a simple calculation yields

inf
p∈RN

{p∇z + |p|2} = −1

4
|∇z|2 . (3.2)



A STOCHASTIC PRODUCTION PLANNING PROBLEM 183

Thus, the HJB equation becomes the PDE

−σ
2

2
∆z − |x|2 = −1

4
|∇z|2 for x ∈ RN , |x| ≤ R,

or, equivalently
2σ2∆z + 4 |x|2 = |∇z|2 for x ∈ RN , |x| ≤ R. (3.3)

The change of variable z = −v, yields the PDE

∆v =
4 |x|2 − |∇v|2

2σ2
for x ∈ RN , |x| ≤ R. (3.4)

The gradient term in the above PDE can be removed by the change of variable

u (x) = e
v(x)

2σ2 , to get a simpler PDE{
∆u (x) = 1

σ4 |x|2 u (x) for x ∈ RN , |x| ≤ R,
u (x) > 0 for x ∈ RN , |x| ≤ R. (3.5)

The partial derivatives of the value function will give us in turn the candidate optimal
control. The first order optimality conditions on the lefthand side of (3.2) are sufficient
for optimality since we deal with a quadratic (convex) function and they produce the
candidate optimal control as follows:

p∗i = pi(y1 (t) , . . . , yN (t)), i = 1, ..., N,

and

pi(x1, ..., xN ) =
1

2

∂v

∂xi
(x1, ..., xN ) , for i = 1, ..., n. (3.6)

Remark 3.1. As we already mentioned in the introduction, the optimal production
rates equal the time consistent ones, so they are time consistent. Following [10] and
[11] the optimal production rates, being time consistent, are the fixed points of the
following problem

p∗i = pi(y1 (t) , . . . , yN (t)), pi(x1, ..., xN ) =
1

2

∂v

∂xi
(x1, ..., xN ) , for i = 1, ..., n,

(3.7)
and

v(x1, ..., xN ) = −J (p∗1, ..., p
∗
N ) . (3.8)

The fixed point nature of the optimal production rates is due to the fact that in the
above equation, the value function v is also present in the left hand side functional
through p∗i , i = 1, ..., n, of (3.7).

3.1. The Equation of Value Function . Let BR (0) be the ball in RN centered at
the origin and radius R > 0. The equation of the value function according to (3.5) is

∆u (x) =
1

σ4
|x|2 u (x) in BR (0) . (3.9)

The initial condition is taken to be

u(0) = α, (3.10)

where α is a positive constant. The following result concerns the equation of value
function.



184 E.C. CANEPA, D.-P. COVEI AND T.A. PIRVU

Theorem 3.1. Given the positive constant α, there exists a unique positive radially
symmetric solution uα ∈ C2 [0, R], to the problem (3.9) subject to the initial condition
( 3.10). Moreover, the solution is convex and increasing, and the following holds true

u′α(0) = 0, (3.11)

uα (r) = α

(
1 +

∞
Σ
j=1

1

j! (N + 2) (N + 6) ...(N + 4j − 2)

(
r2

2σ2

)2j
)

, (3.12)

u′α (r) = α
∞
Σ
j=1

4jr

2σ2j! (N + 2) (N + 6) ...(N + 4j − 2)

(
r2

2σ2

)2j−1

, (3.13)

for all r := |x| ∈ [0, R]. In addition,

uα (r) ≤ αe
r4

4σ4(N+2) , r ∈ [0, R], (3.14)

(uα)
′
(r) ≤ αr3

σ4(N + 2)
e

r4

4σ4(N+2) , r ∈ [0, R], (3.15)

hold.

Proof. We consider the radial form of the problem (3.9) subject to the initial condition
(3.10), i.e., {

u′′α (r) + N−1
r u′α (r) = 1

σ4 r
2uα (r) in (0, R],

uα (0) = α.
(3.16)

This is equivalent to an integral equation of Volterra type of the following form

uα (r) =
1

σ4

∫ r

0

K (t, uα (t)) dt, r ∈ [0, R]

where

K (t, uα (t)) = t1−N
∫ t

0

sN+1uα (s) ds.

It is easy to see that K is continuous and Lipschitz in the second variable (by Bi-
elecki norm technique). Thus, by the existence and uniqueness theorem for such
integral equations (via Banach’s Contraction Principle) the integral equation (and
equivalently, the initial value problem (3.9)-(3.10) has a unique solution.

Next, we need to show that the solution uα (r) of (3.16) can be obtained succesively
in the following way{

u0
α (r) = uα (0) = α,

ukα (r) = α+
∫ r

0
t1−N

∫ t
0
sN+1 1

σ4u
k−1
α (s) dsdt, 0 < r ≤ R, k ∈ N∗. (3.17)

It is easy to see that {ukα (r)}k≥0 is a nondecreasing sequence of functions satisfying

uk+1
α (r)− ukα (r) ≤ α

(k + 1)!

(
r4

4σ4(N + 2)

)k+1

(3.18)

≤ α

(k + 1)!

(
R4

4σ4(N + 2)

)k+1
k→∞→ 0, (3.19)

for all r ∈ [0, R]. Then {ukα (r)}k≥0 is a Cauchy sequence of functions on [0, R].
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It is a straightforward argument to prove that ukα ∈ C2 [0, R], k ∈ N. Since a
Cauchy sequence of functions is convergent, it has a limit function uα (r) and the
convergence is uniform. Moreover, since an uniformly Cauchy sequence of continuous
functions has a continuous limit, then uα (r) is a continuous function on [0, R] .

By passing to the limit in (3.17) we obtain that uα (r) verifies the integral form of
the problem (3.9) subject to the initial condition (3.10)

uα (r) = α+

∫ r

0

t1−N
∫ t

0

sN+1 1

σ4
uα (s) dsdt, in [0, R]. (3.20)

Hence, the limit function uα (r) is the solution of (3.9) subject to the initial condition
(3.10).

Next, we examine the sequence {(ukα (r))′}k≥0. We note first that

0 ≤
(
ukα
)′

(r) = r1−N
∫ r

0

tN+1uk−1
α (t) dt. (3.21)

Thus, the function r → ukα(r) is nondecreasing for all k ∈ N. Using (3.18) and (3.19)
we get

∣∣∣(uk+1
α

)′
(r)−

(
ukα
)′

(r)
∣∣∣ ≤ r3α

σ4(N + 2)k!

(
r4

4σ4(N + 2)

)k
≤ R3α

σ4(N + 2)k!

(
R4

4σ4(N + 2)

)k
k→∞→ 0. (3.22)

Consequently, (ukα (r))′
k→∞→ (uα (r))′ uniformly in [0, R], which implies that (uα (r))′

is a continuous function on [0, R].
A direct computation shows that uα ∈ C2 [0, R]. Next, let us prove (3.14). To do

this we use (3.18) succesively

uk+1
α (r) ≤ α

(k + 1)!

(
r4

4σ4(N + 2)

)k+1

+ ukα (r)

≤ α

(k + 1)!

(
r4

4σ4(N + 2)

)k+1

+
α

k!

(
r4

4σ4(N + 2)

)k
+ uk−1

α (r)

...

≤
k+1

Σ
j=0

α

j!

(
r4

4σ4(N + 2)

)j
. (3.23)

On the other hand, we note that

uα (r) = lim
k→∞

uk+1
α (r) ≤

∞
Σ
j=0

α

j!

(
r4

4σ4(N + 2)

)j
= αe

r4

4σ4(N+2) , (3.24)

for all r ∈ [0, R].
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Next, let us prove (3.15). We observe that {
(
ukα
)′

(r)}k≥0 is a nondecreasing se-
quence of continuous functions. Following the proof in (3.23), and using (3.22) suc-
cessively it can be shown the inequality(

uk+1
α

)′
(r) ≤ αr3

σ4(N + 2)k!

(
r4

4σ4(N + 2)

)k
+
(
ukα
)′

(r)

...

≤ αr3

σ4(N + 2)

k

Σ
j=0

1

j!

(
r4

4σ4(N + 2)

)j
.

Repeating the arguments of (3.24) we notice that

(uα)
′
(r) = lim

k→∞

(
uk+1
α

)′
(r)

≤ αr3

σ4(N + 2)

∞
Σ
j=0

1

j!

(
r4

4σ4(N + 2)

)j
=

αr3

σ4(N + 2)
e

r4

4σ4(N+2) ,

for all r ∈ [0, R].
Next, let us prove (3.12). To do this, we observe that

u1
α (r) = α+

∫ r

0

t1−N
∫ t

0

sN+1 1

σ4
u0
α (r) dsdt

= α+

∫ r

0

t1−N
∫ t

0

sN+1 1

σ4
αdsdt

= α

(
1 +

1

σ4

∫ r

0

t3

N + 2
dt

)
= α

(
1 +

1

4σ4

r4

N + 2

)
.

Substituting u1
α (r) into

u2
α (r) = α+

∫ r

0

t1−N
∫ t

0

sN+1 1

σ4
u1
α (r) dsdt,

we obtain

u2
α (r) = α

(
1 +

1

4σ4

r4

(N + 2)
+

r8

σ8 · 4 · 8 · (N + 2) (N + 6)

)
.

Continuing this process we get

ukα (r) = α+
1

σ4

∫ r

0

t1−N
∫ t

0

sN+1uk−1
α (s) dsdt

= α

(
1 +

k

Σ
j=1

1

j! (N + 2) (N + 6) ...(N + 4j − 2)

(
r2

2σ2

)2j
)
.

Since the sequence of functions {ukα}k≥0 is uniform convergent to the limit function
uα (r) then (3.12) is proved.
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The power series representation of function uα (r) can be differentiated to obtain
a power series representation of its derivative u′α (r). Thus, we obtain that uα (r) is
differentiable on [0, R] and (3.13) holds true. In addition, the term-by-term derivative
of a power series has the same interval of convergence as the original power series.

Next, (3.13) leads to u′α(0) = 0, whence (3.11) is proved. A direct computation
shows that

uα ∈ C2 ([0, R]) .

The convexity of the solution is proved in [8]. The monotonicity of the solution is
now obvious. This completes the proof of the Theorem.

3.2. Verification. In this subsection we show that the control of (3.26) is indeed
optimal. In a first step let us show that Mp(t)

Mp (t) = U (y (t))−
∫ t

0

(|p(s)|2 + |y(s)|2) ds,

is supermartingale for all

p (t) = (p1(t), ..., pN (t)) ,

and martingale for the optimal control

p∗ (t) = (p∗1(t), ..., p∗N (t)) .

Indeed, Itô Lemma yields for the optimal control candidate

dMp (t) = (
σ2

2
∆U(y(s))− |y(s)|2 + p(s)∇U(s)− |p(s)|2)ds+ σp(s)∇z(y(s))dw(s).

Then, the claim yields in light of HJB equation (3.1). In a second step let us establish
the optimality of (p∗1, ..., p

∗
N ).

The martingale/supermartingale principle yields

EU (y∗ (τ∗))− E
∫ τ∗

0

(|p∗(u)|2 + |y∗(u)|2)du = U(y∗ (0)) = U(y (0)),

and

EU (y (τ))− E
∫ τ

0

(|p(u)|2 + |y(u)|2)du ≤ U(y (0)),

where τ∗ = inft>0{|y∗(t))| ≥ R} and τ = inft>0{|y(t)| ≥ R}.
Moreover, EU (y∗ (τ∗)) = EU (y (τ)) = 2σ2lnu(R), and this finishes the proof.

3.3. Optimal Control. Let us notice that equations (3.6) become

pi(y1, . . . , yN ) = σ2 u
′
α(r)

ruα(r)
yi, r 6= 0, i = 1, 2 · · ·N, (3.25)

and r = |y|.
The optimal control is given by p∗i = pi(y1 (t) , . . . , yN (t)), i = 1, ..., N, and

dyi (t) = p∗i dt+ σdwi, yi (0) = y0
i , i = 1, ..., N. (3.26)
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This SDE system has a unique solution since the map y → p̄i(y), i = 1, ..., N, is
Lipschitz on [0, R]. Let us notice that the production rate adjusted for demand

pi
yi

= σ2 u
′
α(r)

ruα(r)
, r 6= 0, (3.27)

is the same across all goods. Let us notice the resemblance with mean field models, 1

with the mean quantity being r = |y|.

Remark 3.2. The choice of α > 0 is irrelevant because the value function equation
admits the following symmetry; if u is the solution with α = 1, then αu is the
solution for arbitrary α > 0. However, both u and αu yield the same optimal control
(see (3.27)). Let us notice that if we impose the boundary condition ū (R) = α̃ > 0
instead of (3.10) then we get a solution ū which is a scalar multiple of u, i.e., ū = Ku,
for some constant K > 0. Thus, ū yields the same optimal control (see (3.27)) and
the optimal control does not depend on the choices of α, α̃ and R.

Therefore, the following result holds.

Remark 3.3. The problem (3.9) subject to the boundary condition

u (x) = α̃ ∈ (0,∞) for x ∈ ∂BR, (3.28)

has a unique radially symmetric solution u ∈ C2 (BR) ∩ C
(
BR
)
. Clearly u (x) = α̃

is a super solution for the problem (3.9)-(3.28) and u (x) = α̃e−
1

2σ2
(R2−|x|2) is a sub

solution for (3.9)-(3.28). Then, the sub and super solution method (see for example
[6, 7]) implies that (3.9)-(3.28) has at least one solution u ∈ C2 (BR) ∩ C

(
BR
)

with

u (x) ≤ u (x) ≤ u (x) for x ∈ BR.
By the maximum principle the solution is unique. If u (x) 6= u (|x|) (i.e., u is not a
radially symmetric solution) we obtain a contradiction, since a different solution can
be obtained by rotating u (x).

In light of these remarks we set α = 1, so that

u (r) := u1 (r) = 1 +
∞
Σ
j=1

1

j! (N + 2) (N + 6) ...(N + 4j − 2)

(
r2

2σ2

)2j

, (3.29)

for all r ≥ 0, whence we can get the production rate σ2 u
′(r)

ru(r) , r 6= 0, in closed form.

Moreover, from (3.12) we get that limr→0
u′(r)
ru(r) = 0, thus the optimal production rates

are zeros when there are no goods produced.
Using (3.29) and operations with power series (see [20] Chapter 1), we get the

optimal production rate in closed form.

Theorem 3.2. The optimal production rate (adjusted for demand) is given by

p̄i
yi

= σ2 u
′(r)

ru(r)
=

4σ2

r2

∞
Σ
j=0

cj

[
r4

4σ4

]j
, r 6= 0,

1Mean field modelling of high-dimensional problems relies upon reducing the dimensionality by
considering mean type variables.
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where

a0 = 1, c0 = 0, cj =
1

a0

[
bj −

j

Σ
i=1
cj−iai

]
, j = 1, 2, 3, ...

aj =
1

j! (N + 2) (N + 6) ...(N + 4j − 2)
, j = 1, 2, ...

bj =
j

j! (N + 2) (N + 6) ...(N + 4j − 2)
, j = 1, 2, ...

The production rate (adjusted for demand) is increasing and bounded. This fact
will me made precise in the following Lemma. The intuition for a monotonous pro-
duction rate comes from the fact that an increasing production rate will yield a lower
variance for yi(t) in SDE (2.1).

Lemma 3.1. The function r → u′(r)
ru(r) is increasing and

u′(r)

ru(r)
≤ 1

σ2
. (3.30)

Proof. The first part of the claim yields if the derivative of this function is positive
which boils down to

u′′ (r) ≥ (u′(r))2

u(r)
+
u′(r)

r
.

Next we use the fact that u solves the following ODE

u′′ (r) +
N − 1

r
u′ (r) =

1

σ4
r2u (r) ,

whence, the claim becomes

1

σ4
r2u (r) ≥ N u′(r)

r
+

(u′(r))2

u(r)
.

This is equivalent to

u′(r)

u(r)
≤

√
N2

r2 + 4r2

σ4 − N
r

2
,

or

u′(r)

ru(r)
≤

√
N2

r2 + 4r2

σ4 − N
r

2r
. (3.31)

This argument shows that

r → u′(r)

ru(r)
,

is increasing if and only if (3.31) holds true. However, the function

r →

√
N2

r2 + 4r2

σ4 − N
r

2r
,

is increasing, both functions are 0 when r = 0 (since u′(0) = 0) and

r → u′(r)

ru(r)
,
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is increasing on some small interval [0, ε] in light of u being convex (for this see
Theorem 3.1). This shows that

r → u′(r)

ru(r)
,

is increasing and (3.31) holds true. Moreover, since

r →

√
N2

r2 + 4r2

σ4 − N
r

2r
,

is increasing and has as asymptote at infinity 1
σ2 we also get the second part of the

claim. �

3.4. Asymptotic Analysis.

Let us recall the estimate for large N from [8]

u′(r)

r
≤ K

N − 1
, r 6= 0.

Thus, for big N an approximate solution is

u′(r)

ru(r)
≤ K

u0(N − 1)
≈ 0, r 6= 0,

which says that the optimal control p∗ ≈ 0, since

pi = σ2 u
′(r)

ru(r)
xi, r 6= 0, i = 1, ..., N.

This means that if the number of goods is big then p∗ = 0 is an approximate solution.
Next, we prove an asymptotical result.

Lemma 3.2. The following result hold true

lim
r→∞

[
u′(r)

ru(r)

]
=

1

σ2
. (3.32)

Proof. Because the function u is convex and increasing (for this see Theorem 3.1) it
follows that

lim
r→∞

u(r) = lim
r→∞

u′(r) =∞.

In light of Lemma 3.1 the limit exists and is finite. Let us denote it by l. L’Hospital
rule yields

l = lim
r→∞

[
u′(r)

ru(r)

]
= lim
r→∞

[
u′′(r)

u(r) + ru′(r)

]
. (3.33)

Next we use the fact that u solves the following ODE

u′′ (r) +
N − 1

r
u′ (r) =

1

σ4
r2u (r) ,

whence

u′′ (r) =
1

σ4
r2u (r)− N − 1

r
u′ (r) .
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Inserting this into (3.33) we get

l =
1

lσ4
.

Therefore

l = lim
r→∞

[
u′(r)

ru(r)

]
=

1

σ2
. �

3.5. Simulation of the optimal inventory. Let us recall the SDE system

dyi (t) = p∗i dt+ σdwi, yi (0) = y0
i , i = 1, ..., N, (3.34)

governing the optimal inventory.
This SDE system can be simulated numerically. It can be done using a Euler

scheme as follows: start with

y0
i , i = 1, ..., N, and r = ΣNi=1

[
y0
i

]2
, r 6= 0.

On [0,∆t] we approximate

yi (∆t) ' σ2 u
′ (r)

ru (r)
y0
i + σ

√
∆tZ0

i , r 6= 0,

where Z0
i is standard normal.

Next repeat this on [∆t, 2∆t] as follows:

r (∆t) = ΣNi=1

[
y∆t
i

]2
,

and

yi (2∆t) ' σ2 u′ (r (∆t))

r (∆t)u (r (∆t))
y∆t
i + σ

√
∆tZ1

i ,

where Z1
i is standard normal.

The process is then repeated on [2∆t, 3∆t] and so on.
In the following we present two plots resulting from this simulation procedure. We

considered N = 2 (two economic goods) and σ = 2 in the first plot σ = 5 in the
second plot.
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Figure 1. σ = 2.

Figure 2. σ = 5.
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3.6. Numerical Experiments. In the first set of experiments we set σ = 0.5, and
vary N the number of goods’ type.

Figure 3. N = 50000.

Figure 4. N = 5000.

Figure 5. N = 1000.

Figure 6. N = 100.
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We observe from these set of plots the following patterns:
1) the production rate is an increasing function of the total number of goods pro-

duced, fact explained by Lemma 3.1;
2) when the total number of goods produced exceed a certain threshold the pro-

duction rate converges to 1, fact explained by Lemma 3.2;
3) the production rate is a decreasing function of the total number of goods pro-

duced.
In the next set of plots we set N = 100, and vary σ.

Figure 7. σ = 0.05.

Figure 8. σ = 0.1.

Figure 9. σ = 0.5.

Figure 10. σ = 1.
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We observe from these set of plots the following patterns:
1) the production rate is an increasing function of the total number of goods pro-

duced, fact explained by Lemma 3.1;
2) when the total number of goods produced exceed a certain threshold the pro-

duction rate converges, fact explained by Lemma 3.2;
3) the production rate is a decreasing function of σ.

4. Other applications

The value function equation characterizing the optimal control, i.e., (3.9), appears
naturally in other practical applications. There is by now a vast literature concerning
on the existence of positive solutions and their behaviour for the partial differential
equation

∆u (x) = f (x, u (x)) for x ∈ Ω, (4.1)

where Ω is a bounded or unbounded domain of RN (N ≥ 1) or the all space RN and
f is a function suitable chosen.

The interest in studying the above equation comes, for instance, from various appli-
cations of physics, such as quantum mechanics, quantum optics, nuclear physics and
reaction-diffusion processes (cf. [1, 15, 17, 18]). For instance, a basic preoccupation
for the study of problem (4.1) is the time-independent Schrödinger equation (single
non-relativistic particle)

∆u =
2m

h2 (V (x)− E)u, h = h/2π, (4.2)

where h is Planck’s constant, h is the reduced Planck constant (or the Dirac constant),
E and V (x) are the total (non relativistic) and potential energies of a particle of mass
m, respectively.

Besides the importance in applications, the equation (4.1) also raises many difficult
mathematical problems that need to be solved. In general, the existence of the solu-
tions and numerical approximation of the elliptic problem (4.1) is widely open. See
the paper of Santos, Zhou and Santos [18], which includes a nice survey and recent
progresses for Eq. (4.1).

Let us mention this result which is interesting in itself.

Theorem 4.1. (see [23, Theorem 2.1, p. 199]) The problem (3.9) subject to the
boundary condition

u (x)→∞ as |x| → R, (4.3)

has no positive solutions.

Even if the next result has no importance in economic theories, it helps us to
understand the beauty of this problem and to discover other questions that will need
to be solved by the researchers.

Theorem 4.2. (see [18]) The problem (3.9) with BR (0) replaced with RN , admits a
sequence of symmetric radial solutions uk (|x|) ∈ C2

(
RN
)

with

uk (0) =∞ as k →∞.

Besides this, u′k ≥ 0 in [0,∞).
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In the next, we provide two exact solutions for the problem (3.9) with BR (0)
replaced with R4 \ {0R4}. They are:

u1 (x) = αe
1

2σ2
|x|2 |x|−2

, α ∈ R and x ∈ R4 \ {0R4}, (4.4)

u2 (x) = αe−
1

2σ2
|x|2 |x|−2

, α ∈ R and x ∈ R4 \ {0R4}. (4.5)

The solutions (4.4) and (4.5) were determined by analyzing the series in (3.12) and
can be used by physicists in the study of the time-independent Schrödinger equation
(4.2). Moreover, reasoning in the same manner we think that similar solutions can
be constructed for the total (non relativistic) and potential energies of a particle of
mass m in (4.2).

Next, we posit the following open problems inspired by the two solutions and [18].

Problem 4.1. Assume that g ∈ C1 ([0,∞) , [0,∞)) is a non-decreasing function sat-
isfying ∫ ∞

γ

1√∫ t
0
g (s) ds

dt =∞, for t ≥ γ > 0,

and p is a non-negative continuous symmetric radially function such that∫ ∞
0

t1−N
∫ t

0

sN−1p (s) dsdt =∞.

Then, there exists at least one positive radially symmetric solution

u ∈ C2
(
RN \ {0RN }

)
for the problem

∆u (x) = p (r) g (u (x)) in RN , r = |x| , (4.6)

subject to the boundary condition

u (x)→∞ as |x| → ∞, (4.7)

such that

u (x)→∞ as |x| → 0.

Moreover, ∂u/∂r ≥ 0 on [t0,∞) and ∂u/∂r < 0 on [0, t0), for some t0 ≥ 0.

Problem 4.2. Under the same assumptions on p and g as in Problem 4.1, there
exists at least one positive radially symmetric solution u ∈ C2

(
RN \ {0RN }

)
of (4.6)

subject to the boundary condition

u (x)→ 0 as |x| → ∞, (4.8)

such that

u (x)→∞ as |x| → 0.

Moreover, ∂u/∂r ≤ 0 on [0,∞).

Example of solutions for problems 4.1, and 4.2 are the ones given in (4.4), and
(4.5). To the best of our knowledge the only result for the problems 4.1, and 4.2 is
Theorem 4.2.
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