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1. Introduction

As a very important part of nonlinear analysis, fixed point theory plays a key
role with regards to the solvability of many complex systems from applied mathe-
matics (chemicals reactors, neutron transport, population biology, infection diseases,
economics, applied mechanics, . . . ). The theory itself developed quickly in many di-
rections starting from Brouwer’s fixed point theorem (1910), Banach’s contraction
principle (1922), and Schauder’s fixed point theorem for compact mappings (1930).
Krasnoselskii’s fixed point theorem for sums of operators (1955) is considered as both
an extension and a combination of these previous two results (see [7, 8, 13, 22]). It
turns out to be a powerful tool to deal with several classes of nonlinear equations of
the form Fx+Gx = x, in a suitable functional setting, where F is a contraction and
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G is compact. Actually, many boundary value problems for differential equations can
be recast in this abstract formulation.

Among the very rich and recent literature on the development of the fixed point
theory for the sums of operators, we quote, e.g., [5, 18, 24, 23]. Another fixed point
result established by Krasnoselskii in 1960 is the cone compression-expansion fixed
point theorem; it is mostly used for proving existence, and localization, and multi-
plicity of positive solutions for various nonlinear problems in some conical shells of
a Banach space (see [12, 14, 15]). During the last couple of years, its extension has
attracted many researchers (see [3, 11, 16, 17, 19] and references therein).

Note that the fixed point theory has also been greatly influenced by the parallel
progress of the research works made on the topological degree for different classes of
mappings (see, e.g., [2, 1, 16, 17]). In this regards, the pioneer works of Petryshyn
[20, 21] have initiated important steps in establishing the relationship between the
fixed point theory and the index fixed point theory.

In [10], the last two authors of this paper have developed a new fixed point index
for the sum of an expansive mapping and a k-set contraction defined in cones of
some Banach spaces. Then some fixed point theorems, including Krasnoselskii type
theorems, have been showed.

In this work, we continue to extend the theory to the sum T +F of two mappings,
where T is an expansive mapping with constant h > 1 and the perturbation I − F is
a k-set contraction with 0 < k < h. Our aim is to provide a new contribution to the
fixed point index theory for this class of operators, and it is twofold: first, we define
and compute a topological index and then we prove several fixed point results, by
considering the fixed point index for sums of operators defined on translates of cones.

This paper contains five sections including this introduction. In section 2, we have
collected some basic concepts and auxiliary results needed throughout the paper. The
main results are then presented in Section 3, where the fixed point index is defined
and computed. Section 4 is devoted to the presentation of some cone compression
and expansion fixed point theorems for sums of operators. In Section 5, two examples
of application to nonlinear integral equations illustrate the abstract results obtained
in Section 3.

2. Preliminaries

Let (E, ‖.‖) be a real Banach space.

Definition 2.1. (a) A closed convex subset P of E is called a cone if αP ⊂ P for all
positive real number α and P ∩ (−P) = {0}.
(b) A cone P is called normal if there exists a positive constant N such that, for all
x, y ∈ P, we have x ≤ y ⇒ ‖x‖ ≤ N‖y‖. The least positive constant N is called the
normal constant of P.
(c) The partial order relation in E induced by the cone P is given by x ≤ y if and
only if y − x ∈ P.

For some constant r > 0, denote Pr = P ∩ Br, where Br = {x ∈ E : ‖x‖ < r}
is the open ball centered at the origin with radius r. P∗ = P \ {0} will refer to the
punctured cone.
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Definition 2.2. Let ΩE be the class of all bounded subsets of E. The Kuratowski
measure of noncompactness (MNC for short) α : ΩE → [0,+∞) is defined as

α(V ) = inf

{
δ > 0 | V =

n⋃
i=1

Vi and diam (Vi) ≤ δ, ∀ i = 1, . . . ,n

}
,

where diam (Vi) = sup{‖x− y‖E, x, y ∈ Vi} is the diameter of Vi.

The Kuratowski MNC α has the following properties (see [4]).

Proposition 2.1. (a) α (A) = 0⇔ A is compact.
(b) A ⊂ B =⇒ α (A) ≤ α (B) .
(c) α(A+B) ≤ α (A) + α (B) , ∀A,B ∈ ΩE .
(d) α(A+ x) = α (A) , ∀A ∈ ΩE , ∀x ∈ E.
(e) α(λA) = |λ|α (A) , ∀A ∈ ΩE, ∀λ ∈ R.
(f) If dim(E) =∞, α(Br) = 2r.

In connection with Definition 2.2, we have

Definition 2.3. Let A : D ⊂ E → E be a continuous operator. A is said to be:
(1) bounded if it maps bounded sets into bounded sets;
(2) compact if the set A (D) is relatively compact;
(3) completely continuous if it maps bounded sets into relatively compact sets;
(4) k-set contraction, for some number k ≥ 0, if it is bounded and α(A(V )) ≤ kα(V )
for every bounded set V ⊂ D, and strict-set contraction whenever k < 1.

For k-set-contractions, the following proposition holds:

Proposition 2.2. [20, Proposition 2] (a) If Ai : G→ E is ki-set contraction, i = 1, 2,
and A3 : A1(G) → E is k3-set contraction, then A1 + A2 : G → E is (k1 + k2)-set
contraction, and A3A1 : G→ X is k1k3-set contraction.
(b) A : G→ E is completely continuous if and only if A is 0-set contraction.
(c)If A : G → E is L-Lipschitzian (i.e., ‖A(x) − A(y)‖ ≤ L‖x − y‖ for x, y ∈ G),
then A is k-set contraction with k = L.
(d) If C : G → E is completely continuous and S : G → E is L-Lipschitzian, then
C + S is k-set contraction with k = L.

Definition 2.4. A mapping T : D ⊂ X → X, where (X, d) is a metric space, is said
to be expansive if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y) for all x, y ∈ D.

The following fixed point result is proved in [24, Theorem 2.1] for expansive mappings.

Proposition 2.3. Let (X, d) be a complete metric space and D be a closed subset of
X. Assume that the mapping T : D → X is expansive and D ⊂ T (D). Then there
exists a unique point x∗ ∈ D such that Tx∗ = x∗.

The proof is based on the following self-interesting result.
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Lemma 2.4. Let (E, ‖.‖) be a linear normed space and D ⊂ X. Assume that the
mapping T : D → E is expansive with constant h > 1. Then the inverse of T : D →
T (D) exists and

‖T−1x− T−1y‖ ≤ 1

h
‖x− y‖, ∀x, y ∈ T (D).

We complete the preliminaries by a useful compactness criterion, where Cb(R+,R)
stands for the Banach space of bounded continuous functions on the half-line.

Lemma 2.5. [6, Page 62] Let M ⊆ Cb(R+,R). Then M is relatively compact in
Cb(R+,R) if the following conditions hold:
(a) M is uniformly bounded in Cb(R+,R).
(b) The functions belonging to M are almost equicontinuous on R+, i.e. equicontin-
uous on every compact interval of R+.
(c) The functions from M are equiconvergent, that is, given ε > 0, there corresponds
T (ε) > 0 such that |x(t)− l| < ε for any t ≥ T (ε) and x ∈M.

3. Definition of a fixed point index

Given a real Banach space (E, ‖.‖), let Y ⊂ E be a closed convex subset. Let
Ω be any subset of Y and U be a bounded open subset of Y. Consider an expansive
mapping T : Ω→ E with constant h > 1 and let I−F : U → E be a k-set contraction
with 0 ≤ k < h. By Lemma 2.4, the operator T−1 is 1

h -Lipschtzian on T (Ω). Suppose
that

(I − F )(U) ⊂ T (Ω).

Then T−1(I − F ) : U → Ω ⊂ Y is a strict set contraction. Actually, the mapping
T−1(I − F ) is continuous, bounded, and for all bounded subset B ⊂ U , we have

α((T−1(I − F ))(B)) ≤ 1

h
α((I − F )(B)) ≤ k

h
α(B).

Note further that if x 6= Tx+ Fx, for all x ∈ ∂U ∩ Ω, then x 6= T−1(I − F )x, for all
x ∈ ∂U.

As in [10], a fixed point index of the sum T +F on U ∩Ω with respect to the closed
convex set Y can be defined by

i∗ (T + F,U ∩ Ω, Y ) =

{
i (T−1(I − F ), U, Y ), if U ∩ Ω 6= ∅
0, if U ∩ Ω = ∅. (3.1)

Theorem 3.1. The fixed point index i ∗(T + F,U ∩ Ω, Y ) defined in (3.1) has the
following properties:
(i) (Normalization) If U = Y ∩ B(ω, r), ω ∈ Ω, and (I − F )x = z0 for all x ∈ U,
where z0 ∈ Y ∩ ∈ T (Ω) and ‖z0 − Tω‖ < hr, then

i∗ (T + F,U ∩ Ω, Y ) = 1.

(ii) (Additivity) For any pair of disjoint open subsets U1, U2 ⊂ U such that T + F
has no fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω, Y ) = i ∗(T + F,U1 ∩ Ω, Y ) + i ∗(T + F,U2 ∩ Ω, Y ).
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(iii) (Homotopy invariance) The generalized fixed point index i ∗(T +H(., t), U ∩Ω, Y )
does not depend on the parameter t ∈ [0, 1], where
(a) (I −H) : [0, 1] × U → E is continuous and H(t, x) is uniformly continuous in t
with respect to x ∈ U,
(b) (I −H)([0, 1]× U) ⊂ T (Ω),
(c) (I −H(t, .)) : U → E is a `-set contraction with 0 ≤ ` < h, for all t ∈ [0, 1],
(d) Tx+H(t, x) 6= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.
(iv) (Solvability) If i ∗(T + F,U ∩ Ω, Y ) 6= 0, then T + F has a fixed point in U ∩ Ω.

Proof. We argue as in [10, Theorem 2.1]. Properties (ii), (iii), and (iv) are conse-
quences of (3.1) and of the properties of the fixed point index for strict set contrac-
tions (see [11, Theorem 1.3.5]). It remains to check the normalization property. If
U = Y ∩ B(w, r), then

i (T−1(I − F ), U, Y ) = i (T−1z0, U, Y ) = 1.

For this purpose, we show that y0 := T−1z0 ∈ B(ω, r)∩Ω. (I−F )(U) = {z0} ⊂ T (Ω)
implies that y0 ∈ Ω and since T is an expansive operator with h > 1, then

‖Ty0 − Tω‖ ≥ h‖y0 − ω‖.

Then

h‖y0 − ω‖ ≤ ‖Ty0 − Tω‖ = ‖z0 − Tω‖ < hr,

and thus y0 = T−1z0 ∈ U. Using the normalization property of the index [11, Theorem
1.3.5], we find that

i (T−1z0, U, Y ) = 1.

Finally i∗ (T + F,U ∩ Ω, Y ) = 1, as claimed. �

Remark 3.1. Let P ⊂ E be a cone, 0 ∈ Ω, and U = P ∩{x ∈ E : ψ(x) < R} , where
ψ is a nonnegative continuous functional on P satisfying ψ(x) ≤ ‖x‖ for all x ∈ P. If
(I − F )x = z0, for all x ∈ U, where z0 ∈ P and ‖z0 − T0‖ < hR, then we can prove
as for the normalization property that

i∗ (T + F,U ∩ Ω,P) = 1.

Remark 3.2. (1) Since T and I−T have the same properties in terms of invertibility
and since I − F is an `-set contraction with ` < h, one could think that the fixed
point index developed in this paper is a generalization of the one developed in [10].
Unfortunately the implication

F (U) ⊂ (I − T )(Ω)⇒ (I − F )(U) ⊂ T (Ω)

does not in general hold. For example:
(a) Let T : [0, 1] → R be such that Tx = − 5

2e
x and F : [0, 4] → R is Fx = e−x + 3.

Then, the conditions of the fixed point index developed in [10] are satisfied. Indeed,
T is a 5

2 -expansive mapping and F is a 1-set contraction. In addition

F ([0, 4]) = [e−4 + 3, 4] ⊂ (I − T )([0, 1]) =

[
5

2
, 1 +

5e

2

]
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but

(I − F )([0, 4]) = [−4, 1− 1

e
] 6⊂ T ([0, 1]) =

[
−5e

2
,−5

2

]
.

(b) Let T : [0, 1]→ R be such that Tx = 2x and F : [0, 5]→ R is Fx = − 1
10x+ g(x),

where g : [0, 5]→ [− 1
2 , 0] is a 4

5 -set contraction such that the equation g(x) + 9
10x = 0

has a solution in (0, 1]. Then the conditions of the fixed point index developed in [10]
are satisfied. Indeed, T is a 2-expansive mapping and F is a 9

10 -set contraction. In
addition F ([0, 5]) ⊂ [−1, 0] = (I − T )([0, 1]) but (I − F )([0, 5]) 6⊂ T ([0, 1]) = [0, 2].
(2) Conversely, define two mappings T, F : [0, 1]→ R by Tx = 3

2e
x and Fx = −2e−x.

Then T is a 3
2 -expansive mapping, (I − F )x = x+ 2e−x is a 1-set contraction, and

(I − F )([0, 1]) =

[
2 + e

e
, 2

]
⊂ T ([0, 1]) =

[
3

2
,

3

2
e

]
.

It is clear that the conditions of the fixed point index developed in this paper are
satisfied, while that of the index defined in [10] are not (F is a 2-set contraction).
Moreover, the equation Fx+ Tx = x cannot be rewritten in the abstract form

T̃ x+ F̃ x = x,

where T̃ is h̃-expansive and F̃ 6≡ 0 is k̃-set contraction with k̃ < h̃− 1.
(3) These two examples show that the fixed point index we present here and the
one developed in [10] do not coincide and are not easily comparable. Even in the
case where both approaches are applicable, we will present in this work new sufficient
conditions allowing the computation of the index of the fixed point for the sum of two
operators even on translates of cones.

3.1. Computation of a fixed point index. In this section, we show that the fixed
point index can be computed in case of a translate of a cone, rather than in a cone,
and in some cases even in an arbitrary closed convex subset. A fixed point index
in translates of cones of Banach spaces is defined in [9] for completely continuous
mappings and can be extended to the case of a strict set contractions. Let P 6= {0}
be a cone in E and K = P + θ (θ ∈ E) a θ-translate of P. Let Ω ⊂ K be a subset and
U ⊂ K be a bounded open subset such that Ω ∩U 6= ∅. Since K is a closed convex of
E, the fixed point index i∗ (T + F,U ∩ Ω,K) is well defined whenever T : Ω → E is
an expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, (I−F )(U) ⊂ T (Ω), and x 6= Tx+Fx for all x ∈ ∂U ∩Ω, where U and ∂U
denotes the closure and the boundary of U in K, respectively. For two real numbers
0 < r < R, define the sets:

Kr = {x ∈ K : ‖x− θ‖ < r}
∂Kr = {x ∈ K : ‖x− θ‖ = r}
Kr,R = {x ∈ K : r < ‖x− θ‖ < R}.

Proposition 3.2. Let T : Ω ⊂ K → E be an expansive mapping with constant
h > 1 and I − F : Kr → E be a k-set contraction with 0 ≤ k < h such that
t(I − F )(Kr) + (1− t)θ ⊂ T (Ω), for all t ∈ [0, 1]. Assume that θ ∈ Ω, ‖Tθ− θ‖ < hr,
and

Tx 6= λ(x− Fx) + (1− λ)θ, for all x ∈ ∂Kr ∩ Ω and 0 ≤ λ ≤ 1. (3.2)
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Then i∗ (T + F,Kr ∩ Ω,P) = 1.

Proof. Define the line homotopy H : [0, 1]×Kr → E by

H(t, x) = tFx+ (1− t)(x− θ).
Then, the operator (I −H) is continuous and uniformly continuous in t for each x.
Moreover the mapping (I−H(t, .)) is a k-set contraction for each t. Actually, for any
bounded set B in Kr, we have

α((I −H(t, .))(B)) = α(t(I − F )(B) + (1− t)θ) ≤ kα(B).

In addition, T + H(t, .) has no fixed point on ∂Kr ∩ Ω. If not, there exist some
x0 ∈ ∂Kr ∩ Ω and t0 ∈ [0, 1] such that

Tx0 + t0Fx0 + (1− t0)(x0 − θ) = x0.

Then Tx0 = t0(x0−Fx0) + (1− t0)θ, leading to a contradiction with the hypothesis.
By properties (i) and (iii) of the fixed point index in Theorem 3.1, we get

i∗ (T + F,Kr ∩ Ω,K) = i∗ (T + I − θ,Kr ∩ Ω,K) = 1. �

From Proposition 3.2, we capture the following two results.

Corollary 3.3. Assume that T : Ω ⊂ K → E is an expansive mapping with
constant h > 1, I − F : Kr → E is a k-set contraction with 0 ≤ k < h, and(
t(I − F )(Kr) + (1− t)θ

)
⊂ T (Ω), for all t ∈ [0, 1]. If θ ∈ Ω, ‖Tθ − θ‖ < hr, and

‖Tx− θ‖ ≥ ‖x− Fx− θ‖ and Tx+ Fx 6= x, for all x ∈ ∂Kr ∩ Ω.

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. It is sufficient to prove that Assumption (3.2) holds. By contradiction, let
x0 ∈ Kr ∩ Ω and let 0 ≤ λ0 ≤ 1 satisfy Tx0 = λ0(x0 − Fx0) + (1 − λ0)θ. If λ0 = 1,
then x0 − Fx0 = Tx0 which is impossible. If 0 ≤ λ0 < 1, then

‖Tx0 − θ‖ = λ0‖x0 − Tx0 − θ‖ < ‖x0 − Tx0 − θ‖,
which is a contradiction. �

Corollary 3.4. Let T : Ω ⊂ K → E be an expansive mapping with constant
h > 1 and let I − F : Kr → E be a k-set contraction with 0 ≤ k < h such that(
(I − F )(Kr) + (1− t)θ

)
⊂ T (Ω), for all t ∈ [0, 1]. Assume further that θ ∈ Ω,

‖Tθ − θ‖ < hr,
x− Fx ∈ K for all x ∈ ∂Kr ∩ Ω,

and
Tx � x− Fx for all x ∈ ∂Kr ∩ Ω.

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. Assumption (3.2) is readily checked for otherwise there would exist some x0 ∈
Kr ∩ Ω and 0 ≤ λ0 ≤ 1 such that Tx0 = λ0(x0 − Fx0) + (1− λ0)θ. Hence

Tx0 − θ = λ0(x0 − Fx0 − θ).
Since x0−Fx0−θ ∈ P, then λ0(x0−Fx0−θ) ≤ x0−Fx0−θ, which is a contradiction
to our assumption. �
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Proposition 3.5. Let θ ∈ U ⊂ K be a bounded open subset and T : Ω ⊂ K → E be
an expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Assume further that

x− Fx 6= T (λx+ (1− λ)θ), for all x ∈ ∂U, λ ≥ 1 and λx+ (1− λ)θ ∈ Ω.

Then i∗ (T + F,U ∩ Ω,K) = 1.

Proof. The mapping T−1(I − F ) : U → K is a strict set contraction and it is clear
that

T−1(I − F )x− θ 6= λ(x− θ), for all x ∈ ∂U and λ ≥ 1. (3.3)

Owing to [9, Proposition 2.2], i (T−1(I−F ), U,K) = 1. Then Equality (3.1) ends this
proof. �

Proposition 3.6. Let U ⊂ K be a bounded open subset, T : Ω ⊂ K → E be an
expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Assume that θ ∈ Ω ∩ U ,

‖x− Fx− Tθ‖ ≤ h‖x− θ‖, and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω. (3.4)

Then i∗ (T + F,U ∩ Ω,P) = 1.

Proof. According to Lemma 2.4, T−1(I − F ) : U → K is a strict set contraction.
From the inclusion (I − F )(U) ⊂ T (Ω), for all x ∈ U, we can find some y ∈ Ω such
that x− Fx = Ty. For all x ∈ U, we have T−1(x− Fx) ∈ Ω and

T ((T−1(x− Fx)) = x− Fx,

which implies that

‖T (T−1(x− Fx))− Tθ‖ = ‖x− Fx− Tθ‖.

Since T is expansive with constant h, we have

‖T (T−1(x− Fx))− Tθ‖ ≥ h‖T−1(x− Fx)− θ‖.

Hence

h‖T−1(I − F )x− θ‖ ≤ ‖x− Fx− Tθ‖. (3.5)

From (3.5) and Assumption (3.4), we get

‖T−1(I − F )x− θ‖ ≤ 1

h
‖x− Fx− Tθ‖ ≤ ‖x− θ‖, ∀x ∈ ∂U.

Therefore for all x ∈ ∂U ∩ Ω

‖T−1(I − F )x− θ‖ ≤ ‖x− θ‖ and T−1(I − F )x 6= x.

Due to [9, Corollary 2.2], i (T−1(I − F ), U,K) = 1. Equality (3.1) completes the
proof. �

In case of a cone, i.e., θ = 0, Proposition 3.5 and Proposition 3.6 become
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Corollary 3.7. Let 0 ∈ U ⊂ K be a bounded open subset and T : Ω ⊂ P → E be an
expansive mapping with constant h > 1, I − F : U → E be a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Assume further that

x− Fx 6= T (λx), for all x ∈ ∂U ∩ Ω, λ ≥ 1, and λx ∈ Ω.

Then i∗ (T + F,U ∩ Ω,P) = 1.

Corollary 3.8. Assume that T : Ω ⊂ P → E is an expansive mapping with constant
h > 1, I −F : U → E is a k-set contraction with 0 ≤ k < h, and (I −F )(U) ⊂ T (Ω).
Let 0 ∈ Ω ∩ U ,

‖x− Fx− T0‖ ≤ h‖x‖, and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω. (3.6)

Then i∗ (T + F,U ∩ Ω,P) = 1.

The following result can be directly proved by replacing the operator A in [11,
Corollary 1.3.1] by T−1(I − F ).

Proposition 3.9. Assume that T : Ω ⊂ K → E is an expansive mapping with
constant h > 1, I − F : Kr → E is a k-set contraction with 0 ≤ k < h, and
(I − F )(Kr) ⊂ T (Ω).

In addition, if T−1(I − F )(Kr) ⊂ Kr, then i∗ (T + F,Kr ∩ Ω,K) = 1.

In particular, we have

Corollary 3.10. Assume that T : Ω ⊂ K → E is an expansive mapping with constant
h > 1, I−F : Kr → E is a k-set contraction with 0 ≤ k < h, and (I−F )(Kr) ⊂ T (Ω).
If θ ∈ Ω, and

‖x− Fx− Tθ‖ < hr, for all x ∈ Kr. (3.7)

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. From (3.5) and Assumption (3.7), for all x ∈ Kr, we conclude that

‖T−1(I − F )x− θ‖ ≤ 1

h
‖x− Fx− Tθ‖ < r.

Hence T−1(I − F )(Kr) ⊂ Kr. �

A special situation in Corollary 3.10 is

Corollary 3.11. Assume that T : Ω ⊂ K → E is an expansive mapping with constant
h > 1, I − F : Kr → E is a k-set contraction with 0 ≤ k < h, r is sufficiently large,
and (I − F )(Kr) ⊂ T (Ω). If further θ ∈ Ω and

‖x− Fx‖ ≤ ‖x− θ‖, for all x ∈ Kr, (3.8)

then T + F has at least one fixed point in Kr ∩ Ω.

Proof. Notice that

‖x− Fx− Tθ‖ ≤ ‖x− Fx‖+ ‖Tθ‖
≤ ‖x− θ‖+ ‖Tθ‖
≤ r + ‖Tθ‖
≤ hr,
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for all r > ‖Tθ‖
h−1 . By Corollary 3.10, i∗ (T + F,Kr ∩ Ω,P) = 1. As a consequence,

T + F has a fixed point in Kr ∩ Ω. �

Before giving results for zero index i∗, we need an auxiliary lemma on index fixed
point of strict set contractions.

Lemma 3.12. Let K be a translate of a cone P 6= ∅ and U be a bounded open subset
of K. Assume that A : U → K is a strict set contraction and there is w0 ∈ P∗ such
that

x−Ax 6= λw0, for all x ∈ ∂U, λ ≥ 0. (3.9)

Then i(A,U,K) = 0.

Proof. Define the homotopy H : [0, 1]× U → K by

H(t, x) = Ax+ tλ0w0,

for some

λ0 > sup
x∈U

(‖w0‖−1(‖x‖+ ‖Ax‖)). (3.10)

Such a choice is possible since U is a bounded subset and so is A(U). The operator
H is continuous and uniformly continuous in t for each x, and the mapping H(t, .) is
a strict set contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on
∂U . On the contrary, there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that

x0 = Ax0 + t0λ0w0,

contradicting the hypothesis. By [11, Theorem 1.3.5], we get

i(A,U,K) = i(H(0, .), U,K) = i(H(1, .), U,K) = 0. (3.11)

Indeed, suppose that i(H(1, .), U,K) 6= 0. Then there exists x0 ∈ U such that

Ax0 + λ0w0 = x0,

which implies that λ0 ≤ ‖w0‖−1(‖x0‖+ ‖Ax0‖), contradicting (3.10). �

Proposition 3.13. Let U ⊂ K be a bounded open subset, T : Ω ⊂ K → E be an
expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Let u0 ∈ P∗ be such that

x− Fx 6= T (x− λu0), for all x ∈ ∂U ∩ (Ω + λu0) and λ ≥ 0. (3.12)

Then i∗ (T + F,U ∩ Ω,K) = 0.

Proof. The mapping T−1(I − F ) : U → K is a strict set contraction and in view of
(3.12), we have

x− T−1(I − F )x 6= λu0 for all x ∈ ∂U and λ ≥ 0.

By (3.1) and Lemma 3.12, we deduce that

i∗ (T + F,U ∩ Ω,P) = i (T−1(I − F ), U,P) = 0. �

The following two propositions are direct consequences of Proposition 3.13; the
proofs are omitted.
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Proposition 3.14. U ⊂ K be a bounded open subset and T : Ω ⊂ K → E be an
expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Suppose further that there exists u0 ∈ P∗ such
that T (x− λu0) ∈ P, for all x ∈ ∂U ∩ (Ω + λu0) and

Fx 6≤ x, for all x ∈ ∂U and λ ≥ 0.

Then i∗ (T + F,U ∩ Ω,K) = 0.

Proposition 3.15. Let U ⊂ K be a bounded open subset. Assume that T : Ω→ E is
an expansive mapping with constant h > 1, I − F : U → E a k-set contraction with
0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Let u0 ∈ P∗ satisfy T (x − λu0) ∈ P, for all
x ∈ ∂U ∩ (Ω + λu0) and λ ≥ 0. Suppose that P is a normal cone with constant N
and the following conditions hold:

Fx ∈ K, and ‖Fx− θ‖ > N‖x− θ‖, for all x ∈ ∂U.

Then i∗ (T + F,U ∩ Ω,K) = 0.

Remark 3.3. (1) Letting θ = 0, we obtain computations of the index in case of the
cone.
(2) Proposition 3.2 and Corollary 3.3 remain valid in the more general setting of
Y ∩ B(θ,R), where Y ⊂ E is an arbitrary closed convex subset and

B(θ,R) = {x ∈ E : ‖x− θ‖ < R}.

(3) Proposition 3.5 holds in the framework of any closed convex subset Y of E con-
taining θ.

4. Fixed point theorems of cone compression and expansion type

Some results from the previous section are next combined to establish three fixed
point theorems of cone compression and expansion type. The proofs are based on the
properties of the topological index i∗. We omit the details.

Theorem 4.1. (Homotopy version). Let E be a Banach space, P ⊂ E a cone, and
K = P + θ a translate of P. Let Ω ⊂ K with θ ∈ Ω. Let U1 and U2 be two open
subsets of K such that θ ∈ U1 ⊂ U2. Let T : Ω → E be an expansive mapping with
constant h > 1 and I − F : U2 → E a k-set contraction with 0 ≤ k < h such that
(I − F )(U2) ⊂ T (Ω). Assume that (U2 \ U1) ∩ Ω 6= ∅ and there exists u0 ∈ P∗ such
that either one of the following conditions holds:
(i) x− Fx 6= T (x− λu0), for all x ∈ ∂U1 ∩ (Ω + λu0), and

x− Fx 6= T (λx+ (1− λ)θ),

for all x ∈ ∂U2, λ ≥ 1 and λx+ (1− λ)θ ∈ Ω.
(ii) x− Fx 6= T (x− λu0) for all x ∈ ∂U2 ∩ (Ω + λu0), and

x− Fx 6= T (λx+ (1− λ)θ),

for all x ∈ ∂U1, λ ≥ 1 and λx+ (1− λ)θ ∈ Ω.
Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.
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Proof. Without loss of generality, suppose that Tx + Fx 6= x on ∂U1 ∩ Ω and on
∂U2 ∩Ω, for otherwise we are finished. If condition (i) holds, by Propositions 3.5 and
3.13, we have

i∗ (T + F,U1 ∩ Ω,K) = 1 and i∗ (T + F,U2 ∩ Ω,K) = 0.

The additivity property of the index yields

i∗ (T + F, (U2 \ U2 ∩ Ω,K) = −1.

By the existence property of the index, the sum T +F has at least one fixed point in
the closed set (U2 \ U1) ∩ Ω. The proof is similar in case (ii). �

Theorem 4.2. (Norm version). Let E be a Banach space, P ⊂ E a normal cone
with constant N , and K = P + θ a translate of P. Let θ ∈ Ω ⊂ K and U1, U2 be two
bounded open subsets of K such that θ ∈ U1 ⊂ U2. Let T : Ω → E be an expansive
mapping with constant h > 1 and I − F : U2 → E a k-set contraction with 0 ≤ k < h
such that (I − F )(U2) ⊂ T (Ω). Assume that (U2 \ U1) ∩ Ω 6= ∅ and there are u0 ∈
P∗ with T (x− λu0) ∈ P, for all λ ≥ 0 and x ∈ ∂U1 ∩ ∂U2 ∩ (Ω + λu0). Let one of
the following conditions holds:
(i) ‖x− Fx− Tθ‖ < h‖x− θ‖, for all x ∈ ∂U1 ∩ Ω and Fx ∈ K,

‖Fx− θ‖ > N‖x− θ‖,
for all x ∈ ∂U2,
(ii) ‖x− Fx− Tθ‖ < h‖x− θ‖ for all x ∈ ∂U2 ∩ Ω and Fx ∈ K,

‖Fx− θ‖ > N‖x− θ‖,
for all x ∈ ∂U1.
Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.

Proof. The proof uses Propositions 3.6 and 3.15. �

Theorem 4.3. (Order version). Let E be a Banach space, P ⊂ E a cone, and
K = P + θ a translate of P. Let Ω ⊂ K with θ ∈ Ω, γ, β > 0, γ 6= β, r = min {γ, β},
and R = max {gamma, β} . Let T : Ω → E be an expansive mapping with constant
h > 1 such that ‖Tθ − θ‖ < hγ, and I − F : KR → E be a k-set contraction with
0 ≤ k < h. Assume that Kr,R ∩ Ω 6= ∅,

(I − F )(∂Kγ ∩ Ω) ⊂ K,
and there is

u0 ∈ P∗ with T (x− λu0) ∈ P, for all λ ≥ 0, x ∈ ∂Kβ ∩ (Ω + λu0).

If further {
Tx � x− Fx, for all x ∈ ∂Kγ ∩ Ω,
Fx 6≤ x, for all x ∈ ∂Kβ ,

then T + F has a fixed point x ∈ Kr,R ∩ Ω.

Proof. The proof uses Corollary 3.4 and Proposition 3.14. �

Clearly, the following result on a cone is a particular case of Theorem 4.1.
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Corollary 4.4. Let E be a Banach space, P ⊂ E a cone, and Ω ⊂ P with 0 ∈ Ω.
Let U1 and U2 be two open subsets of P such that 0 ∈ U1 ⊂ U2. Let T : Ω→ E be an
expansive mapping with constant h > 1 and I − F : U2 → E a k-set contraction with
0 ≤ k < h. Assume that (U2 \ U1) ∩ Ω 6= ∅ and

(I − F )(U2) ⊂ T (Ω).

Assume that there exists u0 ∈ P∗ such that either one of the following conditions
holds:

(i) x− Fx 6= T (λx), for all x ∈ ∂U1 ∩ λ ≥ 1 and λx ∈ Ω, and

(I − F )x 6= T (x− λu0),

for all x ∈ ∂U2 ∩ (Ω + λu0), λ ≥ 0,
(ii) x− Fx 6= T (λx), for all x ∈ ∂U2 ∩ Ω and λ ≥ 1, and

(I − F )x 6= T (x− λu0),

for all x ∈ ∂U1 ∩ (Ω + λu0), λ ≥ 0.
Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.

5. Applications

5.1. Example 1. Consider the nonlinear equation

p(t)x3(t)− x(t) = g(t, x(t)), 0 < t < 1, (5.1)

where
(H1) p : [0, 1]→ R+ is continuous, g : [0, 1]× R+ → R+ is continuous, and for each
bounded function x on [0, 1], the superposition operator g(·, x(·)) is equicontinuous
on [0, 1].

Let

p1 : = min
0≤t≤1

p(t) and p2 =: max
0≤t≤1

p(t).

Assume that
(H2) 1 ≤ p1 ≤ p2 < 1 + 2p1.
(H3) There exists R > 0 such that

p(t)− 1 ≤ g(t, x) ≤ p1R3 −R, ∀ (t, x) ∈ [0, 1]× [0, R+ 1] (5.2)

and

3p1R− p1R3 ≥ p2 − 1. (5.3)

Remark 5.1 (Discussion of Hypothesis (H3)). (a) A sufficient condition for (H3) to
hold is that g is uniformly bounded and

0 < p2 − 1 ≤ ‖g‖0 <
3p1 − 1

2

√
3p1 + 1

2p1
, (5.4)

where ‖g‖0 = sup
0≤t≤1, x≥0

g(t, x).

To see this, let the functions φ(R) = 3p1R−p1R3 and ψ(R) = p1R
3−R. Then the

function φ is positive on (0,
√

3) and assumes 2p1 as a maximum at the point R = 1.
The function ψ is positive increasing function over ( 1√

p1
,+∞). The functions φ and
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ψ intersect at the point R0 =
√

3p1+1
2p1

with φ(R0) = ψ(R0) = 3p1−1
2

√
3p1+1
2p1

. As a

consequence, (5.2) and (5.3) hold for all R ∈ (R1, R2), where R1 = ψ−1(‖g‖0) and

R2 = φ−1(p2 − 1) (actually 1 < R1 < R2 <
√

3).
(b) As for the first inequality in (5.2), it suffices that it holds for (t, x) ∈ [0, 1]×[0,+∞).

Our main existence result is

Theorem 5.1. Under Assumptions (H1)-(H3), Equation (5.1) has at least one solu-
tion x ∈ C([0, 1]) such that x(t) ≥ 1, for 0 ≤ t ≤ 1.

Proof. Consider the Banach space E = C([0, 1],R) with the sup-norm

‖x‖0 = max
t∈[0,1]

|x(t)|.

Let the cone
K = {x ∈ E : x(t) ≥ 1}

and the conical shell

KR = K ∩ B(1, R) = {x ∈ K : ‖x− 1‖0 < R},
where R is defined in (H3). In view of Proposition 3.6, we introduce the operators
T, F : KR → E by

(Tx)(t) = x(t)− p(t)x3(t)

and
(Fx)(t) = x(t) + g(t, x(t)),

respectively, for t ∈ [0, 1]. Then equation (5.8) is equivalent to the abstract equation
x = Tx+ Fx.
Step 1. (a) T and F clearly map KR into E. Moreover

‖Tx− Ty‖0 ≥ (3p1 − 1)‖x− y‖0, ∀x, y ∈ KR,
that is T : KR → E is expansive with constant h = 3p1 − 1 > 1.
(b) If x ∈ KR, then ‖x− 1‖0 ≤ R and

‖x− Fx‖0 ≤ sup
0≤t≤1; 1≤u≤1+R

g(t, u) < +∞, (5.5)

which implies that (I − F )(KR) is uniformly bounded. (H1) further implies that
(I−F )(KR) is equicontinuous in E. By Arzéla-Ascoli Lemma, (I−F ) maps bounded
sets of KR into relatively compact sets. Since g is continuous, then so is (I − F ).
Hence I − F : KR → E is completely continuous, i.e., is a 0-set contraction.
(c) By (5.3), for all x ∈ ∂KR and t ∈ [0, 1], we have

|x− Fx(t)− Tθ(t)| = | − g(t, x(t)) + p(t)− 1|
≤ p1R

3 −R+ p2 − 1
≤ (3p1 − 1)R = hR,

i.e.,
‖x− Fx+ Tθ‖0 ≤ h‖x− θ‖0, ∀x ∈ ∂KR.

Step 2. We claim that
(I − F )(KR) ⊂ T (KR). (5.6)



ON THE FIXED POINT INDEX 157

Let y ∈ (I − F )(KR) and x ∈ KR be such that y = (I − F )x.
(a) First we claim that

KR ⊂ y + (I − T )(KR). (5.7)

Let u ∈ KR and

v(t) = 3

√
u(t) + g(t, x(t))

p(t)
, t ∈ [0, 1].

Using Assumptions (H2)− (H3), for all t ∈ [0, 1], we obtain the estimates

1 ≤ 3

√
1 + g(t, x(t))

p(t)
≤ v(t) ≤ 3

√
1 +R+ g(t, x(t))

p(t)
≤ 3

√
p1R3 + 1

p(t)
≤ R+ 1.

Thus, v ∈ KR and

u(t) = −g(t, x(t)) + p(t)v3(t), t ∈ [0, 1].

Since y = x − Fx = −g(·, x(·), then u = y + (I − T )(v) with v ∈ KR, that is
u ∈ y + (I − T )(KR), proving (5.7).
(b) To show (5.6), notice that the mapping y + (I − T ) : KR → E is 3p1-expansive.
Owing to Lemma 2.3 with D = KR and using (5.7), we conclude that y+ (I −T ) has
a unique fixed point, i.e., there exists w ∈ KR such that

y + (I − T )(w) = w ⇐⇒ y = T (w),

that is y ∈ T (KR), proving (5.6). Finally, assume that Tx+Fx 6= x on ∂KR, otherwise
we are done. Letting U = KR and Ω = KR in Proposition 3.6, we obtain

i∗ (T + F,KR,K) = 1.

By the existence property of the index, the mapping T + F has at least one positive
fixed point x in KR, solution of Equation (5.1). �

5.2. Example 2. Consider the nonlinear integral equation

x(t) =

∫ +∞

0

G(t, s) f(s, x(s)) ds, t ≥ 0, (5.8)

where f,G ∈ C(R+ × R+,R+) and lim
t→+∞

G(t, s) = `, for all positive s. Suppose that

the following conditions hold:
(H1) ∃ p > 0, p 6= 1, 0 ≤ f(t, x) ≤ a(t) + b(t)xp, ∀ (t, x) ∈ [0,+∞)× [0,+∞),

where the coefficients a, b ∈ C(R+,R+).
(H2) Assume that

M1 := sup
t∈[0,+∞)

∫ +∞
0

G(t, s)a(s) ds <∞

M2 := sup
t∈[0,+∞)

∫ +∞
0

G(t, s)b(s) ds <∞,

and there exist ε ∈ (0, 1) and R > 1+ε
2 such that

M1 +M2R
p <

1 + ε

2
.
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Remark 5.2. As example, the values M1 = 1
20 , M2 = 1

10 , p ∈ R, ε = 1
2 , and R = 1

validate the inequality in Assumption (H2).

Theorem 5.2. Under Assumptions (H1) and (H2), the integral equation (5.8) has
at least one positive solution x ∈ C[0,+∞) such that 0 < x(t) ≤ R, ∀ t ≥ 0.

Proof. Consider the Banach space

E =

{
x ∈ C([0,+∞),R) : lim

t→+∞
x(t) exists

}
with norm

‖x‖ = sup
t∈[0,+∞)

|x(t)|

and the positive cone

P = {x ∈ E : x(t) ≥ 0, t ≥ 0}.

Let R1 =
εR+M1 +M2R

p

1 + ε
and let BR = B(0, R) denote the open ball centered at

the origin with radius R. Consider the open sets:

U = BR ∩ {x ∈ E : x(t) ≥ 1 + ε

2
, ∀ t ∈ J},

Ω = BR1
∩ P,

for some compact sub-interval J ⊂ [0,+∞). Since R < 1+ε
2 , then U 6= ∅. On E,

define the operators

Tx(t) = (1 + ε)x(t),

Fx(t) = (1− ε)x(t)−
∫ +∞

0

G(t, s)f(s, x(s))ds.

Then the integral equation (5.8) is equivalent to the operator equation x = Tx+Fx.
Next, we check that all assumptions of Corollary 3.7 are satisfied. First we have
T : Ω→ E and

‖Tx− Ty‖ = (1 + ε)‖x− y‖,

for all x, y ∈ Ω, i.e., T : Ω→ E is an expansive operator with a constant h = 1 + ε.
Step 1. We have I − F : U → E is continuous, bounded mapping and for x ∈ U ,∫ +∞

0

G(t, s)|f(s, x(s))|ds ≤
∫ +∞

0

G(t, s)a(s) + b(s)s(s)ds

≤ M1 +M2R
p <∞.

Hence, by the properties of the kernel G, Lebesgue’s dominated convergence theorem
yields ∣∣∣∣∫ +∞

0

G(t1, s)f(s, x(s)) ds−
∫ +∞

0

G(t2, s)f(s, x(s)) ds

∣∣∣∣
≤

∫ ∞
0

|G(t1, s)−G(t2, s)|f(s, x(s)) ds,
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which tends to 0, uniformly in x ∈ BR, as |t1 − t2| → 0. Moreover

lim
t→+∞

∣∣∣∣∫ +∞

0

G(t, s)f(s, x(s)) ds− lim
y→+∞

∫ +∞

0

G(y, s)f(s, x(s)) ds

∣∣∣∣
= lim

t→+∞

∣∣∣∣∫ +∞

0

G(t, s)f(s, x(s)) ds− l
∣∣∣∣ = 0.

As a consequence, Corduneanu’s compactness criterion lemma 2.5 assures that for all
t ∈ [0,+∞) and every bounded subset B ⊂ U, the set{

t 7→
∫ +∞

0

G(t, s)f(s, x(s))ds, x ∈ B
}

is relatively compact. Furthermore, the operator I − F is written as sum of a ε-
contraction and a completely continuous mapping. Thus, I − F : U → E is a ε-set
contraction.
Step 2. Let y ∈ BR be arbitrarily chosen. For t ≥ 0, take

z(t) =
εy +

∫ +∞
0

G(t, s)f(s, y(s))ds,

1 + ε
.

Then

0 ≤ z(t) ≤ εR+M1 +M2R
p

1 + ε
= R1,

i.e., z ∈ Ω and

εy +

∫ +∞

0

G(t, s)f(s, y(s)) ds = (1 + ε)z(t) = Tz(t), t ≥ 0.

Therefore (I − F )(U) ⊂ T (Ω).
Step 3. Assume that there exist some x0 ∈ ∂U and λ0 ≥ 1 such that λ0x0 ∈ Ω and

x0(t)− Fx0(t) = T (λ0x0(t)), t ≥ 0.

Then

εx0(t) +

∫ +∞

0

G(t, s)f(s, x0(s))ds = λ0(1 + ε)x0(t), t ≥ 0).

Hence ∫ +∞

0

G(t, s)f(s, x0(s))ds = (λ0 + (λ0 − 1)ε)x0(t).

Let t1 ∈ J be such that

x0(t1) ≥ 1 + ε

2
.

Since λ0 ≥ 1, we have the estimates

1 + ε

2
≤ x0(t1) ≤ (λ0 + (λ0 − 1)ε)x0(t1)

=

∫ +∞

0

G(t1, s)f(s, x0(s))ds

≤ M1 +M2R
p <

1 + ε

2
·
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which is a contradiction. By Corollary 3.7, the integral equation (5.8) has a non
trivial positive solution x in C([0,+∞)) such that 0 ≤ x(t) ≤ R, for all x ∈ [0,+∞).
This completes the proof of Theorem 5.1. �
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