ON SYSTEM OF SPLIT GENERALISED MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS FOR MULTIVALUED MAPPINGS WITH NO PRIOR KNOWLEDGE OF OPERATOR NORM

T.O. ALAKOYA*, A. TAIWO** AND O.T. MEWOMO***
*School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
E-mail:218086823@stu.ukzn.ac.za, timimaths@gmail.com
**School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
E-mail:218086816@stu.ukzn.ac.za, taiwo.adeolu@yahoo.com
***School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
E-mail:mewomoo@ukzn.ac.za

Abstract

In this paper, we introduce the System of Split Generalized Mixed Equilibrium Problem (SSGMEP), which is more general than the existing well known split equilibrium problem and its generalizations, split variational inequality problem and several other related problems. We propose a new iterative algorithm of inertial form which is independent on the operator norm for solving SSGMEP in real Hilbert spaces. Motivated by the adaptive step size technique and inertial method, we incorporate self adaptive step size and inertial technique to overcome the difficulty of having to compute the operator norm and to accelerate the convergence of the proposed method. Under standard and mild assumptions on the control sequences, we establish the strong convergence of the algorithm, obtain a common solution of the SSGMEP and fixed point of finite family of multivalued demicontractive mappings. We obtain some consequent results which complement several existing results in this direction in the literature. We also apply our results to finding solution of split convex minimisation problems. Numerical example is presented to illustrate the performance of our method as well as comparing it with its non-inertial version.

Key Words and Phrases: Inertial algorithm, system of split generalized mixed equilibrium problems, fixed point problems, multivalued demicontractive mappings, strong convergence.
2020 Mathematics Subject Classification: 65K15, 47J25, 65J15, 90C33, 47H10.

1. Introduction

Let H be a real Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let C be a nonempty closed convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ be a
nonlinear bifunction, $P: C \rightarrow H$ a nonlinear mapping, and $\phi: C \rightarrow \mathbb{R} \cup\{+\infty\}$ a proper lower semicontinuous and convex function. The generalized Mixed Equilibrium Problem (GMEP) (see [29, 49]) is to find a point $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y)+\langle P \hat{x}, y-\hat{x}\rangle+\phi(y)-\phi(\hat{x}) \geq 0, \text { for all } y \in C \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $\operatorname{GMEP}(f, P, \phi)$. If $P=0$, then the GMEP (1.1) reduces to the following Mixed Equilibrium Problem (MEP) (see [52]), find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y)+\phi(y)-\phi(\hat{x}) \geq 0, \text { for all } y \in C \tag{1.2}
\end{equation*}
$$

If $\phi=0$, then the GMEP (1.1) reduces to the following generalized Equilibrium Problem (GEP) (see [18]), find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y)+\langle P \hat{x}, y-\hat{x}\rangle \geq 0, \text { for all } y \in C \tag{1.3}
\end{equation*}
$$

In particular, if $P=\phi=0$, then the GMEP (1.1) reduces to the classical Equilibrium Problem $(E P)$ introduced by Blum and Oettli [11], which is defined as finding $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y) \geq 0, \text { for all } y \in C \tag{1.4}
\end{equation*}
$$

The EP and its generalisations are known to have wide area of applications in a large variety of problems arising in the fields of linear and nonlinear programming, variational inequalities, complementary problems, optimization problems, fixed-point problems and have been widely applied in physics, structural analysis, management sciences and economics, etc. (see, for example [11, 14, 19, 24, 47, 42]). Several algorithms have been developed for solving the EP and its related optimization problems, see $[1,4,30,14,15,20,22,26,32,37,46,50]$, and the references therein.
Let H_{1} and H_{2} be Hilbert spaces, and let C and D be nonempty closed and convex subsets of H_{1} and H_{2}, respectively. Let $f: C \times C \rightarrow \mathbb{R}, g: D \times D \rightarrow \mathbb{R}$ be nonlinear bifunctions, $P: C \rightarrow H_{1}, Q: D \rightarrow H_{2}$, be nonlinear mappings, and $\phi: C \rightarrow \mathbb{R} \cup\{+\infty\}, \varphi: D \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper lower semicontinuous and convex functions. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. The Split generalized Mixed Equilibrium Problem (SGMEP) (see, for example [25]) is to find a point $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, x)+\langle P \hat{x}, x-\hat{x}\rangle+\phi(x)-\phi(\hat{x}) \geq 0, \text { for all } x \in C \tag{1.5}
\end{equation*}
$$

and $\hat{y}=A \hat{x} \in D$ solves

$$
\begin{equation*}
g(\hat{y}, y)+\langle Q \hat{y}, y-\hat{y}\rangle+\varphi(y)-\varphi(\hat{y}) \geq 0, \text { for all } y \in D \tag{1.6}
\end{equation*}
$$

We denote the solution set of (1.5)-(1.6) by $\Gamma=\{\hat{x} \in \operatorname{GMEP}(f, P, \phi): A \hat{x} \in$ $\operatorname{GMEP}(g, Q, \varphi)\}$. If $P=Q=0$, then (1.5)-(1.6) reduces to the following Split Mixed Equilibrium Problem (SMEP) introduced by Onjai-uea and Phuengrattana [38] in 2017: Find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, x)+\phi(x)-\phi(\hat{x}) \geq 0, \text { for all } x \in C \tag{1.7}
\end{equation*}
$$

and $\hat{y}=A \hat{x} \in D$ solves

$$
\begin{equation*}
g(\hat{y}, y)+\varphi(y)-\varphi(\hat{y}) \geq 0, \text { for all } y \in D \tag{1.8}
\end{equation*}
$$

Also, if $\phi=\varphi=0$ in (1.5)-(1.6), we have the following Split generalized Equilibrium Problem (SGEP) (see, for example [40, 13]): Find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, x)+\langle P \hat{x}, x-\hat{x}\rangle \geq 0, \text { for all } x \in C \tag{1.9}
\end{equation*}
$$

and $\hat{y}=A \hat{x} \in D$ solves

$$
\begin{equation*}
g(\hat{y}, y)+\langle Q \hat{y}, y-\hat{y}\rangle \geq 0, \text { for all } y \in D \tag{1.10}
\end{equation*}
$$

Furthermore, if $P=Q=0$ and $\phi=\varphi=0$, then the $S G M E P$ (1.5)-(1.6) reduces to the Split Equilibrium Problem (SEP) (see, for example [2, 16, 17]), defined as follows: Find a point $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, x) \geq 0, \text { for all } x \in C, \tag{1.11}
\end{equation*}
$$

and $\hat{y}=A \hat{x} \in D$ solves

$$
\begin{equation*}
g(\hat{y}, y) \geq 0, \text { for all } y \in D \tag{1.12}
\end{equation*}
$$

Let $S: C \rightarrow C$ be a nonlinear mapping. A point $x^{*} \in C$ is called a fixed point of S if $S x^{*}=x^{*}$. We denote by $F(S)$, the set of all fixed points of S, i.e.

$$
\begin{equation*}
F(S)=\left\{x^{*} \in C: S x^{*}=x^{*}\right\} \tag{1.13}
\end{equation*}
$$

If S is a multivalued mapping, i.e. $S: C \rightarrow 2^{C}$, then $x^{*} \in C$ is called a fixed point of S if

$$
\begin{equation*}
x^{*} \in S x^{*} \tag{1.14}
\end{equation*}
$$

The fixed point theory for multivalued mappings can be utilized in various areas such as game theory, control theory, mathematical economics, etc.
Recently, Onjai-uea and Phuengrattana [38] introduced the following iterative scheme for solving SMEP and fixed point of λ-hybrid multivalued mappings in real Hilbert spaces:

$$
\begin{align*}
& \text { Algorithm 1.1. } \\
& \qquad\left\{\begin{array}{l}
x_{1} \in C, \\
u_{n}=T_{r_{n}}^{F_{1}}\left(I-\gamma A^{*}\left(I-T_{r_{n}}^{F_{2}}\right) A\right) x_{n}, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) w_{n}, \quad w_{n} \in S u_{n}, \\
x_{n+1}=\beta_{n} w_{n}+\left(1-\beta_{n}\right) z_{n}, \quad z_{n} \in S y_{n}, \text { for all } n \in \mathbb{N},
\end{array}\right. \tag{1.15}
\end{align*}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset(0,1),\left\{r_{n}\right\} \subset(0, \infty)$ and $\gamma \in\left(0, \frac{1}{L}\right)$ such that L is the spectral radius of $A^{*} A$ and A^{*} is the adjoint of the bounded linear operator $A, C \subset H_{1}, D \subset H_{2}, S: C \rightarrow K(C)$ a λ-hybrid multivalued mapping, $F_{1}: C \times C \rightarrow \mathbb{R}$ and $F_{2}: D \times D \rightarrow \mathbb{R}$ are two bifunctions. The authors established under certain conditions that the sequence $\left\{x_{n}\right\}$ generated by the Algorithm 1 converges weakly to a common solution of the SMEP and fixed point of the λ-hybrid multivalued mapping.
Bauschke and Combettes [9] pointed out that in solving optimization problems, strong convergence of iterative schemes are more desirable and useful than their weak convergence counterparts. Hence, the need to develop algorithms that generate strong convergence sequence.
Very recently, Khan et al. [31] proposed the following shrinking projection algorithm for approximating a common solution for a finite family of SEPs and fixed point for a
finite family of total asymptotically nonexpansive mappings in the setting of Hilbert spaces:

Algorithm 1.2.

$$
\left\{\begin{array}{l}
x_{1} \in C_{1}=C \\
u_{n, i}=T_{r_{n, i}}^{F_{i}}\left(I-\gamma A_{i}^{*}\left(I-T_{s_{n, i}}^{G_{i}}\right) A_{i}\right) x_{n}, \\
y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) S_{i}^{n} u_{n, i} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n, i}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+\theta_{n, i}\right\}, \\
x_{n+1}=P_{C_{n+1}} x_{1}, n \geq 1,
\end{array}\right.
$$

where

$$
\begin{gathered}
\theta_{n, i}=\left(1-\alpha_{n, i}\right)\left\{\lambda_{n} \xi_{n}\left(M_{n}\right)+\lambda_{n} M_{n}^{*} D_{n}+\mu_{n}\right\} \\
D_{n}=\sup \left\{\left\|x_{n}-p\right\|: p \in \bigcap_{i=1}^{N} F\left(S_{i}\right)\right\}
\end{gathered}
$$

M_{n} and M_{n}^{*} are positive real numbers, $S_{i}(\bmod N): C \rightarrow C$ is a finite family of total asymptotically nonexpansive mappings, $F_{i}(\bmod N): C \times C \rightarrow \mathbb{R}$ and $G_{i}(\bmod N)$: $Q \times Q \rightarrow \mathbb{R}$ are two finite families of bifunctions, $A_{i}(\bmod N): H_{1} \rightarrow H_{2}$ is a finite family of bounded linear operators, $\left\{r_{n, i}\right\},\left\{s_{n, i}\right\}$ are two positive real sequences, $\left\{\alpha_{n, i}\right\} \subset(0,1), \gamma \in\left(0 \frac{1}{L}\right)$, where $L=\max \left\{L_{1}, L_{2}, \ldots, L_{N}\right\}$ and L_{i} is the spectral radius of the operator $A_{i}^{*} A_{i}$ and A_{i}^{*} is the adjoint of A_{i} for each $i \in\{1,2, \ldots, N\}$. Under mild conditions on the control parameters, they obtained strong convergence result for the proposed iterative scheme.
We need to point out at this point that the step size γ of the above algorithms plays an essential role in the convergence properties of iterative methods. The results obtained by Onjai-uea and Phuengrattana [38], Khan et al.[31] and other related results in literature involve step size that requires prior knowledge of the operator norm $\|A\|$. Such algorithms are usually not easy to implement because they require computation of the operator norm $\|A\|$, which is very difficult if not impossible to calculate or even estimate. Moreover, the step size defined by such algorithms are often very small and deteriorates the convergence rate of the algorithm. In practice, a larger step size can often be used to yield better numerical results.
Based on the heavy ball methods of a two-order time dynamical system, Polyak [41] first proposed an inertial extrapolation as an acceleration process to solve the smooth convex minimization problem. The inertial algorithm is a two-step iteration where the next iterate is defined by making use of the previous two iterates. Recently, several researchers have constructed some fast iterative schemes by employing inertial technique (e.g. see $[6,5,7,8,10,12,27,33,35,36]$).
For approximating the null point of a maximal monotone operator, Alvarez and Attouch [8] introduced the following inertial proximal algorithm:
Algorithm 1.3.

$$
x_{n+1}=J_{\mu_{n}}^{A}\left(x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)\right), \quad n \geq 1
$$

They obtained a weak convergence of the algorithm under the following conditions: (B1) There exists $\mu>0$ such that for all $n \in \mathbb{N}, \mu_{n} \geq \mu$.
(B2) There exists $\alpha \in[0,1)$ such that for all $n \in \mathbb{N}, 0 \leq \alpha_{n} \leq \alpha$.
(B3) $\sum_{n=1}^{\infty} \alpha_{n}\left|x_{n}-x_{n-1}\right|^{2}<\infty$.
Recently, authors have pointed some of the drawbacks of the summability condition (B3) of the Algorithm 1, that is, to satisfy the summability condition, it is necessary to first calculate α_{n} at each step (see [36]).
Motivated by the above results and the ongoing research interest in this direction, we introduce the notion of System of Split generalized Mixed Equilibrium Problem and propose a new iterative scheme to find a common solution of the (SSGMEP) and fixed point problem (FPP) for multivalued mappings. We define SSGMEP as follows: Definition 1.4. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2}, respectively, $i=1 \leq i \leq m$. Let $A_{i}: H_{1} \rightarrow H_{2}$ be bounded linear operators, $f_{i}: C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}: D_{i} \times D_{i} \rightarrow \mathbb{R}$, nonlinear bifunctions, $P_{i}: C_{i} \rightarrow H_{1}, Q_{i}: D_{i} \rightarrow H_{2}$, nonlinear mappings, and let $\phi_{i}: C_{i} \rightarrow \mathbb{R} \cup\{+\infty\}$, $\varphi_{i}: D_{i} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper lower semicontinuous and convex functions such that $\cap_{i=1}^{m} C_{i} \neq \emptyset$ and $\cap_{i=1}^{m} D_{i} \neq \emptyset$. The SSGMEP is to find $\hat{x} \in C=\cap_{i=1}^{m} C_{i}$ such that

$$
\begin{equation*}
f_{i}(\hat{x}, x)+\left\langle P_{i} \hat{x}, x-\hat{x}\right\rangle+\phi_{i}(x)-\phi_{i}(\hat{x}) \geq 0, \text { for all } x \in C_{i} \tag{1.16}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
g_{i}(\hat{y}, y)+\left\langle Q_{i} \hat{y}, y-\hat{y}\right\rangle+\varphi_{i}(y)-\varphi_{i}(\hat{y}) \geq 0, \text { for all } y \in D_{i} \tag{1.17}
\end{equation*}
$$

We denote the solution set of (1.16)-(1.17) by

$$
\Omega=\left\{\hat{x} \in \bigcap_{i=1}^{m} G M E P\left(f_{i}, P_{i}, \phi_{i}\right): A_{i} \hat{x} \in \bigcap_{i=1}^{m} G M E P\left(g_{i}, Q_{i}, \varphi_{i}\right)\right\}
$$

If $P_{i}=Q_{i}=0$, then (1.16)-(1.17) reduces to the following System of Split Mixed Equilibrium Problem (SSMEP) introduced by Karahan [28] in 2019:
Find $\hat{x} \in C=\cap_{i=1}^{m} C_{i}$ such that

$$
\begin{equation*}
f_{i}(\hat{x}, x)+\phi_{i}(x)-\phi_{i}(\hat{x}) \geq 0, \text { for all } x \in C_{i} \tag{1.18}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
g_{i}(\hat{y}, y)+\varphi_{i}(y)-\varphi_{i}(\hat{y}) \geq 0, \text { for all } y \in D_{i} \tag{1.19}
\end{equation*}
$$

with the solution set given as

$$
\Omega_{\phi, \varphi}=\left\{\hat{x} \in \bigcap_{i=1}^{m} G M E P\left(f_{i}, \phi_{i}\right): A_{i} \hat{x} \in \bigcap_{i=1}^{m} G M E P\left(g_{i}, \varphi_{i}\right)\right\}
$$

Also, if $\phi_{i}=\varphi_{i}=0$ in (1.16)-(1.17), we have the following System of Split generalized Equilibrium Problem (SSGEP): Find $\hat{x} \in C=\cap_{i=1}^{m} C_{i}$ such that

$$
\begin{equation*}
f_{i}(\hat{x}, x)+\left\langle P_{i} \hat{x}, x-\hat{x}\right\rangle \geq 0, \text { for all } x \in C_{i} \tag{1.20}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
g_{i}(\hat{y}, y)+\left\langle Q_{i} \hat{y}, y-\hat{y}\right\rangle \geq 0, \text { for all } y \in D_{i} \tag{1.21}
\end{equation*}
$$

with solution set

$$
\Omega_{P, Q}=\left\{\hat{x} \in \bigcap_{i=1}^{m} G M E P\left(f_{i}, P_{i}\right): A_{i} \hat{x} \in \bigcap_{i=1}^{m} G M E P\left(g_{i}, Q_{i}\right)\right\}
$$

Furthermore, if $P_{i}=Q_{i}=0$ and $\phi_{i}=\varphi_{i}=0$, then the $S S G M E P$ (1.16)-(1.17) reduces to the System of Split Equilibrium Problem (SSEP) introduced by Ugwunnadi and Ali [51], defined as follows: Find a point $\hat{x} \in C=\cap_{i=1}^{m} C_{i}$ such that

$$
\begin{equation*}
f_{i}(\hat{x}, x) \geq 0, \text { for all } x \in C_{i} \tag{1.22}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
g_{i}(\hat{y}, y) \geq 0, \text { for all } y \in D_{i} \tag{1.23}
\end{equation*}
$$

with solution set

$$
\Omega_{0,0}=\left\{\hat{x} \in \bigcap_{i=1}^{m} G M E P\left(f_{i}\right): A_{i} \hat{x} \in \bigcap_{i=1}^{m} G M E P\left(g_{i}\right)\right\}
$$

Remark 1.5. Observe that if $m=1$, the new problem introduced reduces to the SGMEP (1.5)-(1.6). Hence, our new problem is a generalization of SGMEP.
In this article, we introduce an inertial iterative scheme which does not require prior knowledge of the operator norm and obtain strong convergence result for approximating a common solution of SSGMEP (1.16)-(1.17) which also solves a fixed-point problem for a finite family of multivalued demicontractive mappings. We obtain some consequent results which complement and generalise several existing results in this direction in the literature.
More precisely, we consider the following problem: find $x^{*} \in \cap_{i=1}^{m} F\left(S_{i}\right)$, such that

$$
\begin{equation*}
f_{i}\left(x^{*}, x\right)+\left\langle P_{i} x^{*}, x-x^{*}\right\rangle+\phi_{i}(x)-\phi_{i}\left(x^{*}\right) \geq 0, \text { for all } x \in C_{i} \tag{1.24}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
g_{i}\left(y^{*}, y\right)+\left\langle Q_{i} y^{*}, y-y^{*}\right\rangle+\psi_{i}(y)-\psi_{i}\left(y^{*}\right) \geq 0, \text { for all } y \in D_{i} \tag{1.25}
\end{equation*}
$$

where $S_{i}: C_{i} \rightarrow C B\left(C_{i}\right)$ is a finite family of multivalued demicontractive mappings.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. The nearest point projection of H onto C is denoted by P_{C}, that is, $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in C . P_{C}$ is called the metric projection of H onto C. It is known that P_{C} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle \tag{2.1}
\end{equation*}
$$

for all $x, y \in H$. Moreover $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in C$, see [21, 39].
We denote the strong convergence and the weak convergence of the sequence $\left\{x_{n}\right\}$ to a point $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. For a given sequence $\left\{x_{n}\right\} \subset \mathrm{H}, w_{\omega}\left(x_{n}\right)$ denotes the set of weak limits of $\left\{x_{n}\right\}$, that is,

$$
w_{\omega}\left(x_{n}\right):=\left\{x \in H: x_{n_{j}} \rightharpoonup x\right\} \text { for some subsequence }\left\{n_{j}\right\} \text { of }\{n\}
$$

Definition 2.1. Let H be a Hilbert space. A function $h: H \rightarrow H$ is called a contraction if there exists $\mu \in[0,1)$ such that

$$
\|h(x)-h(y)\| \leq \mu\|x-y\|, \quad \text { for all } x, y \in H
$$

Let $\left\{h_{n}\right\}$ be a sequence of functions defined on a bounded subset K of H. Then $\left\{h_{n}\right\}$ is said to converge uniformly to the function h on K if, given $\epsilon>0$, there exists n_{0} such that

$$
\left\|h_{n}(x)-h(x)\right\|<\epsilon, \quad \text { for all } n \geq n_{0}, x \in K
$$

Let $\left\{h_{n}\right\}\left(h_{n}: K \rightarrow H\right)$ be a uniformly convergent sequence of contraction mappings. Then there exists a sequence of real numbers $\left\{\mu_{n}\right\} \subset(0,1)$ such that

$$
\left\|h_{n}(x)-h_{n}(y)\right\| \leq \mu_{n}\|x-y\| \text { for all } x, y \in K
$$

A subset K of H is called proximal if for each $x \in H$, there exists $y \in K$ such that

$$
\|x-y\|=d(x, K)
$$

We denote by $C B(C), C C(C), K(C)$ and $P(C)$ the families of all nonempty closed bounded subsets of C, nonempty closed convex subset of C, nonempty compact subsets of C, and nonempty proximal bounded subsets of C, respectively. The PompeiuHausdorff metric on $C B(C)$ is defined by

$$
H(A, B):=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

for all $A, B \in C B(C)$. Let $S: C \rightarrow 2^{C}$ be a multivalued mapping. We say that S satisfies the endpoint condition if $S p=\{p\}$ for all $p \in F(S)$. For multivalued mappings $S_{i}: C \rightarrow 2^{C}(i \in \mathbb{N})$ with $\cap_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$, we say S_{i} satisfies the common endpoint condition if $S_{i}(p)=\{p\}$ for all $i \in \mathbb{N}, p \in \cap_{i=1}^{\infty} F\left(S_{i}\right)$. We recall some basic and useful definitions on multivalued mappings.
Definition 2.2. A multivalued mapping $S: C \rightarrow C B(C)$ is said to be
(i) nonexpansive if

$$
H(S x, S y) \leq\|x-y\|, \text { for all } x, y \in C
$$

(ii) quasi-nonexpansive if $F(S) \neq \emptyset$ and

$$
H(S x, S p) \leq\|x-p\|, \text { for all } x \in C, p \in F(S)
$$

(iii) nonspreading if

$$
2 H(S x, S y)^{2} \leq d(y, S x)^{2}+d(x, S y)^{2}, \text { for all } x, y \in C
$$

(iv) λ-hybrid if there exists $\lambda \in \mathbb{R}$ such that

$$
(1+\lambda) H(S x, S y)^{2} \leq(1-\lambda)\|x-y\|^{2}+\lambda d(y, S x)^{2}+\lambda d(x, S y)^{2}, \text { for all } x, y \in C
$$

(v) k-demicontractive for $0 \leq k<1$ if $F(S) \neq \emptyset$ and

$$
H(S x, S p)^{2} \leq\|x-p\|^{2}+k d(x, S x)^{2}, \text { for all } x \in C, p \in F(S)
$$

We note that 0 -hybrid is nonexpansive, 1 -hybrid is nonspreading, and if S is λ-hybrid with $F(S) \neq \emptyset$, then S is quasi-nonexpansive. Similarly, if S is nonspreading with $F(S) \neq \emptyset$, then S is quasi-nonexpansive. We point out that the class of k-demicontractive mappings is more general and includes all the other types of mappings defined above. The best approximation operator P_{S} for a multivalued mapping $S: C \rightarrow P(C)$ is defined by

$$
P_{S}(x):=\{y \in S x:\|x-y\|=d(x, S x)\}
$$

It is known that $F(S)=F\left(P_{S}\right)$ and P_{S} satisfies the endpoint condition. Song and Cho [44] gave an example of a best approximation operator P_{S} which is nonexpansive, but where S is not necessarily nonexpansive.
Definition 2.3. Let $S: C \rightarrow C B(C)$ be a multivalued mapping. The multivalued mapping $I-S$ is said to be demiclosed at zero if for any sequence $\left\{x_{n}\right\} \subset C$ which converges weakly to q and the sequence $\left\{\left\|x_{n}-u_{n}\right\|\right\}$ converges strongly to 0 , where $u_{n} \in S x_{n}$, then $q \in F(S)$.
The following results will be needed in the sequel:
Lemma 2.4. For all $x, y \in H$, we have the following statements [23, 50]:
(i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(ii) $\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}$;
(iii) $\|x-y\|^{2}=\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2}$.

Lemma 2.5. [48] For each $x_{1}, \ldots, x_{m} \in H$ and $\alpha_{1}, \ldots, \alpha_{m} \in[0,1]$ with $\sum_{i=1}^{m} \alpha_{i}=1$, the following holds:

$$
\left\|\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}\right\|^{2}=\sum_{i=1}^{m} \alpha_{i}\left\|x_{i}\right\|^{2}-\sum_{1 \leq i<j \leq m} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2}
$$

Lemma 2.6. [43] Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers, $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\left\{b_{n}\right\}$ be a sequence of real numbers. Assume that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} b_{n}, \text { for all } n \geq 1
$$

if $\lim \sup _{k \rightarrow \infty} b_{n_{k}} \leq 0$ for every subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$ satisfying

$$
\liminf _{k \rightarrow \infty}\left(a_{n_{k+1}}-a_{n_{k}}\right) \geq 0
$$

then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.7. [34] Let $\left\{a_{n}\right\},\left\{c_{n}\right\} \subset \mathbb{R}_{+},\left\{\sigma_{n}\right\} \subset(0,1)$ and $\left\{b_{n}\right\} \subset \mathbb{R}$ be sequences such that

$$
a_{n+1} \leq\left(1-\sigma_{n}\right) a_{n}+b_{n}+c_{n} \text { for all } n \geq 0
$$

Assume $\sum_{n=0}^{\infty}\left|c_{n}\right|<\infty$. Then the following results hold:
(1) If $b_{n} \leq \beta \sigma_{n}$ for some $\beta \geq 0$, then $\left\{a_{n}\right\}$ is a bounded sequence.
(2) If we have

$$
\sum_{n=0}^{\infty} \sigma_{n}=\infty \text { and } \limsup _{n \rightarrow \infty} \frac{b_{n}}{\sigma_{n}} \leq 0
$$

then $\lim _{n \rightarrow \infty} a_{n}=0$.
Assumption 2.8. In solving EP (1.4), the bifunction f is assumed to satisfy the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e. $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C, \lim _{t \rightarrow 0} f(t z+(1-t) x, y) \leq f(x, y)$;
(A4) for each $x \in C, y \rightarrow f(x, y)$ is convex and lower semicontinuous.

It is known (see [53]), that if $f(x, y)$ satisfies (A1)-(A4) then the function

$$
F(x, y):=f(x, y)+\langle P x, y-x\rangle+\phi(y)-\phi(x)
$$

also satisfies (A1)-(A4) and $G M E P(f, P, \phi)$ is closed and convex.
Lemma 2.5. [53] Let C be a nonempty closed closed convex subset of a Hilbert space H. Let $P: C \rightarrow H$ be a continuous and monotone mapping, $\phi: C \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper lower semicontinuous and convex function, and $f: C \times C \rightarrow \mathbb{R}$ be a bifunction that satisfies $(A 1)-(A 4)$. For $r>0$ and $x \in H$, there exists $u \in C$ such that

$$
\begin{equation*}
f(u, y)+\langle P u, y-u\rangle+\phi(y)-\phi(u)+\frac{1}{r}\langle y-u, u-x\rangle \geq 0, \text { for all } y \in C \tag{2.2}
\end{equation*}
$$

Define a resolvent function $T_{r}^{f}: H \rightarrow C$ as follows:
$T_{r}^{f}(x)=\left\{u \in C: f(u, y)+\langle P u, y-u\rangle+\phi(y)-\phi(u)+\frac{1}{r}\langle y-u, u-x\rangle \geq 0\right.$, for all $\left.y \in C\right\}$.
Then the following conclusions hold:

1. for each $x \in H, T_{r}^{f}(x) \neq \emptyset$,
2. T_{r}^{f} is single-valued,
3. T_{r}^{f} is firmly nonexpansive, i.e. for any $x, y \in H$,

$$
\left\|T_{r}^{f}(x)-T_{r}^{f}(y)\right\|^{2} \leq\left\langle T_{r}^{f}(x)-T_{r}^{f}(y), x-y\right\rangle
$$

4. $F\left(T_{r}^{f}\right)=G M E P(f, P, \phi)$,
5. GMEP (f, P, ϕ) is closed and convex.

3. MAIN RESULTS

In this section, we present our algorithm and prove some strong convergence theorems of the proposed algorithm for solving the SSGMEP and fixed point problems.
Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, $A_{i}(\bmod m): H_{1} \rightarrow H_{2}$ be a finite family of bounded linear operators with adjoint $A_{i}^{*}, f_{i}(\bmod m): C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}(\bmod m): D_{i} \times D_{i} \rightarrow \mathbb{R}$ are two finite families of bifunctions satisfying conditions (A1) - (A4) and g_{i} is upper semicontinuous in the first argument for each $i=1,2, \ldots, m$.
Let $\phi_{i}(\bmod m): C_{i} \rightarrow \mathbb{R} \cup+\infty$ and $\varphi_{i}(\bmod m): D_{i} \rightarrow \mathbb{R} \cup+\infty$ be proper lower semicontinuous and convex functions, and $P_{i}(\bmod m): C_{i} \rightarrow H_{1}$ and $Q_{i}(\bmod m)$: $D_{i} \rightarrow H_{2}$ are continuous and monotone mappings. Let $S_{i}(\bmod m): C_{i} \rightarrow C B\left(C_{i}\right)$ be a finite family of multivalued demicontractive mappings with constant k_{i} such that each $I-S_{i}$ is demiclosed at zero, $S_{i}(p)=\{p\}$ for all $p \in F\left(S_{i}\right)$, and $k=\max \left\{k_{i}\right\}$, and let $\left\{h_{n}\right\}\left(h_{n}: H_{1} \rightarrow H_{1}\right)$ be a sequence of μ_{n}-contractive mappings with $0<$ $\mu_{*} \leq \mu_{n} \leq \mu^{*}<1$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ for any $x \in K$, where K is any bounded subset of H_{1}. Suppose that the solution set $\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right) \neq \emptyset$. We establish the convergence of the algorithm under the following assumptions on the control parameters:
(B1) $\left\{\beta_{n, i}\right\},\left\{\delta_{n, i}\right\} \subset(0,1), \sum_{i=0}^{m} \beta_{n, i}=\sum_{i=0}^{m} \delta_{n, i}=1$;
(B2) $\liminf \inf _{n} \beta_{n, 0} \beta_{n, i}>0$, and $\liminf _{n}\left(\delta_{n, 0}-k\right) \delta_{n, i}>0$, for each $1 \leq i \leq m$;
(B3) $\left\{\alpha_{n}\right\},\left\{\xi_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are real sequences in $\subset(0,1)$ such that $\alpha_{n}+\xi_{n}+\gamma_{n}=1$;
(B4) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty, 0<c_{1} \leq \xi_{n}, 0<c_{2} \leq \gamma_{n}, 0<a \leq \tau_{n} \leq$ $b<1$;
(B5) $\left\{r_{n, i}\right\},\left\{s_{n, i}\right\}$ are positive real sequences such that $\liminf _{n \rightarrow \infty} r_{n, i}>0$ and $\liminf _{n \rightarrow \infty} s_{n, i}>0 ;$
(B6) Let $\theta \geq 3$ and let $\left\{\epsilon_{n}\right\}$ be nonnegative sequence such that $0<d \leq \epsilon_{n}$;
(B7) $\epsilon_{n}=o\left(\alpha_{n}\right)$, i.e., $\lim _{n \rightarrow \infty} \frac{\epsilon_{n}}{\alpha_{n}}=0$, (e.g. $\left.\epsilon_{n}=\frac{1}{(n+1)^{2}}, \alpha_{n}=\frac{1}{n+1}\right)$.
Now, the algorithm is presented as follows:

Algorithm 3.1.

Step 0. Select initial data $x_{0}, x_{1} \in C$ and set $n=1$.
Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}=\left\{\begin{array}{l}
\min \left\{\frac{n-1}{n+\theta-1}, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, \quad \text { if } x_{n} \neq x_{n-1}, \tag{3.1}\\
\frac{n-1}{n+\theta-1}, \quad \text { otherwise }
\end{array}\right.
$$

Step 2. Compute

$$
\begin{equation*}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) . \tag{3.2}
\end{equation*}
$$

Step 3. Compute

$$
\begin{equation*}
z_{n, i}=w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right), \tag{3.3}
\end{equation*}
$$

where

$$
\lambda_{n, i}:= \begin{cases}\tau_{n} \frac{\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}{\| A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \|^{2}\right.}, & \text { if } A_{i} w_{n} \neq T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \tag{3.4}\\ \lambda, & \text { otherwise (} \lambda \text { being any nonnegative real number) }\end{cases}
$$

Step 4. Compute

$$
\left\{\begin{array}{l}
u_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i} \tag{3.5}\\
y_{n}=\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i} \\
x_{n+1}=\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}
\end{array}\right.
$$

where $v_{n, i} \in S_{i} u_{n}$. Set $n:=n+1$ and return to Step 1.
Remark 3.2. Observe that from (3.1) and Assumption (A6), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta_{n}\left\|x_{n}-x_{n-1}\right\|=0 \text { and } \lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|=0 \tag{3.6}
\end{equation*}
$$

We also point out that Step 1 in our Algorithm 3.1 is easily implemented in numerical computation since the value of $\left\|x_{n}-x_{n-1}\right\|$ is known a priori before choosing θ_{n}.
Remark 3.3. Also, note that in (3.4), the choice of $\lambda_{n, i}$ is independent of the norm
of the operator $\left\|A_{i}\right\|$, for each $i=1,2, \ldots, m$. The value of λ does not influence the considered algorithm but was introduced for clarity.
Now, we state the strong convergence theorem for the proposed algorithm.
Theorem 3.4. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, for $i=1,2, \ldots, m$. Let $\left\{x_{n}\right\}$ be the sequence generated by Algorithm 3.1 such that Assumptions (A1)-(A4) and (B1) - (B7) are satisfied. Then $\left\{x_{n}\right\}$ converges strongly to a point $\hat{x} \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, where $\hat{x}=P_{\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x})$.

In order to prove Theorem 3.4, we first establish the following lemmas which will be employed in the proof.

Lemma 3.5. Let $\left\{x_{n}\right\}$ be the sequence generated by Algorithm 3.1, then $\left\{x_{n}\right\}$ is bounded.
Proof. Let

$$
p=P_{\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(p),
$$

then $p \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$. From Algorithm 3.1, it follows that

$$
\begin{align*}
\left\|z_{n, i}-p\right\|^{2} & =\left\|w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right)-p\right\| \\
& \leq\left\|w_{n}-p\right\|^{2}-2 \lambda_{n, i}\left\langle w_{n}-p, A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right)\right\rangle \\
& +\lambda_{n, i}^{2}\left\|A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right)\right\|^{2} \\
& =\left\|w_{n}-p\right\|^{2}-2 \lambda_{n, i}\left\langle A_{i}\left(w_{n}-p\right), A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right\rangle \\
& +\lambda_{n, i}^{2}\left\|A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right)\right\|^{2} . \tag{3.7}
\end{align*}
$$

By Lemma 2.4(iii), we have

$$
\begin{align*}
&- 2 \lambda_{n, i}\left\langle A_{i}\left(w_{n}-p\right), A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right\rangle \\
& \quad=2 \lambda_{n, i}\left\langle A_{i}\left(w_{n}-p\right),\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\rangle \\
& \quad=2 \lambda_{n, i}\left\langle T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p-\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n},\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\rangle \\
& \quad=2 \lambda_{n, i}\left[\left\langle T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p,\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\rangle\right. \\
&\left.-\left\langle\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n},\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\rangle\right] \\
& \quad=2 \lambda_{n, i}\left[\left\langle T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p,\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\rangle-\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right] \\
& \quad=\lambda_{n, i}\left[\left\|T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p\right\|^{2}+\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right. \\
&\left.\quad-\left\|T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p-\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}-2\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right] \\
& \quad=\lambda_{n, i}\left[\left\|T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p\right\|^{2}+\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right. \\
&\left.\quad-\left\|A_{i} w_{n}-A_{i} p\right\|^{2}-2\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right] \\
& \quad=\lambda_{n, i}\left[\left\|T_{s_{n, i}}^{g_{i}} A_{i} w_{n}-A_{i} p\right\|^{2}-\left\|A_{i} w_{n}-A_{i} p\right\|^{2}-\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right] \\
& \quad \leq \lambda_{n, i}\left[\left\|A_{i} w_{n}-A_{i} p\right\|^{2}-\left\|A_{i} w_{n}-A_{i} p\right\|^{2}-\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}\right] \\
& \quad=-\lambda_{n, i}\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2} . \tag{3.8}
\end{align*}
$$

Hence, from (3.7), (3.8) and the definition of $\lambda_{n, i}$ we get

$$
\begin{align*}
\left\|z_{n, i}-p\right\|^{2} & \leq\left\|w_{n}-p\right\|^{2}-\lambda_{n, i}\left\|\left(T_{s_{n, i}}^{g_{i}}-I\right) A_{i} w_{n}\right\|^{2}+\lambda_{n, i}^{2}\left\|A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right)\right\|^{2} \\
& =\left\|w_{n}-p\right\|^{2}-\lambda_{n, i}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2} \\
& =\left\|w_{n}-p\right\|^{2}-\frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}} \tag{3.9}
\end{align*}
$$

Since $0<\tau_{n}<1$, then we obtain

$$
\begin{equation*}
\left\|z_{n, i}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2} \tag{3.10}
\end{equation*}
$$

Applying Lemma 2.5 together with (3.10), we have

$$
\begin{align*}
\left\|u_{n}-p\right\|^{2} & =\left\|\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i}-p\right\|^{2} \\
& \leq \beta_{n, 0}\left\|w_{n}-p\right\|^{2}+\sum_{i=1}^{m} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-p\right\|^{2} \\
& -\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2} \\
& \leq \beta_{n, 0}\left\|w_{n}-p\right\|^{2}+\sum_{i=1}^{m} \beta_{n, i}\left\|z_{n, i}-p\right\|^{2}-\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2} \tag{3.11}\\
& \leq \beta_{n, 0}\left\|w_{n}-p\right\|^{2}+\sum_{i=1}^{m} \beta_{n, i}\left\|w_{n}-p\right\|^{2}-\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|\mid T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2} \\
& \leq\left\|w_{n}-p\right\|^{2} . \tag{3.12}
\end{align*}
$$

Again, applying Lemma 2.5, we obtain

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & =\left\|\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i}-p\right\|^{2} \\
& \leq \delta_{n, 0}\left\|u_{n}-p\right\|^{2}+\sum_{i=1}^{m} \delta_{n, i}\left\|v_{n, i}-p\right\|^{2}-\delta_{n, 0} \sum_{i=1}^{m} \delta_{n, i}\left\|v_{n, i}-u_{n}\right\|^{2} \\
& \leq \delta_{n, 0}\left\|u_{n}-p\right\|^{2}+\sum_{i=1}^{m} \delta_{n, i} H\left(S_{i} u_{n}, S_{i} p\right)-\delta_{n, 0} \sum_{i=1}^{m} \delta_{n, i}\left\|v_{n, i}-u_{n}\right\|^{2} \\
& \leq \delta_{n, 0}\left\|u_{n}-p\right\|^{2}+\sum_{i=1}^{m} \delta_{n, i}\left(\left\|u_{n}-p\right\|^{2}+k_{i} d\left(u_{n}, S_{i} u_{n}\right)\right) \\
& -\delta_{n, 0} \sum_{i=1}^{m} \delta_{n, i}\left\|v_{n, i}-u_{n}\right\|^{2} \\
& \leq \delta_{n, 0}\left\|u_{n}-p\right\|^{2}+\sum_{i=1}^{m} \delta_{n, i}\left(\left\|u_{n}-p\right\|^{2}+k_{i}\left\|u_{n}-v_{n, i}\right\|^{2}\right) \\
& -\delta_{n, 0} \sum_{i=1}^{m} \delta_{n, i}\left\|v_{n, i}-u_{n}\right\|^{2} \\
& =\left\|u_{n}-p\right\|^{2}-\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2} \tag{3.13}\\
& \leq\left\|u_{n}-p\right\|^{2} . \tag{3.14}
\end{align*}
$$

Applying the triangle inequality, we get

$$
\begin{align*}
\left\|w_{n}-p\right\| & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-p\right\| \\
& \leq\left\|x_{n}-p\right\|+\theta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& =\left\|x_{n}-p\right\|+\alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| . \tag{3.15}
\end{align*}
$$

Since by Remark 3.2,

$$
\lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|=0
$$

it follows that there exists a constant $M_{1}>0$ such that $\frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \leq M_{1}$, for all $n \geq 1$. Hence from (3.15), we obtain

$$
\begin{equation*}
\left\|w_{n}-p\right\| \leq\left\|x_{n}-p\right\|+\alpha_{n} M_{1} \tag{3.16}
\end{equation*}
$$

By applying (3.12), (3.14) and (3.16), we get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}-p\right\| \\
& =\left\|\alpha_{n}\left(h_{n}\left(x_{n}\right)-h_{n}(p)\right)+\alpha_{n}\left(h_{n}(p)-p\right)+\xi_{n}\left(x_{n}-p\right)+\gamma_{n}\left(y_{n}-p\right)\right\| \\
& \leq \alpha_{n} \mu_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|h_{n}(p)-p\right\|+\xi_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|y_{n}-p\right\| \\
& \leq \alpha_{n} \mu_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|h_{n}(p)-p\right\|+\xi_{n}\left\|x_{n}-p\right\| \\
& +\gamma_{n}\left(\left\|x_{n}-p\right\|+\alpha_{n} M_{1}\right) \\
& =\alpha_{n} \mu_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|h_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma_{n} M_{1} \\
& \leq \alpha_{n} \mu^{*}\left\|x_{n}-p\right\|+\alpha_{n}\left\|h_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma_{n} M_{1} \\
& =\left(\alpha_{n} \mu^{*}+\left(1-\alpha_{n}\right)\right)\left\|x_{n}-p\right\|+\alpha_{n}\left\|h_{n}(p)-p\right\|+\alpha_{n} \gamma_{n} M_{1} \\
& =\left(1-\alpha_{n}\left(1-\mu^{*}\right)\right)\left\|x_{n}-p\right\|+\alpha_{n}\left(1-\mu^{*}\right)\left\{\frac{\left\|h_{n}(p)-p\right\|}{1-\mu^{*}}+\frac{\gamma_{n} M_{1}}{1-\mu^{*}}\right\}
\end{aligned}
$$

By the uniform convergence of $\left\{h_{n}\right\}$ on K, there exists $M_{2}>0$ such that

$$
\left\|h_{n}(p)-p\right\| \leq M_{2}
$$

for all $n \geq 1$. Hence, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| \leq & =\left(1-\alpha_{n}\left(1-\mu^{*}\right)\right)\left\|x_{n}-p\right\|+\alpha_{n}\left(1-\mu^{*}\right)\left\{\frac{M_{2}}{1-\mu^{*}}+\frac{\gamma_{n} M_{1}}{1-\mu^{*}}\right\} \\
& \leq\left(1-\alpha_{n}\left(1-\mu^{*}\right)\right)\left\|x_{n}-p\right\|+\alpha_{n}\left(1-\mu^{*}\right) M^{*}
\end{aligned}
$$

where

$$
M^{*}:=\sup _{n \in \mathbb{N}}\left\{\frac{M_{2}}{1-\mu^{*}}+\frac{\gamma_{n} M_{1}}{1-\mu^{*}}\right\}
$$

Setting

$$
a_{n}:=\left\|x_{n}-p\right\|, b_{n}:=\alpha_{n}\left(1-\mu^{*}\right) M^{*}, c_{n}:=0
$$

and

$$
\sigma_{n}:=\alpha_{n}\left(1-\mu^{*}\right)
$$

By Lemma 2.7(1) and our assumptions, it follows that $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded and thus $\left\{x_{n}\right\}$ is bounded. Consequently, $\left\{w_{n}\right\},\left\{z_{n, i}\right\},\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ are all bounded.

Lemma 3.6. The following inequality holds for all $p \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$ and $n \in \mathbb{N}$:

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & \leq\left(1-\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\right)\left\|x_{n}-p\right\|^{2} \\
& +\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\frac{\alpha_{n}}{2\left(1-\mu^{*}\right)} M_{3}+\frac{3 M_{2} \gamma_{n}\left(1-\alpha_{n}\right)}{2\left(1-\mu^{*}\right)} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+\frac{1}{\left(1-\mu^{*}\right)}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle\right\} \\
& -\frac{\gamma_{n}\left(1-\alpha_{n}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& \left.+\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2}+\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\}
\end{aligned}
$$

Proof. Let $p \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, then by the Cauchy-Schwartz inequality and Lemma 2.4(ii), we get

$$
\begin{align*}
\left\|w_{n}-p\right\|^{2} & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\langle x_{n}-p, x_{n}-x_{n-1}\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\|x_{n}-x_{n-1}\right\|\left\|x_{n}-p\right\| \\
& =\left\|x_{n}-p\right\|^{2}+\theta_{n}\left\|x_{n}-x_{n-1}\right\|\left(\theta_{n}\left\|x_{n}-x_{n-1}\right\|+2\left\|x_{n}-p\right\|\right) \\
& \leq\left\|x_{n}-p\right\|^{2}+3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& =\left\|x_{n}-p\right\|^{2}+3 M_{2} \alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \tag{3.17}
\end{align*}
$$

where $M_{2}:=\sup _{n \in \mathbb{N}}\left\{\left\|x_{n}-p\right\|, \theta_{n}\left\|x_{n}-x_{n-1}\right\|\right\}>0$.
By applying Lemma 2.4, (3.13), (3.11), (3.9) and (3.17), we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}-p\right\|^{2} \\
& =\left\|\alpha_{n}\left(h_{n}\left(x_{n}\right)-p\right)+\xi_{n}\left(x_{n}-p\right)+\gamma_{n}\left(y_{n}-p\right)\right\|^{2} \\
& \leq\left\|\xi_{n}\left(x_{n}-p\right)+\gamma_{n}\left(y_{n}-p\right)\right\|^{2}+2 \alpha_{n}\left\langle h_{n}\left(x_{n}\right)-p, x_{n+1}-p\right\rangle \\
& \leq \xi_{n}^{2}\left\|x_{n}-p\right\|^{2}+\gamma_{n}^{2}\left\|y_{n}-p\right\|^{2}+2 \xi_{n} \gamma_{n}\left\|x_{n}-p\right\|\left\|y_{n}-p\right\| \\
& +2 \alpha_{n}\left\langle h_{n}\left(x_{n}\right)-p, x_{n+1}-p\right\rangle \\
& \leq \xi_{n}^{2}\left\|x_{n}-p\right\|^{2}+\gamma_{n}^{2}\left\|y_{n}-p\right\|^{2}+\xi_{n} \gamma_{n}\left(\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle h_{n}\left(x_{n}\right)-p, x_{n+1}-p\right\rangle \\
& =\xi_{n}\left(\xi_{n}+\gamma_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left(\gamma_{n}+\xi_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& +2 \alpha_{n}\left\langle h_{n}\left(x_{n}\right)-p, x_{n+1}-p\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \leq \xi_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left(1-\alpha_{n}\right)\left\{\beta_{n, 0}\left\|w_{n}-p\right\|^{2}\right. \\
& +\sum_{i=1}^{m} \beta_{n, i}\left(\left\|w_{n}-p\right\|^{2}\right. \\
& \left.-\frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right)-\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2} \\
& \left.-\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\} \\
& +2 \alpha_{n}\left\langle h_{n}\left(x_{n}\right)-h_{n}(p), x_{n+1}-p\right\rangle+2 \alpha_{n}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle \\
& \leq \xi_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left(1-\alpha_{n}\right)\left\{\left\|w_{n}-p\right\|^{2}-\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& \left.-\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2}-\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|\mid T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\} \\
& +2 \alpha_{n} \mu_{n}\left\|x_{n}-p\right\|\left\|x_{n+1}-p\right\| \\
& +2 \alpha_{n}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle \\
& \leq \xi_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}+3 M_{2} \alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right. \\
& -\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}} \\
& -\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2} \\
& \left.-\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i} f_{i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\}+\alpha_{n} \mu^{*}\left(\left\|x_{n}-p\right\|^{2}+\left\|x_{n+1}-p\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle \\
& =\left(\left(1-\alpha_{n}\right)^{2}+\alpha_{n} \mu^{*}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n} \mu^{*}\left\|x_{n+1}-p\right\|^{2} \\
& +3 \alpha_{n} \gamma_{n}\left(1-\alpha_{n}\right) M_{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \\
& +2 \alpha_{n}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle-\gamma_{n}\left(1-\alpha_{n}\right)\left\{\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& \left.+\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2}+\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|\mid T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\} . \\
& \hline
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \\
& \leq \frac{\left(1-2 \alpha_{n}+\alpha_{n}^{2}+\alpha_{n} \mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\|x_{n}-p\right\|^{2} \\
& +\frac{\alpha_{n}}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{3 \gamma_{n}\left(1-\alpha_{n}\right) M_{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle\right\} \\
& -\frac{\gamma_{n}\left(1-\alpha_{n}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& \left.+\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2}+\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\} \\
& =\frac{\left(1-2 \alpha_{n}+\alpha_{n} \mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2}}{\left(1-\alpha_{n} \mu^{*}\right)}\left\|x_{n}-p\right\|^{2} \\
& +\frac{\alpha_{n}}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{3 \gamma_{n}\left(1-\alpha_{n}\right) M_{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle\right\} \\
& -\frac{\gamma_{n}\left(1-\alpha_{n}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& +\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2} \\
& \left.+\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\} \\
& \leq\left(1-\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\right)\left\|x_{n}-p\right\|^{2} \\
& +\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\frac{\alpha_{n}}{2\left(1-\mu^{*}\right)} M_{3}+\frac{3 M_{2} \gamma_{n}\left(1-\alpha_{n}\right)}{2\left(1-\mu^{*}\right)} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+\frac{1}{\left(1-\mu^{*}\right)}\left\langle h_{n}(p)-p, x_{n+1}-p\right\rangle\right\} \\
& -\frac{\gamma_{n}\left(1-\alpha_{n}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\sum_{i=1}^{m} \beta_{n, i} \frac{\tau_{n}\left(1-\tau_{n}\right)\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}\right. \\
& \left.+\sum_{i=1}^{m} \delta_{n, i}\left(\delta_{n, 0}-k_{i}\right)\left\|u_{n}-v_{n, i}\right\|^{2}+\sum_{i=1}^{m} \beta_{n, 0} \beta_{n, i}\left\|T_{r_{n, i}}^{f_{i}} z_{n, i}-w_{n}\right\|^{2}\right\},
\end{aligned}
$$

where

$$
M_{3}:=\sup \left\{\left\|x_{n}-p\right\|^{2}: n \in \mathbb{N}\right\}
$$

Hence, the proof is complete.
Lemma 3.7. Let $p \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$. Suppose $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ such that $\lim \inf _{k \rightarrow \infty}\left(\left\|x_{n_{k}+1}-p\right\|-\left\|x_{n_{k}}-p\right\|\right) \geq 0$, then $x_{n_{k}} \rightharpoonup x^{*} \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, i.e. $w_{\omega}\left(x_{n}\right) \subset \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$.

Proof. From Lemma 3.6, it follows that

$$
\begin{aligned}
\frac{\gamma_{n_{k}}\left(1-\alpha_{n_{k}}\right)}{\left(1-\alpha_{n_{k}} \mu^{*}\right)} \sum_{i=1}^{m} \beta_{n_{k}, i} & \frac{\tau_{n_{k}}\left(1-\tau_{n_{k}}\right)\left\|\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|^{2}} \\
& \leq\left(1-\frac{2 \alpha_{n_{k}}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n_{k}} \mu^{*}\right)}\right)\left\|x_{n_{k}}-p\right\|^{2} \\
& -\left\|x_{n_{k}+1}-p\right\|^{2}+\frac{2 \alpha_{n_{k}}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n_{k}} \mu^{*}\right)}\left\{\frac{\alpha_{n_{k}}}{2\left(1-\mu^{*}\right)} M_{3}\right. \\
& +\frac{3 M_{2} \gamma_{n_{k}}\left(1-\alpha_{n_{k}}\right)}{2\left(1-\mu^{*}\right)} \frac{\theta_{n_{k}}}{\alpha_{n_{k}}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\| \\
& \left.+\frac{1}{\left(1-\mu^{*}\right)}\left\langle h_{n_{k}}(p)-p, x_{n_{k}+1}-p\right\rangle\right\}
\end{aligned}
$$

By the hypothesis of Lemma 3.7 and the fact that $\lim _{k \rightarrow \infty} \alpha_{n_{k}}=0$, we obtain

$$
\frac{\gamma_{n_{k}}\left(1-\alpha_{n_{k}}\right)}{\left(1-\alpha_{n_{k}} \mu^{*}\right)} \sum_{i=1}^{m} \beta_{n_{k}, i} \frac{\tau_{n_{k}}\left(1-\tau_{n_{k}}\right)\left\|\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|^{4}}{\left\|A_{i}^{*}\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|^{2}} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Since $0<a \leq \tau_{n_{k}} \leq b<1$,

$$
\lim _{k \rightarrow \infty} \alpha_{n_{k}}=0, \beta_{n_{k}, i}>0
$$

for all $i=1,2, \ldots, m$ and $\left\|A_{i}^{*}\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|$ is bounded, it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|=0 \quad \text { for all } i=1,2, \ldots, m \tag{3.18}
\end{equation*}
$$

and this implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|A_{i}^{*}\left(I-T_{s_{n_{k}, i}}^{g_{i}}\right) A_{i} w_{n_{k}}\right\|=0 \tag{3.19}
\end{equation*}
$$

By similar argument, it follows from Lemma 3.6 that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T_{r_{n_{k}, i}}^{f_{i}} z_{n_{k}, i}-w_{n_{k}}\right\|=0 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left\|u_{n_{k}}-v_{n_{k}, i}\right\|=0 \tag{3.20}
\end{equation*}
$$

Also, it follows from (3.19), (3.20) and Algorithm 3.1 that

$$
\begin{gather*}
\left\|z_{n_{k}, i}-w_{n_{k}}\right\|=\| \lambda_{n_{k}, i} A_{i}^{*}\left(A_{i} w_{n_{k}}-T_{s_{n_{k}, i}}^{g_{i}} A_{i} w_{n_{k}} \| \rightarrow 0 \text { as } k \rightarrow \infty\right. \tag{3.21}\\
\left\|u_{n_{k}}-w_{n_{k}}\right\| \leq \beta_{n_{k}, 0}\left\|w_{n_{k}}-w_{n_{k}}\right\|+\sum_{i=1}^{m} \beta_{n_{k}, i}\left\|T_{r_{n_{k}, i}}^{f_{i}} z_{n_{k}, i}-w_{n_{k}}\right\| \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.22}\\
\left\|y_{n_{k}}-u_{n_{k}}\right\| \leq \delta_{n_{k}, 0}\left\|u_{n_{k}}-u_{n_{k}}\right\|+\sum_{i=1}^{m} \delta_{n_{k}, i}\left\|v_{n_{k}, i}-u_{n_{k}}\right\| \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.23}
\end{gather*}
$$

By Remark 3.2, we get

$$
\begin{equation*}
\left\|w_{n_{k}}-x_{n_{k}}\right\| \leq\left\|x_{n_{k}}-x_{n_{k}}\right\|+\theta_{n_{k}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\| \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.24}
\end{equation*}
$$

Also, from (3.21) - (3.24), we obtain

$$
\begin{equation*}
\left\|y_{n_{k}}-x_{n_{k}}\right\| \rightarrow 0, \quad\left\|u_{n_{k}}-x_{n_{k}}\right\| \rightarrow 0 \quad \text { and } \quad\left\|y_{n_{k}}-w_{n_{k}}\right\| \rightarrow 0 \tag{3.25}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\left\|x_{n_{k}+1}-x_{n_{k}}\right\| & =\left\|\alpha_{n_{k}} h_{n}\left(x_{n_{k}}\right)+\xi_{n_{k}} x_{n_{k}}+\gamma_{n_{k}} y_{n_{k}}-x_{n_{k}}\right\| \\
& \leq \alpha_{n_{k}}\left\|h_{n}\left(x_{n_{k}}\right)-x_{n_{k}}\right\|+\xi_{n_{k}}\left\|x_{n_{k}}-x_{n_{k}}\right\|+\gamma_{n_{k}}\left\|y_{n_{k}}-x_{n_{k}}\right\| \rightarrow 0 \tag{3.26}
\end{align*}
$$

Let $x^{*} \in \omega_{\omega}\left(x_{n}\right)$, then by (3.25) $u_{n_{k}} \rightharpoonup x^{*}$ as $k \rightarrow \infty$. By the demiclosedness of $I-S_{i}$, it follows from (3.20) that $x^{*} \in F\left(S_{i}\right)$ for all $i=1,2, \ldots, m$. This implies that $x^{*} \in \bigcap_{i=1}^{m} F\left(S_{i}\right)$. Next, we show that $x^{*} \in \bigcap_{i=1}^{m} \operatorname{GMEP}\left(f_{i}, P_{i}, \phi_{i}\right)$. We first show that $x^{*} \in \operatorname{GMEP}\left(f_{1}, P_{1}, \phi_{1}\right)$, where $f_{1}=f_{n_{k}}, P_{1}=P_{n_{k}}$ and $\phi_{1}=\phi_{n_{k}}$ for some $k \geq 1$. Note that, for a finite family of generalized mixed equilibrium problems, the indexing $f_{1}=f_{n_{k}}, P_{1}=P_{n_{k}}$ and $\phi_{1}=\phi_{n_{k}}$ results from the modulo function $k \equiv 1$ $(\bmod m)$ and the corresponding term of the infinite sequence $\left\{x_{n}\right\}$ would then be $\left\{x_{n_{k}}\right\}$. Similarly, we can have $f_{2}=f_{n_{j}}, P_{2}=P_{n_{j}}$ and $\phi_{2}=\phi_{n_{j}}$ for some $j \geq 1$. Let $t_{n_{k}, i}=T_{r_{n_{k}, i}}^{f_{1}} z_{n_{k}, i}$, then by (3.20) and (3.24) it follows that $w_{\omega}\left(t_{n_{k}, i}\right)=w_{\omega}\left(x_{n_{k}}\right)$. By the definition of $T_{r_{n_{k}, i}}^{f_{1}}$ we have that
$f_{1}\left(t_{n_{k}, i}, y\right)+\left\langle P_{1} t_{n_{k}, i}, y-t_{n_{k}, i}\right\rangle+\phi_{1}(y)-\phi_{1}\left(t_{n_{k}, i}\right)+\frac{1}{r_{n_{k}, i}}\left\langle y-t_{n_{k}, i}, t_{n_{k}, i}-z_{n_{k}, i}\right\rangle \geq 0$.
By the monotonicity of $F_{1}(x, y):=f_{1}(x, y)+\left\langle P_{1} x, y-x\right\rangle+\phi_{1}(y)-\phi_{1}(x)$, we have

$$
\frac{1}{r_{n_{k}, i}}\left\langle y-t_{n_{k}, i}, t_{n_{k}, i}-z_{n_{k}, i}\right\rangle \geq f_{1}\left(y, t_{n_{k}, i}\right)+\left\langle P_{1} y, t_{n_{k}, i}-y\right\rangle+\phi_{1}\left(t_{n_{k}, i}\right)-\phi_{1}(y)
$$

Since $x^{*} \in w_{\omega}\left(t_{n, i}\right)$, then it follows from (3.20), (3.21), $\liminf _{k \rightarrow \infty} r_{n_{k}, i}>0$ and Condition (A4) that

$$
f_{1}\left(y, x^{*}\right)+\left\langle P_{1} y, x^{*}-y\right\rangle+\phi_{1}\left(x^{*}\right)-\phi_{1}(y) \leq 0 \quad \text { for all } y \in C_{1}
$$

Now, for fixed $y \in C_{1}$, let $y_{t}:=t y+(1-t) x^{*}$ for all $t \in(0,1)$. This implies that $y_{t} \in C_{1}$. Then by Conditions (A1) and (A4), we have

$$
\begin{aligned}
0 & =f_{1}\left(y_{t}, y_{t}\right)+\left\langle P_{1} y_{t}, y_{t}-y_{t}\right\rangle+\phi_{1}\left(y_{t}\right)-\phi_{1}\left(y_{t}\right) \\
& \leq t\left\{f_{1}\left(y_{t}, y\right)+\left\langle P_{1} y_{t}, y-y_{t}\right\rangle+\phi_{1}(y)-\phi_{1}\left(y_{t}\right)\right\} \\
& +(1-t)\left\{f_{1}\left(y_{t}, x^{*}\right)+\left\langle P_{1} y_{t}, x^{*}-y_{t}\right\rangle+\phi_{1}\left(x^{*}\right)-\phi_{1}\left(y_{t}\right)\right\} \\
& \leq t\left\{f_{1}\left(y_{t}, y\right)+\left\langle P_{1} y_{t}, y-y_{t}\right\rangle+\phi_{1}(y)-\phi_{1}\left(y_{t}\right)\right\} .
\end{aligned}
$$

Hence,

$$
f_{1}\left(y_{t}, y\right)+\left\langle P_{1} y_{t}, y-y_{t}\right\rangle+\phi_{1}(y)-\phi_{1}\left(y_{t}\right) \geq 0
$$

Moreover, letting $t \rightarrow 0$, by Condition (A3) we get

$$
f_{1}\left(x^{*}, y\right)+\left\langle P_{1} x^{*}, y-x^{*}\right\rangle+\phi_{1}(y)-\phi_{1}\left(x^{*}\right) \geq 0 \quad \text { for all } y \in C_{1}
$$

which implies that $x^{*} \in \operatorname{GMEP}\left(f_{1}, P_{1}, \phi_{1}\right)$. Following similar argument, we can show that $x^{*} \in \operatorname{GMEP}\left(f_{2}, P_{2}, \phi_{2}\right)$ where $f_{2}=f_{n_{j}}, P_{2}=P_{n_{j}}$ and $\phi_{2}=\phi_{n_{j}}$ for some $j \geq 1$. Hence, $x^{*} \in \bigcap_{i=1}^{m} \operatorname{GMEP}\left(f_{i}, P_{i}, \phi_{i}\right)$. Next, we show that $A_{i} x^{*} \in \bigcap_{i=1}^{m} \operatorname{GMEP}\left(g_{i}, Q_{i}, \varphi_{i}\right)$. Reasoning as above, we first show that $A_{i} x^{*} \in$ $\operatorname{GMEP}\left(g_{1}, Q_{1}, \varphi_{1}\right)$, where $g_{1}=g_{n_{l}}, Q_{1}=Q_{n_{l}}$ and $\varphi_{1}=\varphi_{n_{l}}$ for some $l \geq 1$. By
(3.24), we have that $w_{\omega}\left(w_{n_{l}}\right)=w_{\omega}\left(x_{n_{l}}\right)$ and since A_{i} is a bounded linear operator for all $i=1,2, \ldots, m$, we have

$$
\begin{equation*}
A_{i} w_{n_{l}} \rightharpoonup A_{i} x^{*} \tag{3.27}
\end{equation*}
$$

Set $q_{n_{l}, i}=A_{i} w_{n_{l}}-T_{s_{n_{l}, i}}^{g_{1}} A_{i} w_{n_{l}}$. Then it follows that $A_{i} w_{n_{l}}-q_{n_{l}, i}=T_{s_{n_{l}, i}}^{g_{1}} A_{i} w_{n_{l}}$, and from (3.18) we have

$$
\begin{equation*}
\lim _{l \rightarrow \infty} q_{n_{l}, i}=0 \quad \text { for each } i=1,2, \ldots, m \tag{3.28}
\end{equation*}
$$

From the definition of $T_{s_{n_{l}, i}}^{g_{1}}$, we obtain

$$
\begin{align*}
& g_{1}\left(A_{i} w_{n_{l}}-q_{n_{l}, i}, y\right)+\left\langle Q_{1}\left(A_{i} w_{n_{l}}-q_{n_{l}, i}\right), y-A_{i} w_{n_{l}}+q_{n_{l}, i}\right\rangle \\
& \quad+\varphi_{1}(y)-\varphi_{1}\left(A_{i} w_{n_{l}}-q_{n_{l}, i}\right) \\
& \quad+\frac{1}{s_{n_{l}, i}}\left\langle y-A_{i} w_{n_{l}}+q_{n_{l}, i}, A_{i} w_{n_{l}}-q_{n_{l}, i}-A_{i} w_{n_{l}}\right\rangle \geq 0 \quad \text { for all } y \in D_{1} \tag{3.29}
\end{align*}
$$

Since g_{1} is upper semi-continuous in the first argument, then G_{1} defined by

$$
G_{1}(x, y):=g_{1}(x, y)+\left\langle Q_{1} x, y-x\right\rangle+\varphi_{1}(y)-\varphi_{1}(x)
$$

is also upper semi-continuous in the first argument. Hence, taking lim sup of inequality (3.29) as $l \rightarrow \infty$ and using (3.27) (3.28), we obtain

$$
g_{1}\left(A_{i} x^{*}, y\right)+\left\langle Q_{1} A_{i} x^{*}, y-A_{i} x^{*}\right\rangle+\varphi_{1}(y)-\varphi_{1}\left(A_{i} x^{*}\right) \geq 0 \quad \text { for all } y \in D_{1}
$$

which implies that $A_{i} x^{*} \in \operatorname{GMEP}\left(g_{1}, Q_{1}, \varphi_{1}\right)$.
Similarly, we can show that $A_{i} x^{*} \in G M E P\left(g_{i}, Q_{i}, \varphi_{i}\right)$ for each $i=1,2, \ldots, m$.
Consequently, we have that $A_{i} x^{*} \in \bigcap_{i=1}^{m} \operatorname{GMEP}\left(g_{i}, Q_{i}, \varphi_{i}\right)$.
Hence, $x^{*} \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$ as required.
Now, we present the proof of Theorem 3 as follows.
Proof. (Proof of Theorem 3.4) Let $\hat{x}=P_{\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x})$, then it follows from Lemma 3.6 that

$$
\begin{align*}
\left\|x_{n+1}-\hat{x}\right\|^{2} & \leq\left(1-\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\right)\left\|x_{n}-\hat{x}\right\|^{2} \\
& +\frac{2 \alpha_{n}\left(1-\mu^{*}\right)}{\left(1-\alpha_{n} \mu^{*}\right)}\left\{\frac{\alpha_{n}}{2\left(1-\mu^{*}\right)} M_{3}+\frac{3 M_{2} \gamma_{n}\left(1-\alpha_{n}\right)}{2\left(1-\mu^{*}\right)} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+\frac{1}{\left(1-\mu^{*}\right)}\left\langle h_{n}(\hat{x})-\hat{x}, x_{n+1}-\hat{x}\right\rangle\right\} . \tag{3.30}
\end{align*}
$$

Now, we claim that the sequence $\left\{\left\|x_{n}-\hat{x}\right\|^{2}\right\}$ converges to zero. To establish this, by Lemma 2.6, it suffices to show that $\limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, x_{n_{k}+1}-\hat{x}\right\rangle \leq 0$ for every subsequence $\left\{\left\|x_{n_{k}}-\hat{x}\right\|\right\}$ of $\left\{\left\|x_{n}-\hat{x}\right\|\right\}$ satisfying

$$
\liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}+1}-\hat{x}\right\|-\left\|x_{n_{k}}-\hat{x}\right\|\right) \geq 0
$$

Now, suppose that $\left\{\left\|x_{n_{k}}-\hat{x}\right\|\right\}$ is a subsequence of $\left\{\left\|x_{n}-\hat{x}\right\|\right\}$ such that

$$
\liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}+1}-\hat{x}\right\|-\left\|x_{n_{k}}-\hat{x}\right\|\right) \geq 0
$$

Then, by Lemma 3.7, we have that $w_{\omega}\left\{x_{n}\right\} \subset \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$. It also follows from (3.25) that $w_{\omega}\left\{u_{n}\right\}=w_{\omega}\left\{x_{n}\right\}$. By the boundedness of $\left\{x_{n_{k}}\right\}$, there exists a subsequence $\left\{x_{n_{k_{j}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k_{j}}} \rightharpoonup x^{\dagger}$ and
$\lim _{j \rightarrow \infty}\left\langle h_{n_{k_{j}}}(\hat{x})-\hat{x}, x_{n_{k_{j}}}-\hat{x}\right\rangle=\limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, x_{n_{k}}-\hat{x}\right\rangle=\limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, u_{n_{k}}-\hat{x}\right\rangle$.
Since $\hat{x}=P_{\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x})$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ on K, then it follows that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, x_{n_{k}}-\hat{x}\right\rangle=\lim _{j \rightarrow \infty}\left\langle h_{n_{k_{j}}}(\hat{x})-\hat{x}, x_{n_{k_{j}}}-\hat{x}\right\rangle=\left\langle h(\hat{x})-\hat{x}, x^{\dagger}-\hat{x}\right\rangle \leq 0 \tag{3.31}
\end{equation*}
$$

Combining (3.26) and (3.31), we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, x_{n_{k}+1}-\hat{x}\right\rangle \leq \limsup _{k \rightarrow \infty}\left\langle h_{n_{k}}(\hat{x})-\hat{x}, x_{n_{k}}-\hat{x}\right\rangle=\left\langle h(\hat{x})-\hat{x}, x^{\dagger}-\hat{x}\right\rangle \leq 0 \tag{3.32}
\end{equation*}
$$

Applying Lemma 2.6 to (3.30), and using (3.32) together with the fact that $\lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|=0$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we deduce that $\lim _{n \rightarrow \infty}\left\|x_{n}-\hat{x}\right\|=0$ as required.
By the properties of the best approximation operator, we have the following consequent result.
Corollary 3.8. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, $A_{i}(\bmod m): H_{1} \rightarrow H_{2}$ be a finite family of bounded linear operators with adjoint $A_{i}^{*}, f_{i}(\bmod m): C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}(\bmod m)$: $D_{i} \times D_{i} \rightarrow \mathbb{R}$ are two finite families of bifunctions satisfying conditions (A1) - (A4) and g_{i} is upper semicontinuous in the first argument for each $i=1,2, \ldots, m$. Let $\phi_{i}(\bmod m): C_{i} \rightarrow \mathbb{R} \cup+\infty$ and $\varphi_{i}(\bmod m): D_{i} \rightarrow \mathbb{R} \cup+\infty$ be proper lower semicontinuous and convex functions, and $P_{i}(\bmod m): C_{i} \rightarrow H_{1}$ and $Q_{i}(\bmod m)$: $D_{i} \rightarrow H_{2}$ are continuous and monotone mappings. Let $S_{i}(\bmod m): C_{i} \rightarrow P\left(C_{i}\right)$ be a finite family of multivalued mappings such that $P_{S_{i}}$ is k_{i}-demicontractive with $k=\max \left\{k_{i}\right\}$ and suppose $I-P_{S_{i}}$ is demiclosed at zero for each $i=1,2, \ldots, m$, and let $\left\{h_{n}\right\}\left(h_{n}: H_{1} \rightarrow H_{1}\right)$ be a sequence of μ_{n}-contractive mappings with $0<\mu_{*} \leq$ $\mu_{n} \leq \mu^{*}<1$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ for any $x \in K$, where K is any bounded subset of H_{1}. Let $\left\{x_{n}\right\}$ be a sequence generated as follows:

Algorithm 3.9.

Step 0. Select initial data $x_{0}, x_{1} \in C$ and set $n=1$.
Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}=\left\{\begin{array}{l}
\min \left\{\frac{n-1}{n+\theta-1}, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, \quad \text { if } x_{n} \neq x_{n-1} \tag{3.33}\\
\frac{n-1}{n+\theta-1}, \quad \text { otherwise }
\end{array}\right.
$$

Step 2. Compute

$$
\begin{equation*}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) \tag{3.34}
\end{equation*}
$$

Step 3. Compute

$$
\begin{equation*}
z_{n, i}=w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right) \tag{3.35}
\end{equation*}
$$

where

$$
\lambda_{n, i}:= \begin{cases}\tau_{n} \frac{\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}{\| A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \|^{2}\right.}, & \text { if } A_{i} w_{n} \neq T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \tag{3.36}\\ \lambda, & \text { otherwise }(\lambda \text { being any nonnegative real number })\end{cases}
$$

Step 4. Compute

$$
\left\{\begin{array}{l}
u_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i} \tag{3.37}\\
y_{n}=\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i} \\
x_{n+1}=\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}
\end{array}\right.
$$

where $v_{n, i} \in P_{S_{i}}\left(u_{n}\right)$. Set $n:=n+1$ and return to Step 1 .
Suppose that the solution set $\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right) \neq \emptyset$, and suppose Assumptions (A1)(A4) and (B1) - (B7) are satisfied. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.9 converges strongly to a point $\hat{x} \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, where $\hat{x}=P_{\Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x})$.

Proof. Since $P_{S_{i}}$ satisfies the common endpoint condition and $F\left(S_{i}\right)=F\left(P_{S_{i}}\right)$ for each $i=1,2, \ldots, m$, then the result follows from Theorem 3.4.
If we set $P_{i}=Q_{i}=0$ in (1.16)-(1.17), we obtain the SSMEP (1.18)-(1.19). In [28], the author proved a weak convergence theorem for solving (1.18)-(1.19) and fixed point problem for a nonexpansive mapping. However, setting $P_{i}=Q_{i}=0$ in Theorem 3.4 we obtain a strong convergence result for approximating a common solution of the SSMEP (1.18)-(1.19) and fixed point of finite family of multivalued demicontractive mappings. Hence, the following result complements the result in [28].
Corollary 3.10. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, $A_{i}(\bmod m): H_{1} \rightarrow H_{2}$ be a finite family of bounded linear operators with adjoint $A_{i}^{*}, f_{i}(\bmod m): C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}(\bmod m):$ $D_{i} \times D_{i} \rightarrow \mathbb{R}$ are two finite families of bifunctions satisfying conditions (A1) - (A4) and g_{i} is upper semicontinuous in the first argument for each $i=1,2, \ldots, m$. Let $\phi_{i}(\bmod m): C_{i} \rightarrow \mathbb{R} \cup+\infty$ and $\varphi_{i}(\bmod m): D_{i} \rightarrow \mathbb{R} \cup+\infty$ be proper lower semicontinuous and convex functions and let $S_{i}(\bmod m): C_{i} \rightarrow C B\left(C_{i}\right)$ be a finite family of multivalued demicontractive mappings with constant k_{i} such that each $I-S_{i}$ is demiclosed at zero, $S_{i}(p)=\{p\}$ for all $p \in F\left(S_{i}\right)$, and $k=\max \left\{k_{i}\right\}$. Let $\left\{h_{n}\right\}\left(h_{n}\right.$: $H_{1} \rightarrow H_{1}$) be a sequence of μ_{n}-contractive mappings with $0<\mu_{*} \leq \mu_{n} \leq \mu^{*}<1$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ for any $x \in K$, where K is any bounded subset of H_{1}. Let $\left\{x_{n}\right\}$ be a sequence generated as follows:

Algorithm 3.11.

Step 0. Select initial data $x_{0}, x_{1} \in C$ and set $n=1$.
Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}=\left\{\begin{array}{l}
\min \left\{\frac{n-1}{n+\theta-1}, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, \quad \text { if } x_{n} \neq x_{n-1} \tag{3.38}\\
\frac{n-1}{n+\theta-1}, \quad \text { otherwise }
\end{array}\right.
$$

Step 2. Compute

$$
\begin{equation*}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) \tag{3.39}
\end{equation*}
$$

Step 3. Compute

$$
\begin{equation*}
z_{n, i}=w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right) \tag{3.40}
\end{equation*}
$$

where

$$
\lambda_{n, i}:= \begin{cases}\tau_{n} \frac{\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}, & \text { if } A_{i} w_{n} \neq T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \tag{3.41}\\ \lambda, & \text { otherwise }(\lambda \text { being any nonnegative real number })\end{cases}
$$

Step 4. Compute

$$
\left\{\begin{array}{l}
u_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i} \tag{3.42}\\
y_{n}=\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i} \\
x_{n+1}=\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}
\end{array}\right.
$$

where $v_{n, i} \in S_{i} u_{n}$. Set $n:=n+1$ and return to Step 1.
Suppose that the solution set $\Omega_{\phi, \varphi} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right) \neq \emptyset$, and suppose Assumptions (A1)(A4) and (B1) - (B7) are satisfied. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.11 converges strongly to a point $\hat{x} \in \Omega_{\phi, \varphi} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, where

$$
\hat{x}=P_{\Omega_{\phi, \varphi} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x}) .
$$

Setting $\phi_{i}=\varphi_{i}=0$ in Theorem 3.4, we obtain the following consequent result for approximating a common solution of the SSGEP and fixed point problem for multivalued demicontractive mappings. The result generalizes and complements the results in [13].
Corollary 3.12. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, $A_{i}(\bmod m): H_{1} \rightarrow H_{2}$ be a finite family of bounded linear operators with adjoint $A_{i}^{*}, f_{i}(\bmod m): C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}(\bmod m)$: $D_{i} \times D_{i} \rightarrow \mathbb{R}$ are two finite families of bifunctions satisfying conditions (A1) - (A4) and g_{i} is upper semicontinuous in the first argument for each $i=1,2, \ldots, m$. Let $P_{i}(\bmod m): C_{i} \rightarrow H_{1}$ and $Q_{i}(\bmod m): D_{i} \rightarrow H_{2}$ be continuous and monotone mappings and let $S_{i}(\bmod m): C_{i} \rightarrow C B\left(C_{i}\right)$ be a finite family of multivalued demicontractive mappings with constant k_{i} such that each $I-S_{i}$ is demiclosed at zero, $S_{i}(p)=\{p\}$ for all $p \in F\left(S_{i}\right)$, and $k=\max \left\{k_{i}\right\}$. Let $\left\{h_{n}\right\}\left(h_{n}: H_{1} \rightarrow H_{1}\right)$ be a sequence of μ_{n}-contractive mappings with $0<\mu_{*} \leq \mu_{n} \leq \mu^{*}<1$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ for any $x \in K$, where K is any bounded subset of H_{1}. Let $\left\{x_{n}\right\}$ be a sequence generated as follows:

[^0]Step 2. Compute

$$
\begin{equation*}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) \tag{3.44}
\end{equation*}
$$

Step 3. Compute

$$
\begin{equation*}
z_{n, i}=w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right), \tag{3.45}
\end{equation*}
$$

where

$$
\lambda_{n, i}:= \begin{cases}\tau_{n} \frac{\left\|\left(I-T_{n, i}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}, i}^{s_{i}}\right)_{i} w_{n}\right\|^{2}}, & \text { if } A_{i} w_{n} \neq T_{s_{n, i}}^{g_{i}} A_{i} w_{n}, \tag{3.46}\\ \lambda, & \text { otherwise (} \lambda \text { being any nonnegative real number) } .\end{cases}
$$

Step 4. Compute

$$
\left\{\begin{array}{l}
u_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i} \tag{3.47}\\
y_{n}=\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i} \\
x_{n+1}=\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n},
\end{array}\right.
$$

where $v_{n, i} \in S_{i} u_{n}$. Set $n:=n+1$ and return to Step 1.
Suppose that the solution set $\Omega_{P, Q} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right) \neq \emptyset$, and suppose Assumptions (A1)(A4) and (B1) - (B7) are satisfied. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.13 converges strongly to a point $\hat{x} \in \Omega_{P, Q} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, where

$$
\hat{x}=P_{\Omega_{P, Q} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x}) .
$$

Putting $\phi_{i}=\varphi_{i}=0$ and $P_{i}=Q_{i}=0$ in Theorem 3.4, we obtain the following consequent result for approximating a common solution of the SSEP and fixed point problem for multivalued demicontractive mappings. The result complements the results in $[31,51]$ and generalises as well as improves the results in $[38,40]$.
Corollary. Let C_{i} and D_{i} be nonempty closed convex subsets of real Hilbert spaces H_{1} and H_{2} respectively, $A_{i}(\bmod m): H_{1} \rightarrow H_{2}$ be a finite family of bounded linear operators with adjoint $A_{i}^{*}, f_{i}(\bmod m): C_{i} \times C_{i} \rightarrow \mathbb{R}$ and $g_{i}(\bmod m): D_{i} \times D_{i} \rightarrow \mathbb{R}$ are two finite families of bifunctions satisfying conditions (A1) - (A4) and g_{i} is upper semicontinuous in the first argument for each $i=1,2, \ldots, m$. Let $S_{i}(\bmod m): C_{i} \rightarrow$ $C B\left(C_{i}\right)$ be a finite family of multivalued demicontractive mappings with constant k_{i} such that each $I-S_{i}$ is demiclosed at zero, $S_{i}(p)=\{p\}$ for all $p \in F\left(S_{i}\right)$, and $k=\max \left\{k_{i}\right\}$. Let $\left\{h_{n}\right\}\left(h_{n}: H_{1} \rightarrow H_{1}\right)$ be a sequence of μ_{n}-contractive mappings with $0<\mu_{*} \leq \mu_{n} \leq \mu^{*}<1$ and $\left\{h_{n}(x)\right\}$ is uniformly convergent to $h(x)$ for any $x \in K$, where K is any bounded subset of H_{1}. Let $\left\{x_{n}\right\}$ be a sequence generated as follows:

Algorithm 3.15.

Step 0. Select initial data $x_{0}, x_{1} \in C$ and set $n=1$.
Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}=\left\{\begin{array}{l}
\min \left\{\frac{n-1}{n+\theta-1}, \frac{\epsilon_{n}}{\left\|\mid x_{n}-x_{n-1}\right\|}\right\}, \tag{3.48}\\
\frac{n-1}{n+\theta-1}, \quad \text { otherwise } .
\end{array}\right.
$$

Step 2. Compute

$$
\begin{equation*}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) . \tag{3.49}
\end{equation*}
$$

Step 3. Compute

$$
\begin{equation*}
z_{n, i}=w_{n}-\lambda_{n, i} A_{i}^{*}\left(A_{i} w_{n}-T_{s_{n, i}}^{g_{i}} A_{i} w_{n}\right) \tag{3.50}
\end{equation*}
$$

where

$$
\lambda_{n, i}:= \begin{cases}\tau_{n} \frac{\left\|\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}{\left\|A_{i}^{*}\left(I-T_{s_{n, i}}^{g_{i}}\right) A_{i} w_{n}\right\|^{2}}, & \text { if } A_{i} w_{n} \neq T_{s_{n, i}}^{g_{i}} A_{i} w_{n} \tag{3.51}\\ \lambda, & \text { otherwise }(\lambda \text { being any nonnegative real number })\end{cases}
$$

Step 4. Compute

$$
\left\{\begin{array}{l}
u_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{m} \beta_{n, i} T_{r_{n, i}}^{f_{i}} z_{n, i} \tag{3.52}\\
y_{n}=\delta_{n, 0} u_{n}+\sum_{i=1}^{m} \delta_{n, i} v_{n, i} \\
x_{n+1}=\alpha_{n} h_{n}\left(x_{n}\right)+\xi_{n} x_{n}+\gamma_{n} y_{n}
\end{array}\right.
$$

where $v_{n, i} \in S_{i} u_{n}$. Set $n:=n+1$ and return to Step 1.
Suppose that the solution set $\Omega_{0,0} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right) \neq \emptyset$, and suppose Assumptions (A1)(A4) and (B1) - (B7) are satisfied. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.15 converges strongly to a point $\hat{x} \in \Omega_{0,0} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$, where

$$
\hat{x}=P_{\Omega_{0,0} \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)} h(\hat{x})
$$

4. Application and numerical example

4.1 Split Convex Minimization Problem. In this subsection, we apply our result to study the following system of split convex minimisation problem: Find

$$
\begin{equation*}
\hat{x} \in \bigcap_{i=1}^{m} F\left(S_{i}\right) \text { such that } \hat{x}=\arg \min _{x \in C_{i}}\left(F_{i}(x)+\Theta_{i}(x)+\Phi_{i}(x)\right) \tag{4.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
A_{i} \hat{x}=\arg \min _{y \in D_{i}}\left(G_{i}(y)+\Psi_{i}(y)+\Pi_{i}(y)\right) \tag{4.2}
\end{equation*}
$$

where C_{i} and D_{i} are nonempty closed and convex subset of H_{1} and H_{2} respectively. Moreover, $F_{i}, \Phi_{i}: C_{i} \rightarrow \mathbb{R}$ and $G_{i}, \Pi_{i}: D_{i} \rightarrow \mathbb{R}$ are four convex and lower semicontinuous functionals, $\Theta_{i}: C_{i} \rightarrow \mathbb{R}$ and $\Psi_{i}: D_{i} \rightarrow \mathbb{R}$ are convex continuously differentiable functions and $A_{i}: H_{1} \rightarrow H_{2}$ is a bounded linear operator. Let $f_{i}(x, y)=F_{i}(y)-F_{i}(x), g_{i}(x, y)=G_{i}(y)-G_{i}(x), P_{i}=\nabla \Theta_{i}, Q_{i}=\nabla \Psi_{i}$, where $\nabla \Theta_{i}$ and $\nabla \Psi_{i}$ denote the gradient of Θ_{i} and Ψ_{i} respectively, and let $\phi_{i}=\Phi_{i}$ and $\varphi_{i}=\Pi_{i}$. Then the system of split convex minimisation problem (4.1)-(4.2) can be formulated as the following system of split generalized mixed equilibrium problem: find $\hat{x} \in \bigcap_{i=1}^{m} F\left(S_{i}\right)$, such that

$$
\begin{equation*}
F_{i}(x)-F_{i}(\hat{x})+\left\langle\nabla \Theta_{i} \hat{x}, x-\hat{x}\right\rangle+\Phi_{i}(x)-\Phi_{i}(\hat{x}) \geq 0, \text { for all } x \in C_{i} \tag{4.3}
\end{equation*}
$$

and $\hat{y}=A_{i} \hat{x} \in D=\cap_{i=1}^{m} D_{i}$ solves

$$
\begin{equation*}
G_{i}(y)-G_{i}(\hat{x})+\left\langle\nabla \Psi_{i} \hat{x}, y-\hat{x}\right\rangle+\Pi_{i}(y)-\Pi_{i}(\hat{x}) \geq 0, \text { for all } y \in D_{i} \tag{4.4}
\end{equation*}
$$

Hence, Theorem 3.4 provides a strong convergence result for solving a system of split convex minimisation problem (4.1)-(4.2).
4.2 Numerical Example. In this subsection, we provide a numerical example to compare the performance of our proposed Algorithm 3 with its non-inertial version.

Example 4.1. Let $H_{1}=H_{2}=\mathbb{R}$ with the usual norm. For $i=1,2, \ldots, 5$, let $C_{i}=[-i, 0]$ and $D_{i}=[-10-i, 0]$, then we have that $C=\bigcap_{i=1}^{5} C_{i}=[-1,0]$ and $D=\bigcap_{i=1}^{5} D_{i}=[-11,0]$. Define $P_{i}=Q_{i}=0, \phi_{i}=\varphi_{i}=0$, and for each $x, y \in C_{i}$ define $f_{i}: C_{i} \times C_{i} \rightarrow H_{1}$ by $f_{i}(x, y)=i x(y-x)$ and define $g_{i}: D_{i} \times D_{i}$ by $g_{i}(u, v)=$ $(10+i) u(v-u)$, for each $u, v \in D_{i}$. Define $A_{i}: H_{1} \rightarrow H_{2}$ by $A_{i} x=\frac{i x}{2}$ for all $x \in H_{1}$, then $A_{i}^{*} y=\frac{y}{2}$ for all $y \in H_{2}$. It can be verified that

$$
T_{s_{n, i}}^{g_{i}} A_{i} x=\frac{i x}{2+2(10+i) s_{n, i}} \quad \text { for all } x \in H_{1}
$$

and

$$
T_{r_{n, i}}^{f_{i}} x=\frac{x}{1+i r_{n, i}} \quad \text { for all } x \in H_{1}
$$

Define $S_{i}: C_{i} \rightarrow C B\left(C_{i}\right)$ by

$$
S_{i} x= \begin{cases}{\left[-\frac{i|x|}{i|x|+1}, 0\right],} & x \in[-5,-1) \tag{4.5}\\ \{0\}, & x \in[-1,0]\end{cases}
$$

It is easy to see that S_{i} is quasi-nonexpansive and thus 0 -demicontractive with $F\left(S_{i}\right)=\{0\}$, for each $i=1,2, \ldots, 5$.
Next, we find a common solution $\hat{x} \in C$ for the following system of generalized mixed equilibrium problems:

$$
f_{i}(\hat{x}, x)+\left\langle P_{i} \hat{x}, x-\hat{x}\right\rangle+\phi_{i}(x)-\phi_{i}(\hat{x}) \geq 0, \quad \text { for all } x \in C_{i}, i=1,2, \ldots, m
$$

Since $\phi_{i}=0$ and $P_{i}=0$, then we find a point \hat{x} that has to be a solution of the inequality $i \hat{x}(x-\hat{x}) \geq 0$ for all $x \in C_{i}$. This problem has a unique solution $\hat{x}=0$. Then it follows that the point $\hat{y}=A_{i} \hat{x}=0$ will be a solution for the following system of generalized mixed equilibrium problems:

$$
g_{i}(\hat{y}, y)+\left\langle Q_{i} \hat{y}, y-\hat{y}\right\rangle+\varphi_{i}(y)-\varphi_{i}(\hat{y}) \geq 0, \quad \text { for all } y \in D_{i}, i=1,2, \ldots, m
$$

That is, $\hat{y}=0$ solves the inequality $(10+i) \hat{y}(y-\hat{y}) \geq 0$ for all $y \in D_{i}$. Hence, we obtain that $\hat{x}=0$ is a common solution for the system of split generalized mixed equilibrium problem and fixed point problem, that is, $0 \in \Omega \cap \bigcap_{i=1}^{m} F\left(S_{i}\right)$.
Let $h_{n}(x)=\frac{(n+1) x}{3 n}, \beta_{n, 0}=\frac{1}{n+2}, \beta_{n, i}=\frac{n+1}{5(n+2)}, \delta_{n, 0}=\frac{1}{n+1}, \delta_{n, i}=\frac{n}{5(n+1)}, \alpha_{n}=$ $\frac{1}{3 n}, \xi_{n}=\gamma_{n}=\frac{1}{2}\left(1-\frac{1}{3 n}\right), \epsilon=\frac{1}{(n+1)^{4}}$ and $\theta=4, r_{n, i}=s_{n, i}=\frac{n}{n+i}$ in Algorithm 3.1 for each $n \in \mathbb{N}$. It is easy to check that f_{i}, g_{i} and the control parameters satisfy all the conditions in Theorem 3.4.
We choose different initial values as follows:
Case Ia: $x_{0}=16, x_{1}=3$;
Case Ib: $x_{0}=55, x_{1}=6$;
Case Ic: $x_{0}=15, x_{1}=61$;
Case Id: $x_{0}=-15, x_{1}=61$.
Using MATLAB 2017(b), we compare the performance of our Algorithm 3.1 with its non-inertial version. The stopping criterion used for our computation is $\left|x_{n+1}-x_{n}\right|<$ 10^{-3}. We plot the graphs of errors against the number of iterations in each case. The figures and numerical results are shown in Figure 1 and Table 1, respectively.

Figure 1. Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right: Case Id.

Table 1. Numerical results

		Alg. 3	Non-inertial Alg. 3
Case Ia	CPU time (sec)	0.0013	0.0015
	No of Iter.	49	63
Case Ib	CPU time (sec)	0.0017	0.0022
	No. of Iter.	79	84
Case Ic	CPU time (sec)	0.0014	0.0023
	No of Iter.	82	273
Case Id	CPU time (sec)	0.0016	0.0020
	No of Iter.	79	84

Acknowledgment. The authors sincerely thank the anonymous referee for his careful reading, constructive comments and fruitful suggestions that substantially improved the manuscript. The second author acknowledges with thanks the International Mathematical Union Breakout Graduate Fellowship (IMU-BGF) Award for his doctoral study. The third author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the IMU and NRF.

References

[1] H.A. Abass, K.O. Aremu, L.O. Jolaoso, O.T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problems, J. Nonlinear Funct. Anal., 2020, (2020), Art. ID. 16, 20 pp.
[2] H.A. Abass, F.U. Ogbuisi, O.T. Mewomo, Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 80(2018), no. 1, 175-190.
[3] R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications, Springer-Verlag, New York, NY, 6, 2009.
[4] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud., 27 (2020), no. 1, 1-24.
[5] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim., (2020), DOI:10.3934/jimo.2020152.
[6] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020), DOI:10.1080/02331934.2020.1723586.
[7] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math., (2020), doi.org/10.1515/dema-2020-0013.
[8] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9(2001), 3-11.
[9] H.H. Bauschke, P.L. Combettes, A weak-to-strong convergence principle for Fejr-monotone methods in Hilbert spaces, Math. Oper. Res., 26(2001), no. 2, 248-264.
[10] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2(2009), no. 1, 183-202.
[11] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63(1994), no. 14, 123-145.
[12] R.H. Chan, S. Ma, J.F. Jang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8(2015), no. 4, 2239-2267.
[13] K. Cheawchan, A. Kangtunyakarn, The modified split generalized equilibrium problem for quasinonexpansive mappings and applications, J. Inequal. Appl., 2018(2018), Art. ID. 122.
[14] P.L. Combettes, A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
[15] A. Gibali, L.O. Jolaoso, O.T. Mewomo, A. Taiwo, Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces, Results Math., $75(2020)$, Art. No. 179, 36 pp.
[16] Z. He, The split equilibrium problem and its convergence algorithms, J. Inequal. Appl., (2012), Art. ID. 162.
[17] D.V. Hieua, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal., 21(2016), no. 4, 478-501.
[18] C. Huang, X. Ma, On generalized equilibrium problems and strictly pseudocontractive mappings in Hilbert spaces, Fixed Point Theory Appl., 2014(2014), Art. ID 145.
[19] C. Izuchukwu, K.O. Aremu, A.A. Mebawondu, O.T. Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 20(2019), no. 1, 193-210.
[20] C. Izuchukwu, A.A. Mebawondu, O.T. Mewomo, A new method for solving split variational inequality problems without co-coerciveness, J. Fixed Point Theory Appl., 22 (2020), no. 4, Art. No. 98, 23 pp.
[21] C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization, (2020), DOI:10.1080/02331934.2020.1808648.
[22] C. Izuchukwu, G.C. Ugwunnadi, O.T. Mewomo, A.R. Khan, M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms, 82(2019), no. 3, 909-935.
[23] L.O. Jolaoso, T.O. Alakoya, A. Taiwo, O.T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo, 69(2020), no. 3, 711-735.
[24] L.O. Jolaoso, T.O. Alakoya, A. Taiwo, O.T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization, (2020), DOI:10.1080/02331934.2020.1716752.
[25] L.O. Jolaoso, K.O. Oyewole, C.C. Okeke, O.T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem, and for finding fixed point of nonspreading mapping in Hilbert spaces, Demonstr. Math., 51(2018), no. 1, 277-294.
[26] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39(2020), no. 1, Paper No. 38, 28 pp.
[27] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math., 52(2019), 183-203.
[28] I. Karahan, L.O. Jolaoso, An iterative algorithm for the system of split mixed equilibrium problem, Demonstr. Math. 2020; 53: 309-324.
[29] K.R. Kazmi, S. Yousuf, Common solution to generalized mixed equilibrium problem and fixed point problems in Hilbert space, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113(2019), Art. ID 3699, https://doi.org/10.1007/s13398-019-00725-1.
[30] S.H. Khan, T.O. Alakoya, O.T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl., 25(2020), Art. 54.
[31] M.A.A. Khan, Y. Arfat, A.R. Butt, A shrinking projection approach for split equilibrium problems and fixed point problems in Hilbert spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 80(2018), no. 1, 33-46.
[32] J.K. Kim, N. Buong, An iteration method for common solution of a system of equilibrium problems in Hilbert spaces, Fixed Point Theory Appl., 2011(2011), Art. ID 780764.
[33] D. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51(2015), no. 2, 311-325.
[34] P.E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325(2007), 469-479.
[35] P.E. Maingé, Convergence theorems for inertial KM-type algorithms, Comput. Appl. Math., 219(2008), no. 1, 223-236.
[36] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155(2003), no. 2, 447-454.
[37] C.C. Okeke, C. Izuchukwu, O.T. Mewomo, Strong convergence results for convex minimization and monotone variational inclusion problems in Hilbert spaces, Rend. Circ. Mat. Palermo, 69(2020), no. 2, 675-693.
[38] N. Onjai-uea, W. Phuengrattana, On solving split mixed equilibrium problems and fixed point problems of hybrid-type multivalued mappings in Hilbert spaces, Journal of Inequalities and Applications, 2017 (2017), no. 1, p. 137.
[39] O.K. Oyewole, H.A. Abass, O.T. Mewomo, Strong convergence algorithm for a fixed point constraint split null point problem, Rend. Circ. Mat. Palermo, (2020), DOI:10.1007/s12215-020-00505-6.
[40] W. Phuengrattana, K. Lerkchaiyaphum, On solving the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings, Fixed Point Theory Appl., 2018(2018), 1-6.
[41] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 4(1964), no. 5, 1-17.
[42] X. Qin, S.M. Kang, Y.J. Cho, Convergence theorems on generalized equilibrium problems and fixed point problems with applications, Proc. Estonian Acad. Sci., 58(2009), 170-318.
[43] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75(2012), 742-750.
[44] Y. Song, Y.J. Cho, Some note on Ishikawa iteration for multivalued mappings, Bull. Korean Math. Soc., 48(2011), no. 3, 575-584.
[45] S. Suantai, P. Cholamjiak, Y.J. Cho, W. Cholamjiak, On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert spaces, Fixed Point Theory Appl., (2016), Art. ID 1, 35.
[46] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, (2020), DOI:10.1007/s11075-020-00937-2.
[47] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc., (2019), DOI: 10.1007/s40840-019-00781-1.
[48] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Viscosity approximation method for solving the multipleset split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim., (2020), DOI:10.3934/jimo. 2020092
[49] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, A. Gibali, On generalized mixed equilibrium problem with $\alpha-\beta-\mu$ bifunction and $\mu-\tau$ monotone mapping, J. Nonlinear Convex Anal., 21 (2020), no. $6,1381-1401$.
[50] A. Taiwo, A.O.-E. Owolabi, L.O. Jolaoso, O.T. Mewomo, A. Gibali, A new approximation scheme for solving various split inverse problems, Afrika Mat., (2020), DOI:https://doi.org/10.1007/s13370-020-00832-y.
[51] G.C. Ugwunnadi, B. Ali, Approximation methods for solutions of system of split equilibrium problems, Adv. Oper. Theory, 2 (2016), 164-183.
[52] Y. Yao, M.A. Noor, S. Zainab, Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal Appl., 354(2009), no. 1, 319-329.
[53] S. Zhang, Generalized mixed equilibrium problem in Banach spaces, Appl. Math. Mech. (English Edition) 30(2009), 1105-1112.

Received: March 7, 2020; Accepted: November 29, 2020.

[^0]: Algorithm 3.13.
 Step 0. Select initial data $x_{0}, x_{1} \in C$ and set $n=1$.
 Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

 $$
 \hat{\theta}_{n}= \begin{cases}\min \left\{\frac{n-1}{n+\theta-1}, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \tag{3.43}\\ \frac{n-1}{n+\theta-1}, \quad \text { otherwise }\end{cases}
 $$

