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Abstract. In this paper, we study split common fixed point problems of Bregman demigeneral-

ized and Bregman quasi-nonexpansive mappings in reflexive Banach spaces. Using the Bregman
technique together with a Halpern iterative algorithm, we approximate a solution of split common

fixed point problem and sum of two monotone operators in reflexive Banach spaces. We establish a

strong convergence result for approximating the solution of the aforementioned problems. It is worth
mentioning that the iterative algorithm employ in this article is design in such a way that it does

not require prior knowledge of operator norm and we do not employ Fejer monotinicity condition in

the strategy of proving our convergence theorem. We apply our result to solve variational inequality
and convex minimization problems. The result discuss in this paper extends and complements many

related results in literature.
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1. Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty closed and
convex subset of E. Let f : E → (−∞,+∞] be a proper, lower semicontinuous and
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convex function, then the Fenchel conjugate of f denoted as f∗ : E∗ → (−∞,+∞] is
define as

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of f be denoted as domf = {x ∈ E : f(x) < +∞}, hence for any
x ∈ intdomf and y ∈ E, we define the right-hand derivative of f at x in the direction
of y by

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is said to be

(i) Gâteaux differentiable at x if lim
t→0+

f(x+ty)−f(x)
t exists for any y. In this case,

f0(x, y) coincides with 5f(x) (the value of the gradient 5f of f at x);
(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ intdomf ;

(iii) Fréchet differentiable at x, if its limit is attained uniformly in ||y|| = 1;
(iv) Uniformly Fréchet differentiable on a subset Q of E, if the above limit is

attained uniformly for x ∈ Q and ||y|| = 1.

Let f : E → (−∞,+∞] be a function, then f is said to be:

(i) essentially smooth, if the subdifferential of f denoted as ∂f is both locally
bounded and single-valued on its domain, where

∂f(x) = {w ∈ E : f(x)− f(y) ≥ 〈w, y − x〉, y ∈ E};
(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f

is strictly convex on every convex subset of dom ∂f ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex. See

[8, 9] for more details on Legendre functions.

Alternatively, a function f is said to be Legendre if it satisfies the following conditions:

(i) The intdomf is nonempty, f is Gâteaux differentiable on intdomf and dom5
f = intdomf ;

(ii) The intdomf∗ is nonempty, f∗ is Gâteaux differentiable on intdomf∗ and
dom5 f∗ = intdomf .

Let E be a Banach space and Bs := {z ∈ E : ||z|| ≤ s} for all s > 0. Then, a function
f : E → R is said to be uniformly convex on bounded subsets of E, [see pp. 203 and
221] [49] if ρst > 0 for all s, t > 0, where ρs : [0,+∞)→ [0,∞] is defined by

ρs(t) = inf
x,y∈Bs,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of f . The function f
is also said to be uniformly smooth on bounded subsets of E, [see pp. 221] [49], if
lim
t↓0

σs

t for all s > 0, where σs : [0,+∞)→ [0,∞] is defined by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αf(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0.
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The function f is said to be uniformly convex if the function δf : [0,+∞)→ [0,+∞)
defined by

δf(t) := sup
{1

2
f(x) +

1

2
f(y)− f(

x+ y

2
) : ||y − x|| = t},

satisfies lim
t↓0

δf(t)
t = 0.

Definition. [12] Let E be a Banach space. A function g : E → (−∞,∞] is said to
be proper if the interior of its domain dom(g) is nonempty. Let g : E → (−∞,∞]
be a convex and Gâteaux differentiable function. Then the Bregman distance corre-
sponding to g is the function Dg : dom(g)× intdom(g)→ R defined by

Dg(x, y) := g(x)− g(y)− 〈x− y,5gE(y)〉, ∀ x, y ∈ E. (1.1)

is called the Bregman distance with respect to g. It is clear that Dg(x, y) ≥ 0 for all
x, y ∈ E.
It is well-known that Bregman distance Dg does not satisfy the properties of a metric
because Dg fail to satisfy the symmetric and triangular inequality property. However,
the Bregman distance satisfies the following so-called three point identity: for any
x ∈ domg and y, z ∈ intdomg,

Dg(x, z) = Dg(x, y) +Dg(y, z) + 〈x− y,5gE(y)−5gE(z)〉. (1.2)

In particular,

Dg(x, y) = −Dg(y, x) + 〈y − x,5gE(y)−5gE(x)〉, ∀ x, y ∈ E.

Let g : E → R be a strictly convex and Gâteaux differentiable function and T :
Q → int(domg) be a mapping, a point x ∈ Q is called a fixed point of T , if for all
x ∈ Q, Tx = x. We denote by Fix(T ) the set of all fixed points of T . Furthermore,
a point p ∈ Q is called an asymptotic fixed point of T if Q contains a sequence {xn}
which converges weakly to p such that lim

n→∞
||Txn − xn|| = 0. We denote by ˆFix(T )

the set of asymptotic fixed points of T .
Let Q be a nonempty closed and convex subset of int(dom g), then we define an
operator T : Q→ int(domg) to be :

(i) Bregman relatively nonexpansive, if Fix(T ) 6= ∅, and

Df (p, Tx) ≤ Df (p, x), ∀ p ∈ Fix(T ), x ∈ Q and ˆFix(T ) = Fix(T ).

(ii) Bregman quasi-nonexpansive mapping if Fix(T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x),∀ x ∈ Q and p ∈ Fix(T ).

(iii) Bregman firmly nonexpansive (BFNE), if

〈5gE(Tx)−5gE(Ty), Tx− Ty〉 ≤ 〈5gE(x)−5gE(y), Tx− Ty〉, ∀ x, y ∈ E.

Definition. [22] Let C be a nonempty, closed and convex subset of a reflexive Banach
space E and g : E → (−∞,+∞] be a strongly coercive Bregman function. Let β and
γ be real numbers with β ∈ (−∞, 1) and γ ∈ [0,∞), respectively. Then a mapping



6 H.A. ABASS, A.A. MEBAWONDU, C. IZUCHUKWU AND O.K. NARAIN

T : C → E with F (T ) 6= ∅ is called Bregman (β, γ)-demigeneralized if for any x ∈ C
and p ∈ F (T ),

〈x− p,5gE(x)−5gE(Tx)〉 ≥ (1− β)Dg(x, Tx) + γDg(Tx, x), ∀ x ∈ E and p ∈ F (T ).

For modelling inverse problems which arises from phase retrievals and medical image
reconstruction, (see [13]), Censor and Elfving [17] introduced the Split Feasibility
Problem (SFP) in 1994, which is to find

u∗ ∈ C such that Fu∗ ∈ Q; (1.3)

where C and Q are nonempty, closed and convex subsets of real Banach spaces E1 and
E2 respectively, and F : E1 → E2 is a bounded linear operator. The SFP have been
well studied in the framework of real Hilbert spaces, uniformly convex and uniformly
smooth Banach spaces, see ([19, 26, 44] and other references contained in). Different
optimization problems have been formulated in terms of SFP (1.3), for instance, If
Q = {b} in SFP (1.3) is a singleton, then we have the following convexly constrained
linear inverse problem (in short, CCLIP) defined as follows:

Find a point u∗ ∈ C such that Fu∗ = b.

Also, if C = Fix(T ) and Q = Fix(S), then SFP (1.3) becomes split common fixed
point problem (in short SCFPP) which is to find a point

u∗ ∈ Fix(T ) such that Fu∗ ∈ Fix(S). (1.4)

Since the inception of SCFPP (1.4), several authors have considered solving this prob-
lem. For instance, Censor and Segal [18] introduced the following iterative algorithm
for the solving SCFPP (1.4) in finite dimensional spaces. They defined their algorithm
as follows:

xn+1 = T (xn + τF t(S − I)Fxn),

for each n ≥ 1, where τ ∈ (0, 0
γ ) with γ being the largest eigenvalue of the matrix

F tF (F t being the matrix transposition). Also, Moudafi [30] introduced a relaxed
algorithm to approximate a solution of SCFPP (1.4) and proved some weak conver-
gence result in Hilbert spaces with the mappings T and S being quasi-nonexpansive
mappings.
Recently, Ansari and Rehan [5] introduced a generalized SFP (in short GSFP) as
follows:

Find u∗ ∈ Fix(T ) ∩A−1(0) such that Fu∗ ∈ Fix(S), (1.5)

where E1 and E2 are uniformly convex and uniformly smooth Banach spaces, C is a
nonempty closed and convex subset of E1, T : C → C is a generalized nonspreading
mapping such that Fix(T ) 6= ∅, S : E2 → E2 is a nonexpansive mapping, A : E1 →
2E

∗
1 is a maximal monotone operator and F : E1 → E2 is a bounded linear operator.

They proved a weak convergence to a solution of GSFP (1.5).
Very recently, Izuchukwu et al. [24] studied the following split monotone variational
inclusion and fixed point problem between Hilbert space and a Banach space which
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is defined as follows:

Find x∗ ∈ Fix(T ) ∩ (A+B)−1(0) such that Fu∗ ∈ G−1(0),

where H is a Hilbert space, E is a uniformly convex and uniformly smooth Banach
space, T : H → CB(H) is multivalued quasi-nonexpansive mapping, B : H → 2H

and G : E → 2E are maximal monotone operators, F : H → E is a bounded linear
operator. They proposed a viscosity iterative scheme and under mild conditions and
proved a strong convergence theorem.

Question. Can we generalize the results of [2, 5, 24, 34, 35] to a more general Banach
spaces (reflexive Banach spaces) and employ an approach diferrent from theirs to prove
a strong convergence result?
Let B : E → 2E

∗
be a set-valued mapping. We define the domain and range of B

by domB = {x ∈ E : Bx 6= ∅} and ranB =
⋃
x∈E Bx, respectively. The graph of B

denoted by G(B) = {(x, x∗) ∈ E ×E∗ : x∗ ∈ Bx}. The mapping B ⊂ E ×E∗ is said
to be monotone [40] if 〈x − y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ B. It is also
said to be maximal monotone [39] if its graph is not contained in the graph of any
other monotone operator on E. If B ⊂ E × E∗ is maximal monotone, then we can
represent the set B−1(0) = {z ∈ E : 0 ∈ Bz} is closed and convex.
Let A : E → 2E

∗
be a mapping, then the resolvent associated with A and λ for any

λ > 0 is the mapping ResgλA : E → 2E defined by

ResgλA := (5gE + λA)−1 ◦ 5gE .

It is worth mentioning that a mapping A : E → 2E
∗

is called Bregman inverse strongly
monotone (BISM) on the set C if

C ∩ (domg) ∩ (int dom g) 6= ∅,

and for any x, y ∈ C ∩ (int dom g), η ∈ Ax and ξ ∈ Ay, we have

〈η − ξ, (5g
∗

E∗(x)− η)−5g
∗

E∗(5gE(y)− ξ)〉 ≥ 0.

The anti-resolvent Agλ : E → 2E associated with the mapping A : E → 2E
∗

and λ > 0
is defined by

Agλ := 5gE ◦ (5gE − λA). (1.6)

Let A : E → E∗ be a single-valued monotone mapping and B : E → 2E
∗

be a
multivalued monotone mapping. Then, the Monotone Variational Inclusion Prob-
lem (MVIP) (also known as the problem of finding a zero of sum of two monotone
mappings) is to find x ∈ E such that

0∗ ∈ A(x) +B(x). (1.7)

We denote by Ω, the solution set of problem (1.7).
It is well known that many interesting problems arising from mechanics, economics,
economics, finance, nonlinear programming, applied sciences, optimization such as
equilibrium and variational inequality problems can be solved using MVIP. Consider-
able efforts have been devoted to develop efficient iterative algorithms to approximate
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solutions of MVIP in which the resolvent operator technique is one of the vital tech-
nique.
Many authors have considered approximating solutions of (1.7) together with fixed
point problems in real Hilbert and Banach spaces, see [2, 1, 3, 35, 43].
For instance, Okeke and Izuchukwu [34] studied and analysed an iterative algorithm
for approximating split feasibility problem and variational inclusion problem in p-
uniformly Banach spaces which are uniformly smooth, Using their iterative scheme,
they proved a strong convergence result for approximating the solution of the afore-
mentioned problems. Applications and numerical example were displayed to show the
behaviour of their result.
Suppose A = 0 in (1.7), we obtain the following Monotone Inclusion Problem (MIP),
which is to find x ∈ E such that

0∗ ∈ B(x). (1.8)

Many results on MIP have been extended by authors from real Hilbert spaces to
more general Banach spaces. For instance, Reich and Sabach [38, 25] introduced some
iterative algorithms and proved two strong convergence results for approximating a
common solution of a finite family of MIP (1.8) in a reflexive Banach space. Recently,
Timnak et. al. [47] introduced a new Halpern-type iterative scheme for finding a
common zero of finitely many maximal monotone mappings in a reflexive Banach
space and prove the following strong convergence theorem.
Theorem. Let E be a reflexive Banach space and f : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and
uniformly smooth on bounded subset of E. Let Ai : E → 2E

∗
, i = 1, 2, ..., be N

maximal monotone operators such that Z := ∩Ni=1A
−1
i (0∗) 6= ∅. Let {αn}n∈N and

{βn}n∈N be two sequences in (0, 1) satisfying the following control conditions:

(i) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞;

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Let {xn}n∈N be a sequence generated by
u ∈ E, x1 ∈ E chosen arbitrarily,

yn = 5f∗[βn 5 f(xn) + (1− βn)5 f(ResfrNAN
) · · · (Resfr1A1

(xn))],

xn+1 = 5f∗[αn 5 f(u) + (1− αn)5 f(yn)],

(1.9)

for n ∈ N, where 5f is the gradient of f . If ri > 0, for each i = 1, 2, ..., N , then the

sequence {xn}n∈N defined in (1.9) converges strongly to projfZu as n→∞.
Very recently, Ogbuisi and Izuchukwu [31] introduced an iterative algorithm and
obtained a strong convergence result for approximating a zero of sum of two maximal
monotone operators which is also a fixed point of a Bregman strongly nonexpansive
mapping in the framework of a reflexive Banach space.
We observed that very few results have been carried out on split common fixed point
problem and zeros of sum of two maximal monotone in reflexive Banach space. We will
also like to emphasize that approximating a common solution of MVIP and SCFPP
have some possible applications to mathematical models whose constraints can be



SPLIT COMMON FIXED POINT AND MONOTONE INCLUSION PROBLEMS 9

expressed as MVIP and SFP. In fact, this happens in practical problems like signal
processing, network resource allocation, image recovery, to mention a few, (see [23]).
It is worth mentioning that the problem considered in this article generalizes the ones
in [5, 18, 30].
Inspired by the results discussed above, we introduce an iterative algorithm which
does not require the prior knowledge of operator norm as this may give difficulty
in computing, to approximate a common solution of split common fixed point prob-
lem of Bregman demigeneralized type mapping and zeros of sum of two maximal
monotone operators which is also a solution of fixed point problem of Bregman quasi-
nonexpansive mapping in reflexive Banach spaces. Using our iterative algorithm with
our unique approach, we prove a strong convergence result for appproximating so-
lutions of the aforementioned problems and apply our result to solve variational
inequality and convex minimization problems. The result discussed in this paper
complements and extends many related results in literature.
We state our contributions in this article as follows:

(1) The main result in this article generalizes the results in [10], [32] and [34]
from p-uniformly Banach spaces which are also uniformly smooth to reflexive
Banach spaces.

(2) The problem considered in [47] is a special case of the one considered in this
article and generalizes the results in [3, 5, 18, 30, 33, 34, 47] from real Hilbert
spaces to a reflexive Banach spaces.

(3) It is worth mentioning that the proof of convergence proposed in this paper
is different from the ones in [2, 1, 5, 10, 32, 18, 33, 34, 35] in the sense that
our approach does not distinguish between whether the sequence generated
by our algorithm is Fejer-monotone or not. Our approach is simple and more
elegant.

(4) We dispensed the sets {Cn, Dn, Qn}n∈N in our algorithm as this gives diffi-
culties in computation. Lastly, our iterative algorithm is designed in such a
way that it does not require prior knowledge of operator norm as this also
gives difficulties in computation.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our main
theorem. In the sequel, we denote strong and weak convergence by ”→” and ”⇀”,
respectively.
Definition. A function g : E → R is said to be strongly coercive if

lim
||xn||→∞

g(xn)

||xn||
=∞.

Lemma. [47] Let E be a Banach space, s > 0 be a constant, ρs be the gauge of
uniform convexity of g and g : E → R be a strongly coercive Bregman function.
Then,
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(i) For any x, y ∈ Bs and α ∈ (0, 1), we have

Dg

(
x,5g

∗

E∗ [α5gE 5
g
E(y) + (1− α)5gE (z)]

)
≤ αDg(x, y) + (1− α)Dg(x, z)− α(1− α)ρs(|| 5gE (y)−5gE(z)||),

(ii) For any x, y ∈ Bs,

ρs(||x− y||) ≤ Dg(x, y).

Here, Bs := {z ∈ E : ||z|| ≤ s}.

Lemma. [16] Let E be a reflexive Banach space, g : E → R be a strongly coercive
Bregman function and V be a function defined by

V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗), x ∈ E, x∗ ∈ E∗.

The following assertions also hold:

Dg(x,55g
∗

E∗ (x∗)) = V (x, x∗), for all x ∈ E and x∗ ∈ E∗.

V (x, x∗) + 〈5g
∗

E∗(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ Eand x∗, y∗ ∈ E∗.

Lemma. [22] Let E1 and E2 be two Banach spaces. Let F : E1 → E2 be a bounded
linear operator and T : E2 → E2 be a Bregman (φ, σ)-demigeneralized for some
φ ∈ (−∞, 1) and σ ∈ [0,∞). Suppose that K = ran(A)∩Fix(T ) 6= ∅ (where ran(B)
denotes the range of B). Then for any (x, q) ∈ E1 ×K,

〈x− q, F ∗(5g2E2
(T (Fx)))〉 ≥ (1− φ)Dg2(Fx, T (Fx)) + σDg2(T (Fx), Fx)

≥ (1− φ)Dg2(Fx, T (Fx)). (2.1)

So, given any real numbers ξ1 and ξ2, the mapping L1 : E1 → [0,∞) and L2 : E2 →
[0.∞) formulated for x ∈ E1 as

L1(x) =

{ Dg2 (Fx,TFx)

D∗
g1

(F∗(5g2
E2

(Fx)),F∗(5g2
E2

(TFx))
if (I − T )Fx 6= 0,

ξ1 otherwise
(2.2)

and

L2(x) =


D∗

g1
(5g1

E1
(x)−γF∗(5g2

E2
(Fx)−5g2

E2
(TFx)),5g1

E1
(x))

D∗
g1

(F∗(5g2
E2

(Fx)),F∗(5g2
E2

(TFx))
if (I − T )Fx 6= 0,

ξ2 otherwise
(2.3)

are well-defined, where γ is any nonnegative real number.
Moreover, for any (x, p) ∈ E1 ×K, we have

Dg1(q, y) ≤ Dg1(q, x)− (γ(1− φ)L1(x)− L2(x))Dg∗1
(F ∗(5g2E2

(Fx)), F ∗(5g2E2
(TFx)),

(2.4)

where

y = (5g1E1
)−1[5g1E1

(x)− γF ∗(5g2E2
(Fx)−5g2E2

(TFx))].
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Lemma. [16] Let E be a Banach space and f : E → R a Gâteaux differentiable
function which is uniformly convex on bounded subsets of E. Let {x}n∈N and {yn}n∈N
be bounded sequences in E. Then,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

||yn − xn|| = 0.

Lemma. [31] Let B : E → 2E
∗

be a maximal monotone operator and A : E → E∗

be a BISM mapping such that (A + B)−1(0∗) 6= ∅. Let g : E → R be a Legendre
function, which is uniformly Fréchet differentiable and bounded on bounded subset
of E. Then,

Dg(u,Res
g
λB ◦A

g(x)) +Dg(Res
g
λB(x), x) ≤ Dg(u, x), for any u ∈ (A+B)−1(0∗),

x ∈ E and λ > 0.

Lemma. [31] Let B : E → 2E
∗

be a maximal monotone operator and A : E → E∗

be a BISM mapping such that (A + B)−1(0∗) 6= ∅. Let g : E → R be a Legendre
function, which is uniformly Fréchet differentiable and bounded on bounded subset
of E. Then,
(i) (A+B)−1(0∗) = Fix(ResgλB ◦A

g
λ);

(ii) ResgλB ◦A
g
λ is a BSNE operator with Fix(ResgλB ◦A

g
λ) = ˆFix(ResgλB ◦A

g
λ).

Lemma. [38] Let f : E → R be a Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the sequence {xn} is also
bounded.

Definition. Let C be a nonempty closed and convex subset of a reflexive Banach
space E and g : E → (−∞,+∞] be a strongly coercive Bregman function. A Bregman
projection of x ∈ int(domg) onto C ⊂ int(domg) is the unique vector P gc (x) ∈ C
satisfying

Dg(Proj
g
C(x), x) = int{Dg(y, x) : y ∈ C}.

Lemma. [36] Let C be a nonempty closed and convex subset of a reflexive Banach
space E and x ∈ E. Let g : E → R be a strongly coercive Bregman function. Then,
(i) z = P gC(x) if and only if 〈5gE(x)−5gE(z), y − z〉 ≤ 0, ∀ y ∈ C.
(ii) Dg(y, P

g
C(x)) +Dg(P

g
C(x), x) ≤ Dg(y, x), ∀ y ∈ C.

Lemma. [7, 27] Let {an} be a sequence of non-negative real numbers, {γn} be a
sequence of real numbers in (0, 1) with conditions

∑∞
n=1 γn = ∞ and {dn} be a

sequence of real numbers. Assume that

an+1 ≤ (1− γn)an + γndn, n ≥ 1.

If lim sup
k→∞

dnk
≤ 0 for every subsequence {ank

} of {an} satisfy the condition:

lim sup
k→∞

(ank
− ank+1) ≤ 0,

then lim
n→∞

an = 0.
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3. Main results

We begin this section by establishing the following result needed in the convergence
analysis of our main theorem.

Lemma. Let E be a reflexive Banach space, S : E → E be a Bregman quasi-
nonexpansive mapping and B : E → 2E

∗
be a maximal monotone operator. Suppose

g : E → (−∞,∞] is a Legendre function, which is uniformly Fréchet differentiable
and bounded on bounded subset of E and A : E → E∗ be a BISM mapping such that
(A+B)−1(0) 6= ∅. Then, by applying Lemma 2, we have that

Fix(S(ResgλB ◦A
g
λ)) = Fix(S) ∩ Fix(ResgλB ◦A

g
λ).

Proof. Clearly, Fix(S)∩ Fix(ResgλB ◦A
g
λ) ⊆ Fix(S(ResgλB)). We only need to proof

that Fix(S(ResgλB)) ⊆ Fix(S) ∩ Fix(ResgλB ◦A
g
λ).

Let x ∈ Fix(S(ResgλB)) and y ∈ Fix(S) ∩ Fix(ResgλB ◦A
g
λ), then

Dg(y, x) = Dg(y, S(ResgλB ◦A
g
λ)x)

≤ Dg(y, (Res
g
λB ◦A

g
λ)x). (3.1)

Now, by applying Lemma 2 and (3.1), we obtain

Dg(x, (Res
g
λB ◦A

g
λ)x) ≤ Dg(y, x)−Dg(y, (Res

g
λB ◦A

g
λ)x)

≤ Dg(y, x)−Dg(y, x)

= 0.

Hence, x ∈ Fix(ResgλB ◦A
g
λ). Next we show that x ∈ Fix(S), since

x ∈ Fix(S(ResgλB ◦A
g
λ)) and x ∈ Fix((ResgλB ◦A

g
λ)),

we have

Dg(x, Sx) = Dg(x, (S(ResgλB ◦A
g
λ)x))

= Dg(x, x)

= 0.

Hence, x ∈ Fix(S). This implies that x ∈ Fix(S) ∩ Fix(ResgλB ◦A
g
λ). Therefore, we

obtain the desired result.
Throughout this section, we assume that

Assumption

(1) E1 and E2 be two reflexive Banach spaces, g1 : E1 → (−∞,+∞] and g2 :
E2 → (−∞,+∞] be strongly coercive Bregman functions which are bounded
on bounded subsets and uniformly convex and uniformly smooth on bounded
subsets of E1 and E2 , respectively. Let 5g1E1

and 5g2E2
be the gradients of E1

dependent on g1 and E2 dependent on g2 respectively.
(2) A be BISM mappings of E1 into E∗1 and B be maximal monotone mappings

of E1 into 2E
∗
1 respectively. Let Resg1λB be the resolvent of g1 of B for λ > 0.

Suppose that F : E1 → E2 is a bounded linear operator such that F 6= ∅ and
F ∗ : E∗2 → E∗1 be the adjoint of F .
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(3) T : E2 → E2 be Bregman (φT , σT )-demigeneralized mapping such that φT ∈
(−∞, 1) and σT ∈ (0,∞], and S : E1 → E1 be a Bregman quasi-nonexpansive
mapping.

(4) Assume that Γ := {q ∈ Fix(S)∩ (A+B)−1(0) : Fq ∈ Fix(T )} 6= ∅, let γ > 0
be a real number and αn+θn+µn = 1 with 0 < a < θn, µn < b < 1 satisfying
the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(ii) βn ∈ (0, 1) and 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Theorem. For fixed u ∈ E1, let {xn}∞n=1 be a sequence generated by x1 ∈ E1 such
that 

zn = (5g1E1
)−1
[
5g1E1

(xn)− γF ∗(5g2E2
(Fxn)−5g2E2

(TFxn))
]

yn = (5g1E1
)−1
[
(1− βn)5g1E1

(zn) + βn 5g1E1
(S(Resg1λB ◦A

g1
λ )zn)

]
xn+1 = (5g1E1

)−1
[
αn 5g1E1

(u) + θn 5g1E1
(yn) + µn 5g1E1

(yn)
]
.

(3.2)

Suppose the sequences {ξ1,n}n∈N and {ξ2,n}n∈N satisfies the following conditions:

(iii) there exists a positive real number ρ1 such that

0 < ρ1 < lim inf
n→∞

ξ2,n
(1− φt)ξ1,n

< γ,

where

ξ1,n =

{ Dg2
(Fxn,TFxn)

D∗
g1

(F∗(5g2
E2

(Fxn)),F∗(5g2
E2

(TFxn))
if (I − T )Fxn 6= 0

ξ1 otherwise

and

ξ2,n =


D∗

g1
(5g1

E1
(xn)−γF∗(5g2

E2
(Fxn)−5g2

E2
(TFxn)),5g1

E1
(xn))

D∗
g1

(F∗(5g2
E2

(Fxn)),F∗(5g2
E2

(TFxn))
if (I − T )Fxn 6= 0,

ξ2 otherwise.

Then, the sequence {xn} generated iteratively converges strongly to z = P g1Γ u, where
P g1Γ is the Bregman projection of E1 onto Γ.
Proof. Let x∗ ∈ Γ, then we obtain from Lemma 2 that

Dg1(x∗, zn) = Dg1(x∗, (5g1E1
)−1
[
5g1E1

(xn)− γF ∗(5g2E2
(Fxn)−5g2E2

(TFxn))
]
)

≤ Dg1(x∗, xn)

− (γ(1− φT )ξ1,n − ξ2,n)Dg∗1
(F ∗(5g2E2

(Fxn)), F ∗(5g2E2
(TFxn)) (3.3)

≤ Dg1(x∗, xn). (3.4)



14 H.A. ABASS, A.A. MEBAWONDU, C. IZUCHUKWU AND O.K. NARAIN

Also, from Lemma 2, we get

Dg1(x∗, yn) = Dg1(x∗, (5g1E1
)−1
[
(1− βn)5g1E1

(zn) + βn 5g1E1
(S(Resg1λB ◦A

g1
λ )zn)

]
)

≤ (1− βn)Dg1(x∗, zn) + βnDg1(x∗, S(Resg1λB ◦A
g1
λ )zn)

− βn(1− βn)ρr(|| 5g1E1
(zn)−5g1E1

(S(Resg1λB ◦A
g
λ))zn||)

≤ (1− βn)Dg1(x∗, zn) + βnDg1(x∗, (Resg1λB ◦A
g1
λ )zn)

− βn(1− βn)ρr(|| 5g1E1
(zn)−5g1E1

(S(Resg1λB ◦A
g
λ))zn||)

≤ (1− βn)Dg1(x∗, zn) + βnDg1(x∗, zn)

− βn(1− βn)ρr(|| 5g1E1
(zn)−5g1E1

(S(Resg1λB ◦A
g
λ))zn||)

= Dg1(x∗, zn)

− βn(1− βn)ρr(|| 5g1E1
(zn)−5g1E1

(S(Resg1λB ◦A
g
λ))zn||) (3.5)

≤ Dg1(x∗, zn). (3.6)

Using (3.2), (3.4) and (3.5), we get

Dg1(x∗, xn+1) = Dg1(x∗, (5g1E1
)−1
[
αn 5g1E1

(u) + θn 5g1E1
(yn) + µn 5g1E1

(yn)
]
)

≤ αnDg1(x∗, u) + θnDg1(x∗, yn) + µnDg1(x∗, yn)

≤ αnDg1(x∗, u) + (1− αn)Dg1(x∗, yn) (3.7)

≤ αnDg1(x∗, u) + (1− αn)Dg1(x∗, zn)

≤ αnDg1(x∗, u) + (1− αn)Dg1(x∗, xn)

≤ max{Dg1(x∗, u), Dg1(x∗, xn)}
...

≤ max{Dg1(x∗, u), Dg1(x∗, x1)}. ∀ n ≥ 1.

Thus, we obtain that the sequence {Dg1(x∗, xn)}n∈N is bounded. Using Lemma 2,
then we conclude that {xn}n∈N is bounded. Consequently, {yn}n∈N and {zn}n∈N are
bounded.
From (3.3), (3.5) and (3.7), we get

Dg1(x∗, xn+1) ≤ αnDg1(x∗, u) + (1− αn)Dg1(x∗, xn)

+ (1− αn)βn(1− βn)ρr(|| 5g1E1
(zn)−5g1E1

(S(Resg1λB ◦A
g
λ))zn||)

− (1−αn)(γ(1−φT )ξ1,n−ξ2,n)Dg∗1
(F ∗(5g2E2

(Fxn)), F ∗(5g2E2
(TFxn)).

(3.8)
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Using Lemma 2, (3.4) and (3.6), we obtain

Dg1(z, xn+1) = Dg1(z, (5g1E1
)−1
[
αn 5g1E1

(u) + θn 5g1E1
(yn) + µn 5g1E1

(yn)
]
)

= V (z, αn 5g1E1
(u) + (1− αn)5g1E1

(yn))

≤ V (z, αn 5g1E1
(u) + (1− αn)5g1E1

(yn)− αn(5g1E1
(u)−5g1E1

(z)))

− 〈5g
∗
1

E∗
1
(αn 5g1E1

(u) + (1− αn)5g1E1
(yn))− z,−αn(5g1E1

(u)−5g1E1
(z))〉

= V (z, αn 5g1E1
(z) + (1− αn)5g1E1

(yn))

+ αn〈xn+1 − z,5g1E1
(u)−5g1E1

(z)〉

= Dg1(z, (5g
∗
1

E∗
1
)[αn 5g1E1

(z) + (1− αn)5g1E1
(yn)])

+ αn〈xn+1 − z,5g1E1
(u)−5g1E1

(z)〉
≤ αnDg1(z, z) + (1− αn)Dg1(z, yn) + αn〈xn+1 − z,5g1E1

(u)−5g1E1
(z)〉

= (1− αn)Dg1(z, yn) + αn〈xn+1 − z,5g1E1
(u)−5g1E1

(z)〉
≤ (1− αn)Dg1(z, xn) + αn〈xn+1 − z,5g1E1

(u)−5g1E1
(z)〉. (3.9)

In view of Lemma 2, we need to show that 〈xnk+1 − z,5g1E1
(u) − 5g1E1

(z)〉 ≤ 0 for
every {Dg1(z, xnk

)} of {Dg1(z, xn)} satisfying the condition

lim sup
k→∞

{Dg1(z, xnk
)−Dg1(z, xnnk

+1)} ≤ 0. (3.10)

From (3.8) and (3.10), we have that

lim sup
k→∞

(
(1− αnk

)βnk
(1− βnk

)ρr(|| 5g1E1
(znk

)−5g1E1
(S(Resg1λB ◦A

g
λ))znk

||
)

≤ lim sup
k→∞

(
αnk

Dg1(z, u) + (1− αnk
)Dg1(z, xnk

)−Dg1(z, xnk+1
)

)
= lim sup

k→∞

(
Dg1(z, xnk

)−Dg1(z, xnk+1
)

)
≤ 0. (3.11)

Following the same process as in (3.11), we obtain from (3.8) and (3.10) that

lim sup
k→∞

(
(1− αnk

)(γ(1− φT )ξ1,nk
− ξ2,nk

)Dg∗1
(F ∗(5g2E2

(Fxnk
)), F ∗(5g2E2

(TFxnk
))

)
≤ lim sup

k→∞

(
αnk

Dg1(z, u) + (1− αnk
)Dg1(z, xnk

)−Dg1(z, xnk+1
)

)
= lim sup

k→∞

(
Dg1(z, xnk

)−Dg1(z, xnk+1
)

)
≤ 0. (3.12)

Therefore, we conclude from (3.11) and (3.12) that

lim
k→∞

ρr(|| 5g1E1
(znk

)−5g1E1
(S(Resg1λB ◦A

g
λ))znk

|| = 0, (3.13)
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and

lim
k→∞

Dg∗1
(F ∗(5g2E2

(Fxnk
)), F ∗(5g2E2

(TFxnk
)) = 0. (3.14)

So, from Lemma 2 and the properties of ρr, D
∗
g1 and F , we obtain

lim
k→∞

||Fxnk
− TFxnk

|| = lim
k→∞

Dg2(Fxnk
, TFxnk

) = 0, (3.15)

and

lim
k→∞

||znk
− (S(Resg1λB ◦A

g1
λ )znk

)|| = 0. (3.16)

From (3.2), (3.16) and Lemma 2, we get

lim
k→∞

||ynk
− znk

|| = 0. (3.17)

Similarly, using (3.2), Lemma 2 and (3.15), we obtain that

lim
k→∞

||znk
− xnk

|| = 0. (3.18)

Also, from (3.2), (3.17) and Lemma 2, we get

lim
k→∞

||xnk+1
− ynk

|| = 0. (3.19)

From (3.17) and (3.19), we get

lim
k→∞

||xnk+1
− znk

|| = 0. (3.20)

We can conclude from (3.18) and (3.20) that

lim
k→∞

||xnk+1
− xnk

|| = 0. (3.21)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} which converges

weakly to z. Also, from (3.18), we have that the subsequence {znkj
} of {znk

} converges

weakly to z. Now, combining Lemma 2 (ii), Lemma 3 and (3.18), we have that

z ∈ ˆFix(S(Resg1λB ◦A
g1
λ )) = ˆFix(S)∩ ˆFix(S)∩ ˆFix(Resg1λB ◦A

g1
λ ). Hence, by Lemma

2 (i), we obtain z ∈ Fix(S) ∩ (A+B)−1(0).
Now, from (3.14), we obtain that

lim
j→∞

||F ∗(5g2E2
(Fxnkj

))− F ∗(5g2E2
(TFxnkj

))|| = 0.

Since F is a bounded linear operator, so we have that limj→∞ TFxnkj
= Fz and

Fz ∈ Fix(T ). Hence, conclude that z ∈ Γ.
Next is to show that 〈xnk+1 − z,5g1E1

(u)−5g1E1
(z)〉 ≤ 0.

lim sup
k→∞

〈xnk+1
− x∗,5g1E1

(u)−5g1E1
(x∗)〉 = lim

j→∞
〈xnkj

+1 − x∗,5g1E1
(u)−5g1E1

(x∗)〉

≤ 〈z − x∗,5g1E1
(u)−5g1E1

(x∗)〉.
Hence, we obtain that

lim sup
k→∞

〈xnk+1 − z,5g1E1
(u)−5g1E1

(z)〉 ≤ 〈z − x∗,5g1E1
(u)−5g1E1

(x∗)〉

≤ 0. (3.22)
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On substituting (3.22) and Lemma 2 into (3.9), we conclude that {xn} converges
strongly to z. We obtain the following as a consequence of our main result.
We give the following remarks which also serves as the consequences of our main
result.

(1) If E1 = H1, E2 = H2 and B = 0 where H1 and H2 real Hilbert spaces, then
we have the result discussed in [5]. Also E1 and E2 are p-uniformly Banach
spaces which are also uniformly smooth and A = 0, then we have the result
discussed in [33].

(2) Also, if E1 = H where H is a real Hilbert space and E2 is a uniformly convex
and uniformly smooth Banach space with T in (3.2) being equivalent to G,
where G is a maximal monotone operator, then we have the result discussed
in [24].

It is worth mentioning that the results of [5], [24], [33] and [43] were carried out in
Hilbert spaces, and uniformly convex Banach spaces which is also uniformly smooth,
whereas the result discussed in our article was carried out in reflexive Banach spaces.
This makes their results and many other results discussed in the aforementioned
spaces corollaries to our results.

4. Applications

4.1. Convex Minimization Problem (CMP). Let C be a nonempty closed and
convex subset of a reflexive Banach space E1 and h : E1 → (−∞,+∞] be a proper,
convex and lower semi-continuous function which attains its minimum over E1 and
g1 : E1 → R be a strongly coercive Bregman function which is bounded on bounded
subset, and uniformly convex and uniformly smooth on bounded subset of E1. Then,
the CMP is to find x ∈ E1 such that

h(x) = min
y∈E

h(y). (4.1)

It is generally known that (4.1) can be formulated as follows: find x ∈ E1 such that

0∗ ∈ ∂h(x), (4.2)

where ∂h = {ξ ∈ E∗ : 〈ξ, y − x〉 ≤ h(y) − h(x) ∀ x ∈ E1}. It is known that ∂h
is a maximal monotone operator whenever h is a proper, convex and lower semi-
continuous function. Hence, by taking ∂h = B and A = 0 in (3.2), we obtain a strong
convergence result for approximation solutions of SCFPP and CMP (4.1).

4.2. Variational Inequality Problem. Let C be a nonempty closed and convex
subset of a reflexive Banach space E1 with E∗1 its dual. Let A : E1 → E∗1 be a BISM
operator. Then, the classical Variational Inequality Problem (VIP) is to find z ∈ C
such that

〈Az, y − z〉 ≥ 0, ∀ y ∈ C. (4.3)

VIP is one of the most important problems in optimization as it is used in studying
differential equations, minimax problems, and has certain applications to mechanics
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and economic theory. We denote by V I(C,A), the set of solutions of VIP (4.3).
Suppose that g1 : E1 → R is a Legendre and totally convex function which satisfies
the range condition ran(5g1 −A) ⊂ ran(5g1), (see [21], Proposition 12), then

V I(C,A) = Fix(Projg1C ◦A
g1
λ ). (4.4)

In addition, if g1 is uniformly Frechet differentiable and bounded on a bounded subset
of E1, then the anti-resolvent is single-valued and a BSNE operator which satisfies
Fix(Ag1) = ˆFix(Ag1), (see [37, 42]). Therefore, Projg1C ◦ Ag1 is also BSNE operator

satisfying Fix(Projg1C ◦ Ag1) = ˆFix(Projg1C ◦ Ag1) (see [37], Remark 3). Then (3.2)
becomes

zn = (5g1E1
)−1
[
5g1E1

(xn)− γF ∗(5g2E2
(Fxn)−5g2E2

(TFxn))
]

yn = (5g1E1
)−1
[
(1− βn)5g1E1

(zn) + βn 5g1E1
(S(Projg1C ◦Ag1))zn)

]
xn+1 = (5g1E1

)−1
[
αn 5g1E1

(u) + θn 5g1E1
(yn) + µn 5g1E1

(yn)
]
.

(4.5)
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