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Abstract. In this paper, by using the Guo-Krasnoselskii theorem, we investigate the existence

and nonexistence of positive solutions of a class of boundary value problem of third-order nonlinear
differential equation involving Stieltjes integral conditions. Under some growth conditions imposed

on the nonlinear term, we obtain explicit ranges of values of parameters with which the problem has

a positive solution and has no positive solution respectively. An example is given to illustrate the
main results of the paper.
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1. Introduction

Third order differential equations arise in a variety of different areas of applied
mathematics and physics, such as dynamics, Newtonian fluid mechanics, the theory
of boundary layer, the theory of heat transfer and so on(see in [7]). In recent years, the
existence and multiplicity of positive solutions for third-order differential equations
subject to various boundary conditions of local or nonlocal type have been studied
by several authors. For examples, Anderson [1] established the existence of at least
three positive solutions to problem{

x′′′(t) = f(x(t)), t ∈ (0, 1)

x(0) = x′(t2) = x′′(1) = 0, t2 ∈ (0, 1)

where f : R → [0,+∞) is continuous and 1/2 ≤ t2 < 1. By using Guo-Krasnoselskii
fixed point theorem [8], Palamides and Smyrlis [17] proved that there exists at least
one positive solution for third-order three-point boundary value problem{

x′′′(t) = a(t)f(t, x(t)), t ∈ (0, 1)

x′′(η) = 0, x(0) = x(1) = 0, η ∈ (0, 1).
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Guo, Sun and Zhao [9] established the positive solutions for following third-order
three-point problem{

x′′′(t) = a(t)f(x(t)), t ∈ (0, 1)

x(0) = x′(0) = 0, x′(1) = x′(η), η ∈ (0, 1)

By using Leray-Schauder continuation principle, Hopkins and Kosmatov [10] obtained
the sign-changing solution for problem{

x′′′(t) = a(t)f(x(t)), t ∈ (0, 1)

x(0) = x′(0) = x′′(1) = 0 or x(0) = x′(1) = x′′(1) = 0,

Anderson [2] considered the third-order three-point boundary value problem{
x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3
x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0

By using the Leggett-Williams [13] fixed point theorem, the author established the
existence of at least three positive solutions. For more existence results for third-order
boundary value problems, one can see [3], [5], [15], [16], [14], [20], [6], [12], [4] and
references therein.
In this paper, we investigate positive solution for third-order boundary value problem
(P, λ)

(P, λ)


−u′′′(t) = λf(t, u(t)), t ∈ [0, 1]

u′′(0) = 0, u′(0) = α[u], u′(1) + β[u] = 0,

where f : [0, 1]× [0,+∞)→ [0,+∞) is continuous and α, β are linear functionals on
C[0, 1] that are given by

α[u] =

∫ 1

0

u(s)dA(s), β[u] =

∫ 1

0

u(s)dB(s),

involving Riemann-Stieltjes with A, B functions of bounded variation, that is dA, dB
can be sign changing measures. An advantage is that these boundary conditions
includes the local case when α, β are indentically 0 and also includes the multipoint

and integral conditions in a single framework. For examples, α[u] =
∫ 1

0
u(t)dA(t)

appearing in the problem (P, λ) covers various boundary conditions including the
following:

α[u] = α0u(η), η ∈ (0, 1), α0 ∈ R,

α[u] =

n−2∑
i=1

αiu(ηi), ηi ∈ (0, 1), αi ∈ R, i = 1, 2, · · · , n− 2,

α[u] =

∫ 1

0

u(t)g(t)dt, g ∈ C([0, 1], R).

Motivated by Webb and Infante [18], [11] and Webb and Lan [19], which established
new existence results of positive solutions of a Hammerstein integral equation by an
unified way, under some growth condition imposed on the nonlinear term, we obtain
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explicit ranges of values of λ with which the problem (P, λ) has a positive solution
and has no positive solution respectively. An example is given to show how our results
may be applied to obtain eigenvalues yielding existence of positive solutions.
The main tool used is the following fixed point theorem by Guo and Krasnoselskii [8].
Lemma 1.1. [8] Let E be a Banach space and K ⊂ E be a cone. Assume Ω1,Ω2 are
open bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or
‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

then T has a fixed point in K ∩ (Ω2 \ Ω1).

2. Preliminaries

In relation to problem (P, λ), we introduce the following linear problem

−u′′′(t) = y(t), t ∈ [0, 1] (2.1)

u′′(0) = 0, u′(0) = α[u], u′(1) + β[u] = 0. (2.2)

We will use the notations 1̂, t̂ to denote the functions with values 1 and t respectively
and we let H denote the heavside function,

H(x) :=

{
1, if x ≥ 0
0, if x < 0

For y ∈ C[0, 1], let

Jy(t) :=

∫ t

0

1

2
(t− s)2y(s)ds,

JA(s) :=

∫ 1

s

1

2
(t− s)2dA(t),

JB(s) :=

∫ 1

s

1

2
(t− s)2dB(t).

Lemma 2.1. Suppose that

Λ := (1 + β[t̂])α(1̂) + (1− α[t̂])β[1̂] 6= 0.

Let y(t) ∈ C[0, 1]. A unique solution of the boundary value problem (2.1)-(2.2) is
given by

u(t) =

∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) = −1

2
(t− s)2H(t− s) +

1

Λ

(
1 + β[t̂]− tβ[1̂]

)
JA(s)

+
1

Λ

(
1− α[t̂] + tα[1̂]

)
(1− s+ JB(s)).
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Proof. By integration Eq 2.1, we have

u′′(t) = u′′(0)−
∫ t

0

y(s)ds.

u′(t) = u′(0) + u′′(0)t−
∫ t

0

(t− s)y(s)ds.

u(t) = u(0) + u′(0)t+
1

2
u′′(0)t2 −

∫ t

0

1

2
(t− s)2y(s)ds.

Considering the boundary conditions u′′(0) = 0, u′(0) = α[u], u′(1) + β[u] = 0, we
have

u(t) = u(0) + α[u]t−
∫ t

0

1

2
(t− s)2y(s)ds (2.3)

and

α[u] + β[u] =

∫ 1

0

(1− s)y(s)ds.

Applying the functionals α, β to equation (2.3) and considering

α[u] + β[u] =

∫ 1

0

(1− s)y(s)ds,

gives
α[1̂]u(0)− (1− α[t̂])α[u] = α[Jy]

β[1̂]u(0) + (1 + β[t̂])α[u] =

∫ 1

0

(1− s)y(s)ds+ β[Jy]

On solving this system for u(0) and α[u], we see that

u(0) =
1

Λ

(
(1 + β[t̂])α[Jy] + (1− α[t̂])

(∫ 1

0

(1− s)y(s)ds+ β[Jy]

))
,

α[u] =
1

Λ

(
α[1̂]

∫ 1

0

(1− s)y(s)ds+ α[1̂]β[Jy]− β[1̂]α(Jy)

)
.

By changing the order of integration, we find that

α[Jy] =

∫ 1

0

JA(s)y(s)ds, β[Jy] =

∫ 1

0

JB(s)y(s)ds.

On substituting into (2.3), we see that

u(t) = u(0) + α[u]t−
∫ t

0

1

2
(t− s)2y(s)ds

= −
∫ t

0

1

2
(t−s)2y(s)ds+

1

Λ

(
(1 + β[t̂])α[Jy] +

(
1− α[t̂])

(∫ 1

0

(1− s)y(s)ds+ β[Jy]

))
+
t

Λ

(
α[1̂]

∫ 1

0

(1− s)y(s)ds+ α[1̂]β[Jy]− β[1̂]α(Jy)

)
=

∫ 1

0

G(t, s)y(s)ds.

Now we suppose that the following conditions holds:
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(H1) 1+β[t̂] ≥ β[1̂] > 0, 1−s+JB(s) ≥ (1+β[t̂])(1−s)2, B(s) ≥ 0 and JB(s) ≤ β[t̂],
(H2) A(s) ≥ 0, JA(s) ≥ 0 for all s ∈ [0, 1],

(H3) 0 ≤ α[1̂]
(
1− s+ JB(s)

)
− β[1̂]JA(s) ≤ (1− s)2

2
.

Lemma 2.2. Suppose that β, α are linear functions and satisfy (H1)− (H3) respec-
tively. Then if Λ > 0 it follows that

0 ≤ G(t, s) ≤ G(s, s)for all t, s ∈ [0, 1]. (2.4)

Proof.

G(t, s) = −1

2
(t−s)2H(t−s)+

1

Λ
(1+β[t̂]−tβ[1̂])JA(s)+

1

Λ
(1−α[t̂]+tα[1̂])(1−s+JB(s))

≥ −1

2
(t− s)2H(t− s) +

1

Λ
(1 +β[t̂]− tβ[1̂])JA(s) +

1

Λ
(1−α[t̂] + tα[1̂])(1 +β[t̂])(1− s)2

≥ −1

2
(t−s)2H(t−s)+ 1

Λ
(1+β[t̂]−tβ[1̂])JA(s)+

1

Λ
((1−α[t̂])β[1̂]+tα[1̂](1+β[t̂]))(1−s)2

= −1

2
(t−s)2H(t−s)+

1

Λ
(1+β[t̂]− tβ[1̂])JA(s)+

1

Λ
(tΛ+(1− t)(1−α[t̂])β[1̂])(1−s)2

= −1

2
(t−s)2H(t−s)+

1

Λ
(1+β[t̂]−tβ[1̂])JA(s)+

1

Λ
(1−t)(1−α[t̂])β[1̂](1−s)2+t(1−s)2.

Thus for t ≤ s,

G(t, s) ≥ 1

Λ
(1 + β[t̂]− tβ[1̂])JA(s) +

1

Λ
(1− t)(1− α[t̂])β[1̂](1− s)2 + t(1− s)2 ≥ 0.

For t ≥ s,

G(t, s) ≥ −1

2
(t−s)2+

1

Λ
(1+β[t̂]−tβ[1̂])JA(s)+

1

Λ
(1−t)(1−α[t̂])β[1̂](1−s)2+t(1−s)2

=
1

Λ
(1 + β[t̂]− tβ[1̂])JA(s) +

1

Λ
(1− t)(1− α[t̂])β[1̂](1− s)2 + t+ s2t− 1

2
(t+ s)2 ≥ 0.

This ensures that the leftside of inequality (2.4) holds. Considering that t 7→ G(t, s)
is a piecewise affine map, so, for a fixed s, the maximum and minimum values occur
when t = 0, or t = s or t = 1. We will see that the maximum of t 7→ G(t, s) occurs
when t = s. A direct calculation together with condition (H3)show that

G(s, s)−G(0, s) =
s

Λ

(
α[1̂](1− s+ JB(s))− β[1̂]JA(s)

)
≥ 0,

G(s, s)−G(1, s) =
(1− s)

Λ

(
β[1̂]JA(s)− α[1̂](1− s+ JB(s))) +

1

2
(1− s)2 ≥ 0

Hence G(t, s) ≤ G(s, s), t, s ∈ [0, 1]. This completes the proof of Lemma 2.2.
To give results on positive solutions one needs to establish the key property as fol-
lowing:
Lemma 2.3. Suppose that β, α are linear functions and satisfy (H1)− (H3) respec-

tively. if Λ > 0 and α[1̂] > 0, it follows that

φ(t)G(s, s) ≤ G(t, s) ≤ G(s, s) for all t, s ∈ [0, 1], (2.5)
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where

φ(t) = min

{
1− (1− t)α[1̂]

1− α[t̂] + α[1̂]
,

Λt(1− t)
α[1̂](1 + β[t̂])

, 1− β[1̂]t

1 + β[t̂]

}
.

Proof. For t ≤ s, we see that

G(t, s)− φ(t)G(s, s) =
1

Λ

(
(1− φ(t))(1 + β[t̂])− (t− φ(t)s)β[1̂]

)
JA(s)

+
1

Λ

(
(1− α(t̂) + tα[1̂])− φ(t)(1− α[t̂] + sα[1̂])

)
(1− s+ JB(s))

Hence it suffices to have, for all t < s ≤ 1,

(1− φ(t))(1 + β[t̂])− (t− φ(t)s)β[1̂] ≥ 0

and

1− α[t] + tα[1̂]− φ(t)(1− α[t̂] + sα[1̂]) ≥ 0.

The first inequality holds for φ(t) < 1 since 1 − φ(t) ≥ t − sφ(t) for s > t and

1 + β[t̂] ≥ β[1̂]. The second inequality holds if

φ(t) ≤ 1− α[t̂] + tα[1̂]

1− α[t̂] + α[1̂]
= 1− (1− t)α[1]

1− α[t̂] + α[1̂]
.

For the case s ≤ t, we have

G(t, s)− φ(t)G(s, s) = −1

2
(t− s)2 +

1

Λ

(
(1− φ(t))(1 + β[t̂])− (t− φ(t)s)β[1̂]

)
JA(s)

+
1

Λ

(
(1− α(t̂) + tα[1̂])− φ(t)(1− α[t̂] + sα[1̂])

)
(1− s+ JB(s))

We suppose that φ(t) ≤ 1− β[1̂]

1 + β[t̂]
t, which ensures that the term

(1− φ(t))(1 + β[t̂])− (t− φ(t)s)β[1̂]

is nonnegative for all s ≤ t. For the left part of the other term, we have

−1

2
(t− s)2 +

1

Λ

(
(1− α(t̂) + tα[1̂])− φ(t)(1− α[t̂] + sα[1̂])

)
(1− s+ JB(s)

≥ −1

2
(t− s)2 +

(
(1− α[t̂])

β[1̂]

1 + β[t̂]
t+ (t− sφ(t))α[1̂]

)
(1 + β[t̂])(1− s)2

= −1

2
(t− s)2 +

(
tΛ− sφ(t)α[1̂](1 + β[t̂])

)
(1− s)2

and it suffices to have(
tΛ− sφ(t)α[1̂](1 + β[t̂])

)
(1− s)2 ≥ Λ

1

2
(t− s)2, for all s ≤ t

or (
t(1− s)2 − 1

2
(t− s)2

)
Λ ≥ s(1− s)2α[1̂](1 + β[t̂])φ(t), for all s ≤ t.



NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEMS 939

Hence we want

φ(t) ≤ t(1− t)2Λ

α[1̂](1 + β[t̂])

To summarize, if α[1̂] > 0, we may choose

φ(t) = min

{
1− (1− t)α[1̂]

1− α[t̂] + α[1̂]
,

Λt(1− t)2

α[1̂](1 + β[t̂])
, 1− β[1̂]t

1 + β[t̂]

}
.

This completes the proof of Lemma 2.3.
Remark 2.1. The inequality (2.5) suffices the condition α[1̂] > 0. When the case
α[u] = 0 is considered, a similar result also holds where

φ(t) = 1− β[1̂]t

1 + β[t̂]
.

3. Existence results of positive solution

Here we introduce the following extreme limits:

fs0 = lim
u→0+

sup max
t∈[0, 1]

f(t, u)

u
, f i0 = lim

u→0+
inf min

t∈[0,1]

f(t, u)

u
,

fs∞ = lim
u→∞

sup max
t∈[0, 1]

f(t, u)

u
, f i∞ = lim

u→∞
inf min

t∈[0, 1]

f(t, u)

u
.

For the convenience, we denote

γ = sup
t∈[a, b]

φ(t)ds,

where [a, b] is a arbitrary subinterval on [0,1].
We define the cone P ⊂ X = C[0, 1] by

P = {u ∈ X | u(t) ≥ 0, inf
a≤t≤b

u(t) ≥ γ‖u‖}.

Define the operator T : X → X by

T (u(t)) := λ

∫ 1

0

G(t, s)f(s, u(s))ds.

Lemma 3.1. T : P → P is completely continuous.
Proof. By using the properties of function G(t, s) and the Arzela-Ascoli theorem, the
proof of Lemma 3.1 is standard and it is omitted here.
Define the positive constants

K1 =
1

γÃf i∞
, K2 =

1

Afs0

where

A =

∫ 1

0

G(s, s)ds, Ã = γ

∫ b

a

G(s, s)ds.

Theorem 3.1. Assume that (H1)− (H3) hold. fs0 , f
i
∞ ∈ (0, ∞), K1 < K2, then for

λ ∈ (K1, K2), the problem (P ) has at least one positive solutions u(t), t ∈ [0, 1].
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Proof. Let λ ∈ (K1, K2), ε is a positive number such that f i∞ > ε and

1

γÃ(f i∞ − ε)
< λ <

1

A(fs0 + ε)
.

There exists R1 > 0 such that for t ∈ [0, 1], u(t) ≥ 0 and u(t) ≤ R1,

f(t, u(t)) ≤ (fs0 + ε)u(t).

We define the set
Ω1 = {u(t) ∈ X, ‖u‖ < R1}.

Let u ∈ P ∩ ∂Ω1,

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≤ λ
∫ 1

0

G(t, s)(fs0 + ε)u(s)ds

≤ λ(fs0 + ε)

∫ 1

0

G(t, s)‖u‖ds

≤ λA(fs0 + ε)‖u‖
≤ ‖u‖.

On the other side, by condition (H1) and the definition of f i∞ there exists R2 > 0
such that for t ∈ [a, b], u(t) ≥ 0, u(t) ≥ R2,

f(t, u(t)) ≥ (f i∞ − ε)u(t).

We consider R2 = max{2R1, R2/γ} and we define the set

Ω2 = {u(t) ∈ X, ‖u‖ < R2}.
Let u ∈ P ∩ Ω2, then for u ∈ P with ‖u‖ = R2, we have

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)(f i∞ − ε)u(s)ds

≥ λγ
∫ b

a

G(t, s)(f i∞ − ε)‖u‖ds

≥ λγÃ(f i∞ − ε)‖u‖
≥ ‖u‖.

By using Lemma 1.1, T has a fixed point u ∈ P ∩ (Ω2 \ Ω1).
By similar analysis, we can consider the case that above limits achieve 0 or ∞.
We give the main results here and the omit the proofs.
Theorem 3.2. Assume that (H1) − (H3) hold. If fs0 = 0, f i∞ ∈ (0, ∞), then for
λ ∈ (K1, ∞), problem (P, λ) has at least one positive solutions u(t), t ∈ [0, 1].
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Theorem 3.3. Assume that (H1) − (H3) hold. If f i∞ = ∞, fs0 ∈ (0, ∞), then for
λ ∈ (0, K2), problem (P, λ) has at least one positive solutions u(t), t ∈ [0, 1].

Denote positive constants

L1 =
1

γÃf i0
, L2 =

1

Afs∞
.

Theorem 3.4. Assume that (H1)− (H3) hold, f i0, f
s
∞ ∈ (0, ∞), L1 < L2. Then for

λ ∈ (L1, L2), the problem (P, λ) has at least one positive solution u(t), t ∈ [0, 1].
Proof. Letλ ∈ (L1, L2), ε is a positive number such that f i0 > ε and

1

γÃ(f i0 − ε)
< λ <

1

A(fs∞ + ε)
.

There exists R3 > 0 such that for t ∈ [a, b], u(t) ≥ 0 and u(t) ≤ R3,

f(t, u(t)) ≥ (f i0 − ε)u(t).

We define the set
Ω3 = {u(t) ∈ X, ‖u‖ < R3}.

Let u ∈ P ∩ ∂Ω3,

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)(f i0 − ε)u(s)ds

≥ λγ
∫ b

a

G(t, s)(f i0 − ε)‖u‖ds

≥ λγÃ(f i0 − ε)‖u‖
≥ ‖u‖.

On the other side, we define the functions f∗ : [0, 1]×R+ −→ R+,

f∗(t, x) = max
0≤u≤x

f(t, u), t ∈ [0, 1], x ≥ 0.

Then
f(t, u) ≤ f∗(t, x), t ∈ [0, 1], u ≥ 0, u ≤ x.

The functions f∗(t, ·) are nondecreasing for each t ∈ [0, 1] and satisfy the conditions

lim sup
x→∞

max
t∈[0, 1]

f∗(t, x)

x
≤ fs∞.

Thus, for ε > 0, there exist R4 > 0 such that for all x ≥ R4, t ∈ [0, 1],

f∗(t, x)

x
≤ lim sup

x→∞
max
t∈[0, 1]

f∗(t, x)

x
+ ε ≤ fs∞ + ε.

Then
f∗(t, x) ≤ (fs∞ + ε)x.
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Let R4 = max{2R3, R4} and Ω4 = {u ∈ X, ‖u‖ < R4}. Let u ∈ P ∩ ∂Ω4, then

f(t, u(t)) ≤ f∗(t, ‖u‖) t ∈ [0, 1].

Thus

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≤ λ
∫ 1

0

G(t, s)f∗(t, ‖u‖)ds

≤ λ
∫ 1

0

G(t, s)(fs∞ + ε)‖u‖ds

≤ λA(fs∞ + ε)‖u‖
≤ ‖u‖.

By using Lemma 1.1, T has a fixed point u ∈ P ∩ (Ω4 \ Ω3).
We can also consider the case that above limits achieve 0 or ∞.
Theorem 3.5. Assume that (H1) − (H3) hold. If fs∞ = 0, f i0 ∈ (0, ∞), then for
λ ∈ (L1, ∞), problem (P, λ) has at least one positive solution u(t), t ∈ [0, 1].
Theorem 3.6. Assume that (H1) − (H3) hold. If f i0 = ∞, fs∞ ∈ (0, ∞), then for
λ ∈ (0, L2), problem (P, λ) has at least one positive solution u(t), t ∈ [0, 1].

The proofs are similar to the proof of Theorem 3.4 and we omit it here.

4. Nonexistence results of positive solution

In this section we shall consider sufficient conditions on λ and f such that problem
(P, λ) has no positive solution.
Theorem 4.1. Assume that (H1) − (H3) hold. If fs0 , f

s
∞ < ∞, then there exist

positive constant λ0 such that for every λ ∈ (0, λ0), problem (P, λ) has no positive
solution.
Proof. From the condition fs0 , f

s
∞ <∞, there exist M1 > 0 such that

f(t, u) ≤M1u, t ∈ [0, 1], u ≥ 0.

Define positive constants

λ0 =
a

AM1
.

Let λ ∈ (0, λ0), suppose that problem (P, λ) has a positive solution u(t), t ∈ [0, 1].
Thus,

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≤ λ
∫ 1

0

G(t, s)M1u(s)ds

≤ λM1

∫ 1

0

G(t, s)‖u‖ds

< ‖u‖.
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This induces that ‖u‖ < ‖u‖, which is a contradiction. So the boundary value problem
(P, λ) has no positive solution.
Theorem 4.2. Assume that (H1) − (H3) hold. If f i0, f

i
∞ > 0, then there exists

a positive constant λ̃0 such that for every λ ∈ (λ̃0, ∞), the boundary value problem
(P, λ) has no positive solution.
Proof. From the definitions of f i0, f

i
∞ and the condition f i0, f

i
∞ > 0, there exist

positive numbers m1 such that

f(t, u) ≥ m1u, t ∈ [a, b], u ≥ 0.

Define positive constants

λ̃0 =
1

γÃm1

.

Let λ ∈ (λ̃0, ∞), we suppose that problem (P, λ) has a positive solution u(t), t ∈
[0, 1]. Then for t ∈ [0, 1], we have

T (u)(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)f(s, u(s))ds

≥ λ
∫ b

a

G(t, s)m1u(s)ds

≥ λγ
∫ b

a

G(t, s)m1‖u‖ds

≥ λγÃm1‖u‖
> ‖u‖,

which induces a contradiction. Thus the boundary value problem (P, λ) has no posi-
tive solution.

5. Example

Consider the third-order four-point boundary value problem

−u
′′′

(t) = λf(t, u), 0 ≤ t ≤ 1, (5.1)

u′′(0) = 0, u′(0) = 0, u′(1) + β1u(η1) + β2u(η2) = 0. (5.2)

where β1 =
3

2
, β2 = −2

3
, η1 =

1

3
, η2 =

1

2
,

f(t, u) =

√
t+ 3(100u+ 1)(3 + sin(u))u

u+ 1
.

We notice that β1, β2 are not the same sign. By a simple calculation we have

β[1̂] = β1 + β2, β[t̂] = β1η1 + β2η2
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and

JB(s) =

 0, η2 ≤ s ≤ 1
β2(η2 − s), η1 ≤ s ≤ η2
β1(η1 − s) + β2(η2 − s), 0 ≤ s ≤ η1

Thus the condition 1 + β[t̂] ≥ β[1̂] > 0 imposes a restriction

1 + β1η1 + β2η2 ≥ β1 + β2 > 0. (r1)

The condition JB(s) ≤ β[t̂] > 0 imposes three restrictions

β1η1 + β2η2 ≥ 0, η2 ≤ s ≤ 1, (5.3)

β1η1 + β2s ≥ 0, η1 ≤ s ≤ η2, (5.4)

(β1 + β2)s ≥ 0, 0 ≤ s ≤ η1. (5.5)

The condition r1 implies that the Eq.(5.5) holds and (5.3-5.5) can simplify to condi-
tions

β1η1 + β2η2 > 0, and β1η1 + β2s ≥ 0, η1 ≤ s ≤ η2. (r2)

The condition 1− s+ JB(s) ≥ (1 + β[t̂])(1− s)2 imposes three restrictions

1− s ≤ (1 + β1 + β2η2)(1− s)2, η2 ≤ s ≤ 1, (5.6)

1− s+ β2(η2 − s) ≤ (1 + β1 + β2η2)(1− s)2, η1 ≤ s ≤ η2, (5.7)

1− s+ β1(η1 − s) + β2(η2 − s) ≤ (1 + β1 + β2η2)(1− s)2, 0 ≤ s ≤ η1, (5.8)

This simplify to the conditions

(1 + β1η1 + β2η2)(1− η2) ≤ 1 (r3)

(1 + β1η1 + β2η2)s2 + (β2 − 1− 2β1η1 − 2β2η2)s+ β1η1 ≤ 0, η1 ≤ s ≤ η2, (r4)

(1 + β1η1 + β2η2)s+ (β2 + β1 − 1− 2β1η1 − 2β2η2)s ≤ 0, 0 ≤ s ≤ η1, (r5)

By substituting the value β1, β2, η1, η2, we can check that the restrictions of (r1)−
(r5) holds. We notice that

φ(t) = 1− β[1̂]t

1 + β[t̂]

and we can choose the subinterval [a, b] = [0, 1]. A direct calculation shows that

A =

∫ 1

0

G(s, s)ds =

∫ 1

0

1

β[1̂]
(1− s+ JB(s))ds

=
1

β[1̂]

∫ η1

0

(1− s+ β1(η1 − s) + β2(η2 − s))ds

+

∫ η2

η1

(1− s+ β2(η2 − s))ds+

∫ 1

η2

(1− s)ds =
1

2
(1 + β1η

2
1 + β2η

2
2).

and

γ = sup
0≤t≤1

c(t) = 1− β[1̂]

1 + β[t̂]
=

1 + β1η1 + β2η2 − β1 − β2
1 + β1η1 + β2η2

Ã = γ

∫ 1

0

G(s, s)ds =
1

2

1 + β1η1 + β2η2 − β1 − β2
1 + β1η1 + β2η2

(1 + β1η
2
1 + β2η

2
2)
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That is,

A =
1

2
(1 + β1η

2
1 + β2η

2
2) =

1

2
,

γ =
1 + β1η1 + β2η2 − β1 − β2

1 + β1η1 + β2η2
=

2

7
,

Ã =
1

2

1 + β1η1 + β2η2 − β1 − β2
1 + β1η1 + β2η2

(1 + β1η
2
1 + β2η

2
2) =

1

7

We have

fs0 = 6, f i0 = 3
√

3, fs∞ = 800, f i∞ = 200
√

3,M = 800, m = 3
√

3

and

K1 =
1

γÃf i∞
≈ 0.0707, K2 =

1

Afs0
≈ 0.3333,

λ0 =
1

AM
= 0.0025, λ̃0 =

1

γÃm
≈ 4.7150

Then
(1) from Theorem 3.1, for λ ∈ (K1,K2), the problem (5.1) − (5.2) has a positive
solution.

(2) from Theorem 4.1, for λ ∈ (0, λ0), the problem (5.1) − (5.2) has no positive
solution.

(3) from Theorem 4.2, for λ ∈ (λ̃0, ∞), the problem (5.1) − (5.2) has no positive
solution.
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