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1. Introduction

The prime objective of the study presented in this manuscript is to find a locally
unique solution x∗ of the equation

F (x) = 0, (1.1)

where F : Ω ⊆ X → Y is a Fréchet differentiable operator and Ω is a convex subset
of X. X and Y are Banach spaces. Taking into account that numerous problems
in applied sciences and engineering such as the boundary value problems occur in
Kinetic theory of gases, the integral equations related to radiative transfer theory,
problems in optimization and many others can be solved by obtaining the solutions
of nonlinear equations in the form (1.1), many efficient algorithms have been derived.
In most cases, the solutions of these nonlinear equations can not be obtained in closed
form. So, iterative schemes are frequently used to avoid such problems.

The second order convergent Newton’s scheme is extensively used as a solver of
(1.1), which can be expressed as:

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0. (1.2)
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Also, Some classical third-order algorithms include Chebyshev’s, the Halley’s and
Super-Halley’s schemes are produced by putting (α = 0), (α = 1

2 ) and (α = 1)
respectively in

xn+1 = xn −
(

1 +
1

2
(1− αHF (xn))−1HF (xn)

)
[F ′(xn)]−1F (xn), (1.3)

where HF (xn) = F ′(xn)−1F ′′(xn)F ′(xn)−1F (xn).
To overcome the computation of higher-order derivatives present in the traditional
third-order schemes, many researchers have developed higher-order Newton-like meth-
ods [1, 3, 10, 23, 24, 15, 16, 17, 18, 21, 25, 26, 29, 30, 20] such as harmonic mean
Newton’s method, midpoint Newton’s method and other variants.

Local and semi-local convergence analysis of iterative schemes has been studied
by numerous researchers [2, 13, 6, 8, 7, 27, 9, 28, 14, 19, 11, 12, 22, 4, 5], and many
important results have been derived. “The semi-local convergence analysis, which
is based on the information around an initial guess gives us the necessary condition
to ensure the convergence and the local convergence analysis, which is based on the
information around a solution provides radii of convergence balls” [13]. The local con-
vergence analysis of many varieties of the methods defined in (1.3) has been studied
by numerous authors in [13, 6, 8, 7]. Also, the local convergence analysis of effi-
cient iterative schemes (Jarratt-type, Weerakoon-type and Newton-like) is studied in
Banach spaces in [27, 9, 28, 14, 19, 11, 12].

In this paper, we use the Hölder continuity condition only on the first derivative
to enhance the applicability of two higher-order convergent methods by generalizing
the local convergence analysis based on Lipschitz continuity condition.

In [15], Cordero et al. studied the modification of Weerakoon’s method [30] with
fifth-order convergence to solve nonlinear systems. The method is given as:

yn = xn − F ′(xn)−1F (xn)

zn = xn − 2[F ′(xn) + F ′(yn)]−1F (xn)

xn+1 = zn − F ′(yn)−1F (zn) (1.4)

Also, they modified the fourth order method proposed by Cordero et al. [16] to obtain
a sixth order convergent method for systems of nonlinear equations, which is given
by

yn = xn − F ′(xn)−1F (xn)

zn = yn − F ′(xn)−1[2I − F ′(yn)F ′(xn)−1]F (yn)

xn+1 = zn − F ′(yn)−1F (zn) (1.5)

In these methods, the iteration function contains only the first-order derivative
F ′ of F . But the convergence analysis is shown with the assumption on at least
fifth-order derivative. Therefore, the applicability of these schemes is restricted for
such problems where the higher-order derivatives are unbounded or unobtainable. In
[27], the authors studied the local convergence of the method (1.4) applying Lipschitz
condition on the first-order derivative to overcome such problem. However, there are
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numerous examples for which Lipschitz condition fails. For instance, consider the
nonlinear integral equation [28] given by

F (x)(s) = x(s)− 3

∫ 1

0

G1(s, t)x(t)
5
4 dt,

where x(s) ∈ C[0, 1] and G1(s, t) is Green’s function defined on [0, 1]× [0, 1] by

G1(s, t) =

{
(1− s)t, if t ≤ s
s(1− t), if s ≤ t .

Then,

||F ′(x)− F ′(y)|| ≤ 15

32
||x− y|| 14

It is clear that Lipschitz condition does not hold for this problem. However, Hölder
continuity condition holds on F ′ for p = 1

4 . In this paper, we provide the local
convergence analysis of the methods (1.4) and (1.5) using hypotheses only on F ′ to
avoid the use of higher-order derivatives. Particularly, the Hölder continuous first
derivative is employed to extend the applicability of the method by generalizing the
local convergence under Lipschitz condition.

Another advantage of this approach is that the radius, error bounds and uniqueness
of the solution information is provided and is based on Hölder constants. This is in
contrast to studies in [15, 16], where expensive Taylor expansions are used to show
convergence and the above are not computed.

The rest portion of this paper is arranged as follows: The local convergence anal-
ysis of the methods (1.4) and (1.5) is placed in Section 2. Section 3 is devoted to
demonstrating the applications of our theoretical outcomes on standard numerical
examples. Conclusions are discussed in the last section.

2. Local convergence analysis

The local convergence analysis of the methods (1.4) and (1.5) is studied in this
section. Let the open and closed balls in X are denoted as B(c, ρ) and B̄(c, ρ) respec-
tively with center c and radius ρ > 0. Suppose the parameters p ∈ (0, 1], k0 > 0 and
k > 0 be given with k0 ≤ k. Furthermore, let us assume the following hold for the
Fréchet differentiable operator F : Ω ⊆ X → Y .

F (x∗) = 0, F ′(x∗)−1 ∈ BL(Y,X), (2.1)

||F ′(x∗)−1(F ′(x)− F ′(x∗))|| ≤ k0||x− x∗||p, ∀x ∈ Ω (2.2)

and
||F ′(x∗)−1(F ′(x)− F ′(y))|| ≤ k||x− y||p, ∀x, y ∈ Ω, (2.3)

where BL(Y,X) is the set of all bounded linear operators from Y to X.
In several studies [2, 13, 6, 9, 11], an additional condition assumed is

||F ′(x∗)−1F ′(x)|| ≤M, ∀x ∈ B

(
x∗,

(
1

k0

) 1
p

)
. (2.4)

This assumption is not taken in our study. We use the following results to avoid this
extra condition.



858 DEBASIS SHARMA AND SANJAYA KUMAR PARHI

Lemma 2.1. If F obeys (2.2)-(2.3) and B̄(x∗, R) ⊆ Ω, then ∀x ∈ B(x∗, R), we get

||F ′(x∗)−1F ′(x)|| ≤ 1 + k0||x− x∗||p (2.5)

and

||F ′(x∗)−1F (x)|| ≤ (1 + k0||x− x∗||p)||x− x∗||, (2.6)

where R is defined in (2.12). The above results also hold true if we use R′ (2.35) in
place of R.

Proof. Applying (2.2), we obtain

||F ′(x∗)−1F ′(x)|| ≤ 1 + ||F ′(x∗)−1(F ′(x)− F ′(x∗))|| ≤ 1 + k0||x− x∗||p.
For θ ∈ [0, 1],

||F ′(x∗)−1F ′(x∗ + θ(x− x∗))|| ≤ 1 + k0θ||x− x∗||p ≤ 1 + k0||x− x∗||p

The mean value theorem is used to obtain

||F ′(x∗)−1F (x)|| = ||F ′(x∗)−1(F (x)− F (x∗))||
≤ ||F ′(x∗)−1F ′(x∗ + θ(x− x∗))(x− x∗)||
≤ (1 + k0||x− x∗||p)||x− x∗||.

�

2.1. Local convergence analysis of method (1.4). To study the local convergence

of the scheme (1.4), we introduce the function J1 on the interval [0, ( 1
k0

)
1
p ) by

J1(u) =
kup

(p+ 1)(1− k0up)
(2.7)

and the parameter

R1 =

(
p+ 1

(p+ 1)k0 + k

) 1
p

<

(
1

k0

) 1
p

.

Observe that J1(R1) = 1. Again, we define functions J2 and K2 on [0, ( 1
k0

)
1
p ) by

J2(u) =
k0
2

(1 + J1(u)p)up (2.8)

and

K2(u) = J2(u)− 1.

Now, K2(0) = −1 < 0 and lim
u→(( 1

k0
)
1
p )−

K2(u) = +∞. According to the intermediate

value theorem, the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function K2(u). Let

the smallest zero of K2(u) in (0, ( 1
k0

)
1
p ) is R2. Also, we introduce functions J3 and

K3 on [0, R2) by

J3(u) =
k[ 2

p+1 + J1(u)p]up

2(1− J2(u))
(2.9)

and

K3(u) = J3(u)− 1.
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Now, K3(0) = −1 < 0 and lim
u→R−2

K3(u) = +∞. The intermediate value theorem

confirms that the interval (0, R2) contains the zeros of the function K3(u). Let the

smallest zero of K3(u) in (0, R2) is R3. Again, we define J4 and K4 on [0, ( 1
k0

)
1
p ) by

J4(u) = k0J1(u)pup (2.10)

and
K4(u) = J4(u)− 1.

Now, K4(0) = −1 < 0 and lim
u→(( 1

k0
)
1
p )−

K4(u) = +∞. According to the intermediate

value theorem, the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function K4(u). Let

the smallest zero of K4(u) in (0, ( 1
k0

)
1
p ) is R4. Finally, let us define J5 and K5 on

[0, R4) by

J5(u) =

(
1 +

1 + k0J3(u)pup

1− J4(u)

)
J3(u) (2.11)

and
K5(u) = J5(u)− 1.

Now, K5(0) = −1 < 0 and lim
u→R−4

K5(u) = +∞. The intermediate value theorem

confirms that the interval (0, R4) contains the zeros of the function K5(u). Let the
smallest zero of K5(u) in (0, R4) is R5. Let us choose

R = min{R1, R3, R5}. (2.12)

Now, we have
0 ≤ J1(u) < 1, (2.13)

0 ≤ J2(u) < 1, (2.14)

0 ≤ J3(u) < 1, (2.15)

0 ≤ J4(u) < 1, (2.16)

and
0 ≤ J5(u) < 1 (2.17)

for each u ∈ [0, R).
Next, the local convergence analysis of the method (1.4) is presented in Theorem 2.1.

Theorem 2.1. Let F : Ω ⊆ X → Y be a Fréchet differentiable operator. Suppose
x∗ ∈ Ω, F obeys (2.1)-(2.3) and

B̄(x∗, R) ⊆ Ω, (2.18)

where R is defined in (2.12). Starting from x0 ∈ B(x∗, R) the method (1.4) generates
the sequence of iterates {xn} which is well defined, {xn}n≥0 ∈ B(x∗, R) and converges
to the solution x∗ of (1.1). Moreover, the following estimations hold ∀n ≥ 0

||yn − x∗|| ≤ J1(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R, (2.19)

||zn − x∗|| ≤ J3(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R (2.20)

and
||xn+1 − x∗|| ≤ J5(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R, (2.21)
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where the functions J1, J3 and J5 are given in (2.7), (2.9) and (2.11), respectively.
Furthermore, the solution x∗ of the equation F (x) = 0 is unique in B̄(x∗,∆) ∩ Ω,

where ∆ ∈ [R, (p+1
k0

)
1
p ).

Proof. Using the definition of R, the equation (2.2) and the assumption x0 ∈ B(x∗, R),
we find

||F ′(x∗)−1(F ′(x0)− F ′(x∗))|| ≤ k0||x0 − x∗||p < k0R
p < 1. (2.22)

Now, Banach Lemma on invertible operators [1, 10, 23, 25, 29] confirms that

F ′(x0)−1 ∈ BL(Y,X)

and

||F ′(x0)−1F ′(x∗)|| ≤ 1

1− k0||x0 − x∗||p
<

1

1− k0Rp
. (2.23)

Hence, it follows from the first step of the method (1.4) for n = 0 that y0 is well
defined. Again,

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= −
[
F ′(x0)−1F ′(x∗)

] [∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗) dθ
]
.

(2.24)

Using (2.3), (2.7), (2.13), (2.23) and (2.24), we find

||y0 − x∗||

≤
[
||F ′(x0)−1F ′(x∗)||

] [∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

F ′(x∗)−1(F ′(x∗+θ(x0−x∗))− F ′(x0))(x0 − x∗) dθ

∣∣∣∣∣
∣∣∣∣∣
]

≤ k||x0 − x∗||p

(p+ 1)(1− k0||x0 − x∗||p)
||x0 − x∗||

= J1(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R (2.25)

and this shows (2.19) for n = 0. Then we show [F ′(x0) +F ′(y0)]−1 ∈ BL(Y,X). The
equations (2.2), (2.8), (2.12), (2.14) and (2.25) are used to obtain

||(2F ′(x∗))−1(F ′(x0) + F ′(y0)− 2F ′(x∗))||

≤ 1

2
[||F ′(x∗)−1(F ′(x0)− F ′(x∗))||+ ||F ′(x∗)−1(F ′(y0)− F ′(x∗))||]

≤ k0
2

[||x0 − x∗||p + ||y0 − x∗||p]

≤ k0
2

[||x0 − x∗||p + J1(||x0 − x∗||p||x0 − x∗||p]

=
k0
2

[1 + J1(||x0 − x∗||)p]||x0 − x∗||p

= J2(||x0 − x∗||) < J2(R) < 1.
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Now, we obtain [F ′(x0) + F ′(y0)]−1 ∈ BL(Y,X) using Banach Lemma on invertible
operators. Also,

||[F ′(x0) + F ′(y0)]−1F ′(x∗)|| ≤ 1

2(1− J2(||x0 − x∗||))
. (2.26)

Now, it follows from the second step of the method (1.4) for n = 0 that z0 is well
defined. Using the definition of R, (2.3), (2.9), (2.15), (2.25) and (2.26), we get

||z0 − x∗|| ≤
(
||[F ′(x0) + F ′(y0)]−1F ′(x∗)||

)
×

(∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

F ′(x∗)−1 (F ′(x0)− F ′(x∗ + θ(x0 − x∗))) (x0 − x∗) dθ

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

F ′(x∗)−1 (F ′(y0)− F ′(x∗ + θ(x0 − x∗))) (x0 − x∗) dθ

∣∣∣∣∣
∣∣∣∣∣
)

≤
k

p+1 ||x0 − x
∗||p+1 + k

∫ 1

0
(||y0 − x∗ − θ(x0 − x∗)||p) dθ||x0 − x∗||

2(1− J2(||x0 − x∗||))

≤
k

p+1 ||x0 − x
∗||p+1 + k(||y0 − x∗||p + ||x0−x∗||p

p+1 )||x0 − x∗||
2(1− J2(||x0 − x∗||))

≤
k

p+1 ||x0 − x
∗||p+1 + k[J1(||x0 − x∗||)p||x0 − x∗||p + ||x0−x∗||p

p+1 ]||x0 − x∗||
2(1− J2(||x0 − x∗||))

≤
( 2k
p+1 ||x0 − x

∗||p + kJ1(||x0 − x∗||)p||x0 − x∗||p)||x0 − x∗||
2(1− J2(||x0 − x∗||))

=
[( 2k

p+1 + kJ1(||x0 − x∗||)p)||x0 − x∗||p]||x0 − x∗||
2(1− J2(||x0 − x∗||))

=
k[( 2

p+1 + J1(||x0 − x∗||)p)||x0 − x∗||p]||x0 − x∗||
2(1− J2(||x0 − x∗||))

= J3(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R. (2.27)

Hence, we establish (2.20) for n = 0. Again,

||F ′(x∗)−1(F ′(y0)− F ′(x∗))|| ≤ k0||y0 − x∗||p < k0J1(||x0 − x∗||)p||x0 − x∗||p

= J4(||x0 − x∗||) < 1. (2.28)

So, F ′(y0)−1 ∈ BL(Y,X) with

||F ′(y0)−1F ′(x∗)|| ≤ 1

1− J4(||x0 − x∗||)
. (2.29)
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Now, it follows from the last step of the method (1.4) for n = 0 that x1 is well defined.
Finally, we use (2.6), (2.11), (2.12), (2.17), (2.25), (2.27) and (2.29) to get

||x1 − x∗|| ≤ ||z0 − x∗||+ ||F ′(y0)−1F (z0)||
≤ ||z0 − x∗||+ ||F ′(y0)−1F ′(x∗)|| ||F ′(x∗)−1F (z0)||

≤ ||z0 − x∗||+
(1 + k0||z0 − x∗||p)||z0 − x∗||

1− J4(||x0 − x∗||)

=

(
1 +

(1 + k0||z0 − x∗||p)

1− J4(||x0 − x∗||)

)
||z0 − x∗||

≤
(

1 +
(1 + k0J3(||x0 − x∗||)p||x0 − x∗||p)

1− J4(||x0 − x∗||)

)
J3(||x0 − x∗||)||x0 − x∗||

= J5(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R. (2.30)

Thus, we show the estimate (2.21) for n = 0. We get the estimates (2.19)-(2.21)
by substituting xn, yn, zn and xn+1 in place of x0, y0, z0 and x1 respectively in
the previous estimations. Using the fact ||xn+1 − x∗|| ≤ J5(R)||xn − x∗|| < R, we
derive that xn+1 ∈ B(x∗, R) and lim

n→∞
xn = x∗. Now, we want to show the uniqueness

of the solution x∗. Suppose there exist another solution y∗ (6= x∗) of F (x) = 0 in

B(x∗,∆) ∩ Ω. Consider Q =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗)) dθ. From equation (2.2), we get

||F ′(x∗)−1(Q− F ′(x∗))|| ≤
∫ 1

0

k0||y∗ + θ(x∗ − y∗)− x∗||p dθ

≤ k0
p+ 1

||x∗ − y∗||p

≤ k0∆p

p+ 1
< 1.

Applying Banach Lemma, we find Q−1 ∈ BL(Y,X).
Now, Using the identity 0 = F (x∗)−F (y∗) = Q(x∗−y∗), it is concluded that x∗ = y∗.
This completes the proof. �

2.2. Local convergence analysis of method (1.5). For the local convergence

analysis of the method (1.5), we introduce the function H1 on the interval [0, ( 1
k0

)
1
p )

by

H1(v) =
kvp

(p+ 1)(1− k0vp)
(2.31)

and the parameter

R′1 =

(
p+ 1

(p+ 1)k0 + k

) 1
p

<

(
1

k0

) 1
p

.

Observe that H1(R′1) = 1. Again, we define functions H2 and G2 on [0, ( 1
k0

)
1
p ) by

H2(v) =

(
1 +

1 + k0H1(v)pvp

1− k0vp
+

(1 + k0H1(v)pvp)2

(1− k0vp)2

)
H1(v) (2.32)
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and
G2(v) = H2(v)− 1.

Now, G2(0) = −1 < 0 and lim
v→(( 1

k0
)
1
p )−

G2(v) = +∞. According to the intermediate

value theorem, the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function G2(v). Let

the smallest zero of G2(v) in (0, ( 1
k0

)
1
p ) is R′2. Also, we introduce functions H3 and

G3 on [0, ( 1
k0

)
1
p ) by

H3(v) = k0H1(v)pvp (2.33)

and
G3(v) = H3(v)− 1.

Now, G3(0) = −1 < 0 and lim
v→(( 1

k0
)
1
p )−

G3(v) = +∞. The intermediate value theorem

confirms that the interval (0, ( 1
k0

)
1
p ) contains the zeros of the function G3(v). Let the

smallest zero of G3(v) in (0, ( 1
k0

)
1
p ) is R′3. Finally, we define H4 and G4 on [0, R′3) by

H4(v) =

(
1 +

1 + k0H2(v)pvp

1−H3(v)

)
H2(v) (2.34)

and
G4(v) = H4(v)− 1.

Now, G4(0) = −1 < 0 and lim
v→R′−3

K4(v) = +∞. So, the interval (0, R′3) contains the

zeros of the function G4(v). Let the smallest zero of G4(v) in (0, R′3) is R′4.
Let us choose

R′ = min{R′1, R′2, R′4}. (2.35)

Now, we have
0 ≤ H1(v) < 1, (2.36)

0 ≤ H2(v) < 1, (2.37)

0 ≤ H3(v) < 1 (2.38)

and
0 ≤ H4(v) < 1, (2.39)

for each v ∈ [0, R′). Next, the local convergence analysis of the method (1.5) is
presented in Theorem 2.2.

Theorem 2.2. Let F : Ω ⊆ X → Y be a Fréchet differentiable operator. Suppose
x∗ ∈ Ω, F obeys (2.1)-(2.3) and

B̄(x∗, R′) ⊆ Ω, (2.40)

where R′ is defined in (2.35). Starting from x0 ∈ B(x∗, R′) the method (1.5) generates
the sequence of iterates {xn} which is well defined, {xn}n≥0 ∈ B(x∗, R′) and converges
to the solution x∗ of (1.1). Moreover, the following estimations hold ∀n ≥ 0

||yn − x∗|| ≤ H1(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R′, (2.41)

||zn − x∗|| ≤ H2(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R′ (2.42)
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and

||xn+1 − x∗|| ≤ H4(||xn − x∗||)||xn − x∗|| < ||xn − x∗|| < R′, (2.43)

where the functions H1, H2 and H4 are given in (2.31), (2.32) and (2.34), respectively.
Furthermore, the solution x∗ of the equation F (x) = 0 is unique in B̄(x∗,∆′) ∩ Ω,

where ∆′ ∈ [R′, (p+1
k0

)
1
p ).

Proof. Using the definition of R′, the equation (2.2) and the assumption

x0 ∈ B(x∗, R′),

we find

||F ′(x∗)−1(F ′(x0)− F ′(x∗))|| ≤ k0||x0 − x∗||p < k0R
′p < 1.

Now, Banach Lemma on invertible operators [1, 10, 23, 25, 29] confirms that

F ′(x0)−1 ∈ BL(Y,X)

and

||F ′(x0)−1F ′(x∗)|| ≤ 1

1− k0||x0 − x∗||p
<

1

1− k0R′p
. (2.44)

Hence, it follows from the first step of the method (1.5) for n = 0 that y0 is well
defined. Again,

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

=−
[
F ′(x0)−1F ′(x∗)

][∫ 1

0

F ′(x∗)−1(F ′(x∗+θ(x0−x∗))−F ′(x0))(x0−x∗) dθ
]
.

(2.45)

Using (2.31), (2.35), (2.36), (2.44) and (2.45) we find

||y0 − x∗||

≤
[
||F ′(x0)−1F ′(x∗)||

] [∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0−x∗) dθ

∣∣∣∣∣
∣∣∣∣∣
]

≤ k||x0 − x∗||p

(p+ 1)(1− k0||x0 − x∗||p)
||x0 − x∗||

= H1(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R′ (2.46)
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and this shows (2.41) for n = 0. Since F ′(x0)−1 ∈ BL(Y,X) so, z0 is well defined.
Using the definition of R′, (2.6), (2.32), (2.37), (2.44) and (2.46), we get

||z0 − x∗||
≤ ||y0 − x∗||+ 2||F ′(x0)−1F (y0)||+ ||F ′(x0)−1F ′(y0)|| ||F ′(x0)−1F (y0)||
≤ ||y0 − x∗||+ ||F ′(x0)−1F ′(x∗)|| ||F ′(x∗)−1F (y0)||
+ ||F ′(x0)−1F ′(x∗)|| ||F ′(x∗)−1F ′(y0)|| ||F ′(x0)−1F ′(x∗)|| ||F ′(x∗)−1F (y0)||

≤ ||y0 − x∗||+
(1 + k0||y0 − x∗||p)||y0 − x∗||

1− k0||x0 − x∗||p

+
(1 + k0||y0 − x∗||p)

1− k0||x0 − x∗||p
(1 + k0||y0 − x∗||p)||y0 − x∗||

1− k0||x0 − x∗||p

≤
(

1 +
(1 + k0||y0 − x∗||p)

1− k0||x0 − x∗||p
+

(1 + k0||y0 − x∗||p)

1− k0||x0 − x∗||p
(1 + k0||y0 − x∗||p)

1− k0||x0 − x∗||p

)
||y0 − x∗||

≤
(

1 +
(1 + k0H1(||x0 − x∗||)p||x0 − x∗||p)

1− k0||x0 − x∗||p

)
H1(||x0 − x∗||)||x0 − x∗||

+

(
(1 + k0H1(||x0 − x∗||)p||x0 − x∗||p)2

(1− k0||x0 − x∗||p)2

)
H1(||x0 − x∗||)||x0 − x∗||

= H2(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R′. (2.47)

Hence, we establish (2.42) for n = 0. Again,

||F ′(x∗)−1(F ′(y0)− F ′(x∗))|| ≤ k0||y0 − x∗||p < k0H1(||x0 − x∗||)p||x0 − x∗||p

= H3(||x0 − x∗||) < 1. (2.48)

So, F ′(y0)−1 ∈ BL(Y,X) with

||F ′(y0)−1F ′(x∗)|| ≤ 1

1−H3(||x0 − x∗||)
. (2.49)

Now, it follows from the last step of the method (1.5) for n = 0 that x1 is well define.
Finally, we use (2.6), (2.34), (2.35), (2.39), (2.47) and (2.49) to get

||x1 − x∗|| ≤ ||z0 − x∗||+ ||F ′(y0)−1F (z0)||
≤ ||z0 − x∗||+ ||F ′(y0)−1F ′(x∗)|| ||F ′(x∗)−1F (z0)||

≤ ||z0 − x∗||+
(1 + k0||z0 − x∗||p)||z0 − x∗||

1−H3(||x0 − x∗||)

=

(
1 +

(1 + k0||z0 − x∗||p)

1−H3(||x0 − x∗||)

)
||z0 − x∗||

≤
(

1 +
(1 + k0H2(||x0 − x∗||)p||x0 − x∗||p)

1−H3(||x0 − x∗||)

)
H2(||x0 − x∗||)||x0 − x∗||

= H4(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < R′. (2.50)

Thus, we show the estimate (2.43) for n = 0. We get the estimates (2.41)-(2.43) by
substituting xn, yn, zn and xn+1 in place of x0, y0, z0 and x1 respectively in the
previous estimations. Using the fact ||xn+1−x∗|| ≤ H4(R′)||xn−x∗|| < R′, we derive
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that xn+1 ∈ B(x∗, R′) and lim
n→∞

xn = x∗. Now, we want to show the uniqueness

of the solution x∗. Suppose there exist another solution y∗ (6= x∗) of F (x) = 0 in

B(x∗,∆′) ∩Ω. Consider T =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗)) dθ. From equation (2.2), we get

||F ′(x∗)−1(T − F ′(x∗))|| ≤
∫ 1

0

k0||y∗ + θ(x∗ − y∗)− x∗||p dθ

≤ k0
p+ 1

||x∗ − y∗||p

≤ k0∆′p

p+ 1
< 1.

Applying Banach Lemma, we find T−1 ∈ BL(Y,X). Now, using the identity

0 = F (x∗)− F (y∗) = T (x∗ − y∗),
it is concluded that x∗ = y∗. This ends the proof. �

3. Numerical examples

In this section, numerical examples are provided to validate the theoretical results.
We consider the Examples (1, 2 and 3) from the research paper of Argyros and George
[6]. The examples 4 and 5 are selected from [28].

Example 3.1. Define F on Ω = [− 1
2 ,

5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, if x 6= 0
0, if x = 0

.

We have x∗ = 1. Also, p = 1 and k0 = k = 146.6629. The values of R and R′ are
determined using the definitions of “J” and “H” functions respectively.

Table 1. Radii of convergence balls for Example 3.1

Method (1.4) Method (1.5)
R1 = 0.004545 R′1 = 0.004545
R3 = 0.003994 R′2 = 0.002012
R5 = 0.002917 R′4 = 0.001331
R = 0.002917 R′ = 0.001331

Example 3.2. Let us define F on Ω = [1, 3] by

F (x) =
2

3
x

3
2 − x

We have x∗ = 9
4 . Also, we have p = 0.5, k0 = 1 and k = 2. R and R′ are computed

using “J” and “H” functions respectively.

Table 2. Radii of convergence balls for Example 3.2

Method (1.4) Method (1.5)
R1 = 0.183673 R′1 = 0.183673
R3 = 0.107877 R′2 = 0.025567
R5 = 0.038326 R′4 = 0.008795
R = 0.038326 R′ = 0.008795
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Example 3.3. Let F is defined on B̄(0, 1) for (x1, x2, x3)t by

F (x) = (ex1 − 1,
e− 1

2
x22 + x2, x3)t

We have x∗ = (0, 0, 0)t. Also, we have p = 1, k0 = e − 1 and k = e. We determine
the values of R and R′ using “J” and “H” functions respectively.

Table 3. Radii of convergence balls for Example 3.3

Method (1.4) Method (1.5)
R1 = 0.324947 R′1 = 0.324947
R3 = 0.268633 R′2 = 0.133649
R2 = 0.184350 R′4 = 0.083613
R = 0.184350 R′ = 0.083613

Example 3.4. Consider the nonlinear Hammerstein type integral equation given by

F (x)(s) = x(s)− 5

∫ 1

0

stx(t)
3
2 dt,

where x(s) ∈ C[0, 1]. We have x∗ = 0. Also, p = 0.5 and k0 = k = 15
4 . Using the

definitions of “J” and “H” functions the values of R and R′ are computed.

Table 4. Radii of convergence balls for Example 3.4

Method (1.4) Method (1.5)
R1 = 0.025599 R′1 = 0.025599
R3 = 0.017992 R′2 = 0.004240
R5 = 0.007313 R′4 = 0.001689
R = 0.007313 R′ = 0.001689

Example 3.5. Consider the nonlinear integral equation given by

F (x)(s) = x(s)− 3

∫ 1

0

G1(s, t)x(t)
5
4 dt,

where x(s) ∈ C[0, 1] and G1(s, t) is Green’s function. We have x∗ = 0. Also, p = 0.25
and k0 = k = 15

32 . Using the definitions of “J” and “H” functions the values of R and
R′ are determined.

Table 5. Radii of convergence balls for Example 3.5

Method (1.4) Method (1.5)
R1 = 1.973080 R′1 = 1.973080
R3 = 0.879329 R′2 = 0.043572
R5 = 0.101198 R′4 = 0.006069
R = 0.101198 R′ = 0.006069

4. Conclusions

We studied the local convergence analysis of two higher-order methods to find a lo-
cally unique solution of a nonlinear equation in Banach spaces. The Hölder continuity
condition on the first derivative is used to enhance the applicability of these meth-
ods. This study helps in solving those problems for which Lipschitz condition fails
without applying higher-order derivative. Lastly, the theoretical outcomes are tested
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on standard numerical examples like Hammerstein equation and system of nonlinear
equations.
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