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1. Introduction

Let (X, ‖ · ‖) be a Banach space. We consider the following problem

d

dt
(µα ∗ [u− u(0)])(t) = Au(t) + f(t, ut), t > 0; (1.1)

u(s) = ϕ(s), s ∈ [−h, 0], (1.2)

where µα(t) = t−α

Γ(1−α) for α ∈ (0, 1), the state function u takes values in X with the

history state ut ∈ C([−h, 0];X) defined by ut(s) = u(t+ s), s ∈ [−h, 0], A is a closed
linear operator on X, and the nonlinear function f is defined on [0, T ]×C([−h, 0];X).
Here µα ∗ v, for v ∈ L1

loc(R+;X), denotes the Laplace convolution, i.e.,

(µα ∗ v)(t) =

∫ t

0

µα(t− s)v(s)ds.

Equation (1.1) is known as a fractional differential equation (FrDE) with Caputo’s
fractional derivative of order α.

Nonlocal differential equations like (1.1) have recently been proved to be valuable
tools in mathematical physics to model dynamic processes in materials with memory.
They are also employed to describe anomalous diffusion processes (see an explanation
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in, e.g., [12, 14]). As mentioned in [12], by replacing µα with another locally inte-
grable kernel, one can use the linear part of (1.1) to express many processes involving
subdiffusion, superdiffusion and ultraslow-diffusion.

Stability is the first of all the considered questions in the system analysis and
synthesis of modern control theory. In this paper, we adopt the following concept
of weak asymptotic stability. Denote Ch = C([−h, 0];X) the space of continuous
functions on [−h, 0] with values in X. Then Ch is a Banach space endowed with the
norm

‖x‖Ch = sup
s∈[−h,0]

‖x(s)‖.

Let Σ(ϕ) be the solution set of (1.1)-(1.2) with respect to the initial datum ϕ. Assume
that 0 ∈ Σ(0), that is (1.1) admits zero solution. The zero solution of (1.1) is said to
be weak asymptotically stable if

(1) It is stable, i.e., for every ε > 0 there exists δ > 0 such that if |ϕ|Ch < δ then
|ut|Ch < ε for all u ∈ Σ(ϕ);

(2) It is weak attractive, i.e., for each ϕ ∈ Ch, there exists u ∈ Σ(ϕ) such that
|ut|Ch → 0 as t→ +∞.

We refer to [4, 10] for recent studies related to weak asymptotic stability for differential
equations.

Let us give a short description on our work. We prove the existence result by using
the fixed point theory for condensing maps, which requires the nonlinearity function f
satisfy a regular property expressed by the Hausdorff measure of noncompactness. It
should be noted that, in our setting, the function f may have a superlinear growth. To
analyze the weak asymptotic stability of solutions, we first prove a new Halanay type
inequality. This inequality will be used to prove the stability of solutions. Then we
employ the fixed point argument for condensing maps to show the weak attractivity.

The rest of our work is organized as follows. In the next section, we recall some
notions and facts on the fractional resolvent theory given in [13] and the measure of
noncompactness proposed in [8]. We also give a representation for solutions of (1.1)
in the form of variation of constant formula. Section 3 is devoted to the existence
results in case the nonlinearity has a superlinear growth. In Section 4, we give the
main result, where some sufficient conditions for weak asymptotic stability of solutions
will be shown. The last section presents an application of the obtained results to a
class of partial differential equations.

2. Preliminaries

Let (X, ‖ ·‖) be a Banach space. In the sequel, we denote by C([0, T ];X) the space
of continuous functions on [0, T ] with values in X, and by Lp(0, T ;X), p ≥ 1, the
space of functions on [0, T ] taking values in X, which are p-th power integrable in the
sense of Bochner. A subset D ⊂ Lp(0, T ;X) is said to be integrably bounded if there
exists ν ∈ Lp(0, T ) := Lp(0, T ;R+) such that

∀f ∈ D, ‖f(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ].

In our presentation, the notation L(X) stands for the Banach space of bounded linear
operators on X. For brevity, we also use ‖ · ‖ for the norm in L(X). A family
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{V (t)}t≥0 ⊂ L(X) is said to be norm-continuous if the map t 7→ V (t) ∈ L(X) is
continuous on (0,∞).

2.1. Resolvents. Consider the equation

d

dt
(µα ∗ [u− u(0)])(t) = Au(t) + f(t, ut), t > 0, (2.1)

where µα(t) = t−α

Γ(1−α) and A is the generator of a C0-semigroup S(·) such that

‖S(t)‖ ≤M, ∀t ≥ 0.

Using [19, Lemma 3.1], we have

u(t) = Sα(t)u(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s, us)ds, t ≥ 0, (2.2)

where

Sα(t)x =

∫ ∞
0

φα(θ)S(tαθ)x dθ, (2.3)

Pα(t)x = α

∫ ∞
0

θφα(θ)S(tαθ)x dθ,∀x ∈ X, (2.4)

with φα being a probability density function defined on (0,∞), that has the expression

φα(θ) =
1

απ

∞∑
n=1

(−1)n−1θn−1 Γ(nα+ 1)

n!
sinnπα, θ ∈ (0,∞).

Based on (2.2), one has the following definition of integral solutions for (1.1).

Definition 2.1. A function x ∈ C([−h, T ];X) is called an integral solution of problem
(1.1)- (1.2) on the interval [−h, T ] iff u(s) = ϕ(s), s ∈ [−h, 0] and

u(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s, us) ds,

for any t ∈ [0, T ].

For ϕ ∈ Ch, we define the space

Cϕ = {u ∈ C([0, T ];X) : u(0) = ϕ(0)}.
as a closed subspace of C([0, T ];X). If v ∈ Cϕ, we have the function v[ϕ] : [−h, T ]→
X defined by

v[ϕ](t) =

{
ϕ(t) if − h < t ≤ 0,

v(t) if t ∈ [0, T ].

Then, clearly

v[ϕ]t(θ) =

{
ϕ(t+ θ), −h− t < θ < −t,
v(t+ θ), θ ∈ [−t, 0].

Now we consider the operator F : Cϕ → Cϕ given by

F(v)(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s, v[ϕ]s)ds. (2.5)
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It is clear that if v is a fixed point of F then v[ϕ] is an integral solution to (1.1)- (1.2).
Let Eα,β be the Mittag-Leffler function given by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ R, α > 0, β > 0.

We now recall some basic results, which will be used in the sequel.

Lemma 2.1. Assume that k : [0, T ] → R+ is a continuous and nondecreasing func-
tion. Then, the function Σ : [0, T ]→ R+ defined by

Σ(k)(t) =

∫ t

0

(t− s)α−1k(s)ds

is also continuous and nondecreasing.

Proof. Let ε > 0, we have

Σ(k)(t+ ε)− Σ(k)(t) =

∫ t+ε

0

(t+ ε− s)α−1k(s)ds−
∫ t

0

(t− s)α−1k(s)ds

=

∫ ε

0

(t+ ε− s)α−1k(s)ds+

∫ t+ε

ε

(t+ ε− s)α−1k(s)ds

−
∫ t

0

(t− s)α−1k(s)ds.

By putting y = s− ε, ones get

Σ(k)(t+ ε)− Σ(k)(t) =

∫ ε

0

(t+ ε− s)α−1k(s)ds+

∫ t

0

(t− y)α−1k(y + ε)dy

−
∫ t

0

(t− s)α−1k(s)ds

=

∫ ε

0

(t+ ε− s)α−1k(s)ds+

∫ t

0

(t− s)α−1(k(s+ ε)− k(s))ds

≥ 0,

thanks to the fact that k is a continuous and nondecreasing function. The proof is
complete. �

Lemma 2.2. Assume that A is the generator of a C0-semigroup {S(t)}t≥0 in X such
that ‖S(t)‖ ≤M for t ≥ 0. Then

i) ‖Sα(t)‖ ≤M , ‖Pα(t)‖ ≤ M
Γ(α) for all t ≥ 0;

ii) If S(t) is compact for t > 0, then Sα(t) and Pα(t) are also compact for t > 0;
iii) If S(·) is norm-continuous, so are Sα(·) and Pα(·);
iv) If the semigroup S(·) generated by A is exponential stable, i.e.,
‖S(t)‖ ≤Me−βt for some β > 0, then

‖Sα(t)‖ ≤MEα,1(−βtα),

‖Pα(t)‖ ≤MEα,α(−βtα),

for all t ≥ 0.
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Proof. The proof of the first and second statements can be found in [19], while the
third statement was proved in [16]. The last one was shown in [2]. �

It is known that, if A is a bounded operator then (see, e.g., [9])

Sα(t) = Eα,1(tαA), Pα(t) = Eα,α(tαA),

where the series are understood in L(X).
In our proofs, the following inequalities will be used.

Lemma 2.3. ([18, Corollary 2]) Suppose that β > 0, b ≥ 0 and σ is a nonnegative,
nondecreasing and locally integrable function on [0, T ]. If v is nonnegative and locally
integrable on [0, T ] with

v(t) ≤ σ(t) + b

∫ t

0

(t− s)β−1v(s)ds, ∀t ∈ [0, T ],

then v(t) ≤ σ(t)Eβ,1(bΓ(β)tβ) for all t ∈ [0, T ].

Lemma 2.4. ([17, Lemma 2.1]) If the continuous function w(t) ≥ 0 for t ∈ R, and
satisfies that w(t) ≤ c1 + c2 sup

t−τ(t)≤ξ≤t
w(ξ), t ∈ [0,+∞),

w(t) = |ψ(t)|, t ∈ [−σ, 0],

where ψ(t) is a bounded and continuous function and σ is a given positive constant.
The coefficients satisfy that c1 ≥ 0 and 0 < c2 < 1, and −σ ≤ t− τ(t) ≤ t. Let

M0 = sup
−σ≤ξ≤0

|ψ(ξ)|.

Then we have
w(t) ≤ c1

1− c2
+M0, t ≥ 0.

Further, if lim
t→+∞

(t− τ(t)) = +∞, then for any given ε > 0, there exists

t∗ = t∗(M0, ε) > t0

such that
w(t) ≤ c1

1− c2
+ ε, t ≥ t∗.

Lemma 2.5. ([7, Lemma 13]) Let a bounded measurable function w : [0, T ] → R
satisfy the integral inequality

w(t) ≤ Eα,1(−ηtα)w(0) +

∫ t

0

(t− s)α−1Eα,α(−η(t− s)α) (K +mw(s)) ds,

where K ≥ 0, 0 < m < η. Then

w(t) ≤ Eα,1 ((−η +m)tα)w(0) +K

∫ t

0

(t− s)αEα,α ((−η +m)(t− s)α) ds.

Let BC(R+) be the space of continuous and bounded functions on R+. We are now
in a position to prove the following Halanay type inequality, which play an important
role in our analysis.
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Proposition 2.6 (Halanay type inequality). Let v be a continuous and nonnegative
function satisfying

v(t) ≤ Eα,1(−ηtα)v0

+

∫ t

0

(t− s)α−1Eα,α(−η(t− s)α)

(
κ+ ` sup

ξ∈[s−h,s]
v(ξ)

)
ds, t ≥ 0,

v(ξ) = ψ(ξ), ξ ∈ [−h, 0],

for η > 0, κ ≥ 0, ` > 0 such that κ+ ` < η, ψ ∈ C([−h, 0];R+). Then

v(t) ≤ η − κ
η − κ− `

v0 + sup
ξ∈[−h,0]

ψ(ξ). (2.6)

Proof. We first claim that, if w ∈ C([−h,∞);R+) satisfies

w(t) ≤ a(t) + b sup
ξ∈[−h,t]

w(ξ), t > 0

w(ξ) = ψ(ξ), ξ ∈ [−h, 0],

where a(·) is nondecreasing and 0 < b < 1, then

w(t) ≤ (1− b)−1a(t) + sup
ξ∈[−h,0]

ψ(ξ), for all t > 0. (2.7)

The reason of this assertion is similar to that in Lemma 2.4. Using the same arguments
as in Lemma 2.5, we get

v(t) ≤ Eα,1(−(η − `)tα)v0

+ κ sup
ξ∈[−h,t]

v(ξ)

∫ t

0

(t− s)α−1Eα,α(−(η − `)(t− s)α)ds. (2.8)

≤ Eα,1(−(η − `)tα)v0 +
κ

η − `
sup

ξ∈[−h,t]
w(ξ)(1− Eα,1(−(η − `)tα)) (2.9)

≤ v0 +
κ

η − `
sup

ξ∈[−h,t]
w(ξ), (2.10)

thanks to the fact that Eα,1(−(η − `)tα) ≤ 1, and the relation

d

dt
Eα,1(−γtα) = −γtα−1Eα,α(−γtα), ∀γ > 0, t > 0.

Hence we are able to apply (2.7) with

a(t) = v0, b =
κ

η − `
< 1,

to conclude that v(·) satisfies inequality (2.6). The proof is complete. �

2.2. Measures of compactness and condensing maps. Let E be a Banach space.
Denote by B(E) the collection of nonempty bounded subsets of E. We will use the
following definition of measure of noncompactness (see, e.g. [8]).
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Definition 2.2. A function ψ : B(E) → R+ is called a measure of noncompactness
(MNC) on E if

ψ(co Ω) = ψ(Ω) for every Ω ∈ B(E),

where co denotes the closure of convex hull in E. An MNC ψ is said to be:

(i) monotone if for each Ω0,Ω1 ∈ B(E) such that Ω0 ⊆ Ω1, we have
ψ(Ω0) ≤ ψ(Ω1);

(ii) nonsingular if ψ({a} ∪ Ω) = ψ(Ω) for any a ∈ E,Ω ∈ B(E);
(iii) algebraically semi-additive if ψ(Ω0 + Ω1) ≤ ψ(Ω0) + ψ(Ω1) for any

Ω0,Ω1 ∈ B(E);
(iv) regular if ψ(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC satisfying all properties, is the Hausdorff MNC
χ(·) defined as follows

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

We also define two useful MNCs on E = C([0, T ];X).
For given L > 0 and D ⊂ C([0, T ];X), put

ωT (D) = sup
t∈[0,T ]

e−Ltχ(D(t)), where D(t) := {x(t) : x ∈ D}, (2.11)

modT (D) = lim
δ→0

sup
x∈D

max
t,s∈[0,T ],|t−s|<δ

‖x(t)− x(s)‖. (2.12)

According to [8, Example 2.1.2, 2.1.4], ωT and modT are MNCs which satisfy all prop-
erties stated in Definition 2.2, except for regularity. In addition, for D ⊂ C([0, T ];X),

• ωT (D) = 0 iff D(t) is relatively compact for all t ∈ [0, T ];
• modT (D) = 0 iff D is equicontinuous.

Let

χT (D) = ωT (D) + modT (D),

then χT is a regular MNC on C([0, T ];X).
Indeed, if χT (D) = 0 then ωT (D) = modT (D) = 0. This implies thatD(t) is relatively
compact for all t ∈ [0, T ] and D is equicontinuous. Hence D is relatively compact due
to the Arzelà-Ascoli theorem.

We are now in a position to recall a basic estimate based on the Hausdorff MNC.

Proposition 2.7. ([3]) Let D ⊂ L1(0, T ;X) be such that

(i) D is integrably bounded,
(ii) χ(D(t)) ≤ q(t) for a.e. t ∈ [0, T ], where q ∈ L1(0, T ). Then

χ

(∫ t

0

D(s) ds

)
≤ 4

∫ t

0

q(s) ds,

here

∫ t

0

D(s) ds =
{∫ t

0

ζ(s) ds : ζ ∈ D
}

.

In order to prove the solvability of our problem, we make use of the fixed point
principle for condensing maps.
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Definition 2.3. A continuous map F : Z ⊆ E → E is said to be condensing with
respect to an MNC ψ (ψ−condensing) if for any bounded set Ω ⊂ Z, the relation

ψ(Ω) ≤ ψ(F(Ω))

implies the relative compactness of Ω.

Let ψ be a monotone nonsingular MNC in E. We have the following fixed point
principle.

Theorem 2.8. ([8, Corollary 3.3.1]) Let M be a bounded convex closed subset of
E and let F : M → M be a ψ-condensing map. Then Fix(F) := {x = F(x)} is
nonempty and compact set.

3. Existence results

Consider the operator W : L1(0, T ;X)→ C([0, T ];X) given by

W(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (3.1)

Then the solution operator has the following representation

F(v)(t) = Sα(t)ϕ(0) +W ◦Nf (v)(t),

where W is defined by (3.1) and Nf (v)(t) = f(t, v[ϕ]t) for v ∈ Cϕ. The following
results was proved in [11].

Proposition 3.1. Let S(·) be norm continuous, i.e., the map t 7→ S(t) is continuous
on (0,∞). The operator W defined by (3.1) has the following properties:

(1) If Ω ⊂ L1(0, T ;X) is integrably bounded, then W(Ω) is equicontinuous in
C([0, T ];X). In addition, if A is a generator of a compact C0-semigroup,
then W(Ω) is relatively compact in C([0, T ];X).

(2) If {fn} ⊂ L1(0, T ;X) is a semicompact sequence (i.e it is integrably bounded
and the set {fn(t)}∞n=1 is relatively compact for almost every t ∈ [0;T ]) then
{W(fn)} is relatively compact in C([0, T ];X), moreover the weak convergence
fn ⇀ f in L1(0, T ;X) implies the strong convergence W(fn) → W(f) in
C([0, T ];X).

Concerning the formulation of problem (1.1)-(1.2), we give the following assump-
tions.

(A) The C0-semigroup {S(t)}t≥0 generated by A is norm-continuous and globally
bounded, i.e., there is M ≥ 1 such that

‖S(t)x‖ ≤M‖x‖,∀t ≥ 0,∀x ∈ X.
(F) The nonlinear function f : [0, T ]× Ch → X is continuous and satisfies:

(1) the growth condition

‖f(t, v)‖ ≤ m(t)Ψ(‖v‖Ch),∀t ∈ [0, T ], v ∈ Ch,
where Ψ : R+ → R+ is a continuous and nondecreasing function and
m : [0, T ]→ R+ is a continuous function;
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(2) if S(·) is non-compact then for any bounded set Ω ⊂ Ch, we have

χ(f(t,Ω)) ≤ k(t) sup
θ∈[−h,0]

χ(Ω(θ)),

where k ∈ L1(0, T ) is a nonnegative function.

Remark 3.1. Let us mention that the assumption (F)(2) will be satisfied if f is
completely continuous or Lipschitzian with constant k (see [1]).

The next lemma will be used to show the condensivity of F .

Lemma 3.2. Let the hypotheses (A) and (F) hold. Then

χT (F(Ω)) ≤
(

4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)ds
)
χT (Ω),

for all bounded sets Ω ⊂ Cϕ.

Proof. Let Ω ⊂ Cϕ be a bounded set. For v ∈ Ω, we recall that

F(v)(t) = Sα(t)ϕ(0) +W ◦Nf (v)(t),

where

W ◦Nf (v)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s, v[ϕ]s)ds.

By (F)(1), Nf (Ω) is integrably bounded. Thanks to Proposition 3.1, we have W ◦
Nf (Ω) is an equicontinuous set in Cϕ. Therefore

modT (W ◦Nf (Ω)) = 0. (3.2)

We now evaluate ωT (W ◦ Nf (Ω)). If A is a generator of a compact C0-semigroup,
then W ◦Nf (Ω) is compact according to Proposition 3.1. This implies

ωT (W ◦Nf (Ω)) = sup
t∈[0,T ]

χ(W ◦Nf (Ω)(t)) = 0.

In the opposite case, using (F)(2), we get

χ(W ◦Nf (Ω)(t)) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χ(f(s,Ω[ϕ]s))ds

≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖k(s) sup
θ∈[−h,0]

χ(Ω[ϕ](s+ θ))ds

≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖k(s) sup
r∈[0,s]

χ(Ω(r))ds,

here we use the fact that Ω[ϕ](r) = {ϕ(r)} for r ∈ [−h, 0]. It follows that

e−Ltχ(F(Ω)(t)) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)e−Lsχ(Ω(s))ds.

So

ωT (F(Ω)) ≤

(
4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)ds

)
ωT (Ω). (3.3)
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Combining (3.2) and (3.3), we have the conclusion of the lemma. �

We now choose L in (2.11) such that

4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)ds < 1.

Then by Lemma 3.2, the solution operator F is χT -condensing. Denote by | · |∞ the
supremum norm in C([0, T ];R). The following theorem states the result of solvability
for our problem.

Theorem 3.3. Let the hypotheses (A) and (F) hold. If there exists R > 0 such that

M‖ϕ‖Ch +M |Iα0 m|∞Ψ(‖ϕ‖Ch +R) ≤ R, (3.4)

then the solution set to (1.1)-(1.2) is nonempty.

Proof. In oder to apply Theorem 2.8, it remains to show that F(BR) ⊂ BR, where
BR is the closed ball in Cϕ centered at origin with radius R. Let v ∈ BR, we have

‖F(v)(t)‖ ≤ ‖Sα(t)‖‖ϕ‖Ch +

∫ t

0

(t− s)α−1‖Pα(t− s)‖‖f(s, v[ϕ]s)‖ds

≤M‖ϕ‖Ch +
M

Γ(α)

∫ t

0

(t− s)α−1m(s)Ψ(‖v[ϕ]s‖Ch)ds

≤M‖ϕ‖Ch +MIα0 m(t)Ψ(‖ϕ‖Ch +R).

Then it follows that

‖F(v)‖Cϕ ≤M‖ϕ‖Ch +M |Iα0 m|∞Ψ(‖ϕ‖Ch +R)

≤ R.

The proof is complete. �

Remark 3.2. If Ψ possesses a polynomial growth, then the condition (3.4) takes
place provided that ‖ϕ‖Ch as well as |Iα0 m|∞ are small. In particular, if Ψ(r) = rq for
q > 1, then (3.4) is testified with small initial data, that is, the condition on |Iα0 m|∞
is relaxed.

4. weak asymptotic stability

In order to analyze the weak asymptotic stability of solutions of (1.1), we replace
the hypotheses (A), (F) by the following ones.

(A*) The semigroup S(·) generated by A is norm-continuous and there exist M ≥
1, β > 0 such that

‖S(t)x‖ ≤Me−βt‖x‖,∀t ≥ 0,∀x ∈ X.
(F*) The nonlinear function f : [0,+∞)× Ch → X is continuous and satisfies:

(1) the growth condition

‖f(t, v)‖ ≤ m(t)‖v‖Ch ,∀t ≥ 0, v ∈ Ch,
where m ∈ L∞(R+) and β −M |m|∞ > 0.
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(2) there exists a function k ∈ L∞(R+) such that, for every bounded set
D ⊂ Ch we have χ(f(t,D)) ≤ k(t) sup

s∈[−h,0]

χ(D(s)) a.e. t ∈ R+.

In order to prove the weak attractivity of zero solution, we make use of the following
properties

Lemma 4.1. Let the hypotheses (A*) and (F*(1)) holds. Then

lim
T→∞

sup
t≥T

∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds = 0, (4.1)

` = sup
t≥0

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds < 1, (4.2)

for some σ ∈ (0, 1).

Proof. Using Lemma 2.2(iv), we have∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds ≤ |m|∞M
∫ σt

0

(t− s)α−1Eα,α(−β(t− s)α)ds

= |m|∞M
∫ t

(1−σ)t

τα−1Eα,α(−βτα)dτ.

Then

sup
t≥T

∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds ≤ |m|∞M
∫ ∞

(1−σ)T

τα−1Eα,α(−βτα)dτ

→ 0 as T →∞.

This ensure (4.1). To testify (4.2), we see that∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds ≤ |m|∞M
∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)ds

≤ |m|∞M
β

[1− Eα,1(−βtα)] < 1,

thanks to (F*(1)). Thus (4.2) is fulfilled. �

Consider the following function space

BC0(R+;X) = {u ∈ C([0,+∞);X) : lim
t→∞

u(t) = 0}, (4.3)

endowed with the norm

‖u‖BC = sup
t≥0
‖u(t)‖.

Then it is easily seen that BC0(R+;X) is a Banach space. We now define an
MNC on this space. We make use of the restriction operator πT : BC0(R+;X) →
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C([0, T ];X) defined by πT (u) = u|[0,T ]. Let Ω be a bounded set in BC0(R+;X). Put

χ∞(Ω) = sup
T>0

ωT (πT (Ω)) + sup
T>0

modT (πT (Ω)), (4.4)

d∞(Ω) = lim
T→∞

sup
u∈Ω

sup
t≥T
‖u(t)‖, (4.5)

χ∗(Ω) = χ∞(Ω) + d∞(Ω), (4.6)

where ωT and modT is given by (2.11) and (2.12), respectively. Then one can check
that χ∞, d∞ and χ∗ are monotone, nonsingular MNCs on BC0(R+;X). The following
lemma tests the compactness of a subset in BC0(R+;X).

Lemma 4.2. [4] Let Ω ⊂ BC0(R+;X) be a bounded set such that χ∗(Ω) = 0. Then
Ω is relatively compact in BC0(R+;X).

We consider the solution operator F on the space

BC0,ϕ = {v ∈ BC0(R+;X) : v(0) = ϕ(0)},

with the norm

‖v‖∞ = sup
t≥0
‖v(t)‖.

As a consequence, we have the following result.

Theorem 4.3. Let the hypotheses (A*) and (F*) holds. Then the zero solution of
the problem (1.1)-(1.2) is weak asymptotically stable.

Proof. The idea for proof of this theorem is that, we testify the existence of a solution
in BC0,ϕ, which implies the weak attractivity of the zero solution. Then the conclusion
follows after verifying the stability of this solution. Let us divide the proof into two
steps.
Step 1. We prove the existence of a solution in BC0,ϕ. Considering the MNC ωT
defined in (2.11), we choose L > 0 such that

`+ 4 sup
t≥0

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)ds < 1,

where ` is defined by (4.2). Let Ω be a bounded set in BC0,ϕ, using the same estimates
as in the proof of Lemma 3.2, we have

χ∞(F(Ω)) ≤
(

4 sup
t≥0

∫ t

0

(t− s)α−1e−L(t−s)‖Pα(t− s)‖k(s)ds

)
χ∞(Ω). (4.7)

We are in a position to estimate d∞(F(Ω)). For u ∈ Ω, put

z = F(u) and R = sup
u∈Ω
‖u‖BC + ‖ϕ‖Ch .

Then

‖z(t)‖ ≤ ‖Sα(t)‖‖ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s) sup
ρ∈[−h,0]

‖u(s+ ρ)‖ds,∀t ≥ 0.
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For given T > 0, there exists T1 > T such that

σt− h ≥ T for all t > T1.

Thus for t > T2 := σ−1T1 > T , we get

‖z(t)‖ ≤ ‖Sα(t)‖‖ϕ(0)‖+

∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s) sup
ρ∈[−h,0]

‖u(s+ ρ)‖ds

+

∫ t

σt

(t− s)α−1‖Pα(t− s)‖m(s) sup
ρ∈[−h,0]

‖u(s+ ρ)‖ds

≤ ‖Sα(t)‖‖ϕ(0)‖+R

∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

+ sup
ξ≥T
‖u(ξ)‖

∫ t

σt

(t− s)α−1‖Pα(t− s)‖m(s)ds.

This implies

sup
u∈D

sup
t≥T2

‖z(t)‖ ≤ sup
t≥T2

‖Sα(t)‖‖ϕ(0)‖

+R sup
t≥T2

∫ σt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

+

(
sup
u∈D

sup
ξ≥T
‖u(ξ)‖

)
sup
t≥T2

∫ t

σt

(t− s)α−1‖Pα(t− s)‖m(s)ds.

Let T →∞ then T2 →∞ and we obtain

d∞(F(Ω)) ≤ ` · d∞(Ω), (4.8)

thanks to the relations (4.1)-(4.2) and the fact that

sup
t≥T2

‖Sα(t)‖‖ϕ(0)‖ ≤M sup
t≥T2

Eα,1(−βtα)‖ϕ(0)‖ → 0 as T2 →∞.

Combining (4.7)-(4.8), we ensure that the solution operator F is χ∗-condensing.
It suffices to prove that F(BR) ⊂ BR for some R > 0, here BR is the closed ball
with center at origin and radius R. Assume to the contrary that for each n ∈ N there
exists vn ∈ BC0,ϕ with ‖vn‖∞ ≤ n such that ‖zn‖∞ > n for some zn = F(vn). We
have

zn(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s, vn[ϕ]s)ds.
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Then

‖zn(t)‖ ≤ ‖Sα(t)‖‖ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)‖‖f(s, vn[ϕ]s)‖ds

≤ ‖Sα(t)‖‖ϕ‖Ch +

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)‖vn[ϕ]s‖ds

≤ ‖Sα(t)‖‖ϕ‖Ch

+

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)

(
‖ϕ‖Ch + sup

ρ∈[0,s]

‖vn(ρ)‖

)
ds

≤ ‖Sα(t)‖‖ϕ‖Ch + ‖ϕ‖Ch
∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

+ n

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

= n

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds+G(t),

where

G(t) = ‖Sα(t)‖‖ϕ‖Ch + ‖ϕ‖Ch
∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds,

which is uniformly bounded, thanks to Lemma 2.2(iv) and the fact that m ∈ L1(R+).
Then

1 <
1

n
sup
t≥0
‖zn(t)‖ ≤ sup

t≥0

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds+
1

n
sup
t≥0

G(t).

Passing to the limit in the last inequality as n → ∞, we get a contradiction with
(4.2).
Step 2. We check that the zero solution is stable by showing that for all u ∈ Σ(ϕ),
‖ut‖∞ ≤ Θ ‖ϕ‖Ch for some Θ > 0. Indeed, the following estimate holds

‖u(t)‖ ≤ ‖Sα(t)‖‖ϕ(0)‖+

∫ t

0

(t− s)α−1‖Pα(t− s)‖‖f(s, u[ϕ]s)‖ds

≤MEα,1(−βtα)‖ϕ(0)‖

+M

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)m(s) sup
ρ∈[s−h,s]

‖u(ρ)‖ds

Thus

‖u(t)‖
M

≤ Eα,1(−βtα)‖ϕ(0)‖

+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)M |m|∞ sup
ρ∈[s−h,s]

‖u(ρ)‖
M

ds,∀t > 0.

Applying Proposition 2.6, we obtain

‖u(t)‖
M

≤ β

β −M |m|∞
‖ϕ(0)‖+

1

M
sup

ξ∈[−h,0]

‖ϕ(ξ)‖,∀t > 0.
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This implies

‖u(t)‖ ≤
(

Mβ

β −M |m|∞
+ 1

)
‖ϕ‖Ch ,∀t > 0.

Hence

‖ut‖∞ ≤ ‖ϕ‖Ch + sup
ξ∈[0,t]

‖u(ξ)‖

≤ ‖ϕ‖Ch +

(
Mβ

β −M |m|∞
+ 1

)
‖ϕ‖Ch

≤
(

Mβ

β −M |m|∞
+ 2

)
‖ϕ‖Ch ,∀t > 0.

The proof is complete. �

5. Application

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We consider the
following problem

∂αt u(t, x) = ∆xu(t, x) + k(t)f̃(x, u(t− h, x)), t ≥ 0, (5.1)

u(t, x) = 0, x ∈ ∂Ω, t > 0, (5.2)

u(s, x) = ϕ(s, x), x ∈ Ω, s ∈ [−h, 0], (5.3)

where α ∈ (0, 1), ∂αt stands for the Caputo fractional derivative of order α, f̃ : R2 → R
is a continuous function and k ∈ L2(Ω).

Let

X = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω},
endowed with the norm ‖v‖ = sup

x∈Ω

|v(x)|. Put A = ∆ with the domain

D(A) = {v ∈ C0(Ω) ∩H1
0 (Ω) : ∆v ∈ C0(Ω)}.

We denote the space Ch by C([−h, 0];X) and define f : R+ × Ch → C0(Ω) as follows

f(t, w)(x) = k(t)f̃(x,w(−h, x)), w ∈ Ch.
Then system (5.1)-(5.3) is in the form of the abstract model (1.1)-(1.2). It is known
that A generates a contraction C0-semigroup {S(t)}t≥0 on X, i.e., ‖S(t)‖ ≤ 1,∀t ≥ 0
(see [15]). In addition, by [5, Theorem 2.3], S(·) is a compact semigroup. Hence, (A)
is fulfilled.

It should be noted that, for the contraction semigroup S(·), either ‖S(t)‖ = 1 for
all t ≥ 0 or S(·) is exponentially stable. According to [6, Theorem 4.2.2], we have

‖S(t)‖ ≤Me−λ1t, M = exp

(
λ1|Ω|2/N

4π

)
,

where λ1 is the first eigenvalue of (−∆) in H1
0 (Ω), that is

λ1 = inf

{∫
Ω
|∇u|2dx∫
Ω
u2dx

: u ∈ H1
0 (Ω), u 6= 0

}
,
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and |Ω| is the volume of Ω. Therefore (A*) is satisfied.

Regarding the nonlinearity f̃ : Ω× R→ R, we assume that

|f̃(x, z)| ≤ κ(x)|z|, κ ∈ X,

for all x ∈ Ω, z ∈ R. Then we have

‖f(t, w)‖ ≤ k(t)‖κ‖‖w(−h, ·)‖
≤ k(t)‖κ‖‖w‖Ch ,

for all w ∈ Ch.
One can check that f is continuous, thanks to the continuity of f̃ . Hence f sat-

isfies (F*). Using Theorem 4.3, we conclude that the zero solution to (5.1) is weak
asymptotically stable.
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