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1. Introduction

Caristi’s fixed point theorem [10] is one of the most studied and applied generaliza-
tions of Banach fixed point theorem, and it has been subject to many generalizations
[6, 12, 13, 18, 21, 25, 26, 29], which in particular include the result known as Downing-
Kirk’s fixed point theorem [14]. Also it has been studied on various distance spaces
such as partial metric spaces [2, 3, 17, 28], pseudometric spaces [11], quasicone met-
ric spaces [1], modular ultrametric spaces [4], Polish spaces [8], Kasahara spaces [9],
generalized Kasahara spaces [15] and metric spaces with a graph [5].

On the other side, in 2016, the notion of bipolar metric was introduced as a gen-
eralized distance, which provides a framework to study distances between dissimilar
objects [22] and Banach’s and Kannan’s fixed point theorems were generalized for
bipolar metric spaces. Some recent study have been carried on this area, including
coupled fixed point theorems [16, 23], tripled fixed point theorems [27], common fixed
point theorems [19], fixed point theorems for convex Reich contractions [7], hybrid pair
of mappings [20] and multivalued mappings [24] with some applications to nonlinear
mapping theory, integral equations and homotopy theory [19, 20, 25].

In this paper, we state and prove various extensions of Caristi’s and Downing-Kirk’s
fixed point theorems on bipolar metric spaces and illustrate these results.
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2. Preliminaries

Here we quickly reintroduce bipolar metric spaces and related notations used
throughout the paper. More detailed explanations can be found in [22].

Let X and Y be nonempty sets and d : X × Y → R+ be a function satisfying the
properties

(B0) d (x, y) = 0 implies x = y,
(B1) x = y implies d (x, y) = 0,
(B2) d (u, v) = d (v, u),
(B3) d(x, y) ≤ d(x, y′) + d(x′, y′) + d(x′, y),

for all x, x′ ∈ X, y, y′ ∈ Y and u, v ∈ X ∩ Y , where R+ is the set of non-negative real
numbers. Then, we call d a bipolar metric on (X,Y ), and the triple (X,Y, d) is called
a bipolar metric space.

The notation f : (X1, Y1) ⇒ (X2, Y2) means that X1, Y1, X2, Y2 are sets and
f : X1 ∪ Y1 → X2 ∪ Y2 is a function such that f(X1) ⊆ X2 and f(Y1) ⊆ Y2. In this
case f is called a covariant map, or map for short, from the pair (X1, Y1) to (X2, Y2).
On the other hand, if f(X1) ⊆ Y2 and f(Y1) ⊆ X2, then we use the notation f :
(X1, Y1)↘↗ (X2, Y2), or alternatively f : (X1, Y1) � (X2, Y2), and call f a contravari-
ant map from (X1, Y1) to (X2, Y2). To emphasize bipolar metric space structures if
needed, we write f : (X1, Y1, d1) ⇒ (X2, Y2, d2) and f : (X1, Y1, d1)↘↗ (X2, Y2, d2).
Also, taking into account that every metric space (X, d) can be regarded as a bipo-
lar metric space (X,X, d), instead of f : (X1, Y1, d1) ⇒ (X,X, d) we shortly write
f : (X1, Y1, d1) ⇒ (X, d) or f : (X1, Y1) ⇒ X.

A covariant map f : (X1, Y1, d1) ⇒ (X2, Y2, d2) is said to be left-continuous at
x0 ∈ X1 if and only if for every ε > 0, there exists a δ = δ(x0, ε) > 0, such that
d1(x0, y) < δ implies d2(f(x0), f(y)) < ε for all y ∈ Y1. It is right-continuous at
y0 ∈ Y1 if and only if for every ε > 0, there exists a δ = δ(y0, ε) > 0, such that
d1(x, y0) < δ implies d2(f(x), f(y0)) < ε for all x ∈ X1. f is called continuous, if it is
left-continuous at each x ∈ X1 and right-continuous at each y ∈ Y1.

In a bipolar metric space (X,Y, d), points of X, Y and X ∩ Y are respectively
called left points, right points and central points. A sequence of left (right) points is
called a left (right) sequence.

In the context of bipolar metric spaces, the generic term “sequence” is used only
for a left or a right sequence, that is (un) is called a sequence on a bipolar metric
space (X,Y, d) if and only if (un) is a sequence on the set X ∪ Y and either {un :
n ∈ N} ⊆ X or {un : n ∈ N} ⊆ Y . A left sequence (xn) is said to be convergent
to a right point y, iff lim

n→∞
d(xn, y) = 0; and a right sequence (yn) converges to a

left point x provided that lim
n→∞

d(x, yn) = 0. It was shown in [22] that a covariant

map f : (X1, Y1, d1) ⇒ (X2, Y2, d2) is continuous iff (un) → u on (X1, Y1, d1) implies
(f(un)) → f(u) on (X2, Y2, d2). Without additional conditions, limit of a sequence
on a bipolar metric space, need not to be unique.

A sequence (xn, yn) on the set X×Y is called a bisequence on (X,Y, d). If (xn)→ y
and (yn) → x, then the bisequence (xn, yn) is said to be convergent. In particular if
(xn) → u, (yn) → u we say that (xn, yn) biconverges to u and we use the notation
(xn, yn) ⇒ u.
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A bisequence (xn, yn) having the property lim
n,m→∞

d(xn, ym) = 0 is called a Cauchy

bisequence. A bipolar metric space is complete, if every Cauchy bisequence converges
on it. It is known that every convergent Cauchy bisequence is biconvergent [22].

3. Main results

Definition 3.1. Let (X,Y, d) be a bipolar metric space. A set A ⊆ X ∪ Y is said to
be closed provided that every limit of any convergent sequence (un) such that un ∈ A
for all n ∈ N, lies in A.

Definition 3.2. Given two bipolar metric spaces (X1, Y1, d1) and (X2, Y2, d2). The
graph of a covariant or a contravariant map g from (X1, Y1) to (X2, Y2) is de-
fined as the set {(u, g(u)) : u ∈ X1 ∪ Y1}. Moreover, consider the bipolar met-
ric space (X1 × X2, Y1 × Y2, ℘), where ℘ : (X1 × X2) × (Y1 × Y2) → R+ is de-

fined as ℘((x1, x2), (y1, y2)) =
√
d1(x1, y1)2 + d2(x2, y2)2 for all (x1, x2) ∈ X1 × X2,

(y1, y2) ∈ Y1 × Y2 and the bipolar metric space (X1 × Y2, Y1 × X2, ℘̄), where
℘̄ : (X1×Y2)×(Y1×X2)→ R+ is defined as ℘̄((x1, y2), (y1, x2)) = ℘((x1, x2), (y1, y2)).
A covariant map g : (X1, Y1, d1) ⇒ (X2, Y2, d2) is said to have closed graph, if its
graph is closed in the bipolar metric space (X1 × X2, Y1 × Y2, ℘), and a contravari-
ant map f : (X1, Y1, d1)↘↗ (X2, Y2, d2) has closed graph if its graph is closed in
(X1 × Y2, Y1 ×X2, ℘̄).

From Definitions 3.1 and 3.2, we deduce that a covariant or contravariant map g
has closed graph, if and only if (un)→ u and (g(un))→ v imply v = g(u).

Definition 3.3. Let (X,Y, d) be bipolar metric space.
A map ϕ : (X,Y ) ⇒ C ⊆ R+ is said to be lower semicontinuous, if (un) → u on

(X,Y, d) implies ϕ(u) ≤ lim inf
n→∞

ϕ(un).

Theorem 3.4. Let (X,Y, d) be a complete bipolar metric space, ϕ : (X,Y ) ⇒ R+

be lower semicontinuous. If a contravariant map T : (X,Y )↘↗ (X,Y ) satisfies the
inequalities

d(x, Tx) ≤ ϕ(x)− ϕ(Tx), for all x ∈ X, (3.1a)

d(Ty, y) ≤ ϕ(y)− ϕ(Ty), for all y ∈ Y, (3.1b)

then it has a fixed point.

Proof. Define the sets

P (x) = {y ∈ Y : d(x, y) ≤ ϕ(x)− ϕ(y)} (3.2a)

R(y) = {x ∈ X : d(x, y) ≤ ϕ(y)− ϕ(x)} (3.2b)

for each x ∈ X and each y ∈ Y . These sets are nonempty, since Tx ∈ P (x) by (3.1a)
and Ty ∈ R(y) by (3.1b) for each x ∈ X, y ∈ Y . So we can define the nonnegative
real numbers

α(x) = inf{ϕ(y) : y ∈ P (x)} (3.3a)

β(y) = inf{ϕ(x) : x ∈ R(y)}. (3.3b)
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for each x ∈ X, y ∈ Y . Then by (3.1a) and (3.1b), we have

0 ≤ α(x) ≤ ϕ(Tx) ≤ ϕ(x)− d(x, Tx) ≤ ϕ(x) (3.4a)

0 ≤ β(y) ≤ ϕ(Ty) ≤ ϕ(y)− d(Ty, y) ≤ ϕ(y). (3.4b)

Let x1 ∈ X. For each positive integer k, we select

yk ∈ P (xk), such that ϕ(yk) ≤ α(xk) +
1

k
, (3.5a)

xk+1 ∈ R(yk), such that ϕ(xk+1) ≤ β(yk) +
1

k
. (3.5b)

Thus we have a bisequence (xn, yn) on (X,Y, d). Then,

d(xk, yk) ≤ ϕ(xk)− ϕ(yk) (3.6a)

d(xk+1, yk) ≤ ϕ(yk)− ϕ(xk+1) (3.6b)

and

α(xk) ≤ ϕ(yk) ≤ α(xk) +
1

k
(3.7a)

β(yk) ≤ ϕ(xk+1) ≤ β(yk) +
1

k
(3.7b)

by (3.5a), (3.5b), (3.3a) and (3.3b). Moreover (3.6a) and (3.6b) imply that

ϕ(xk+1) ≤ ϕ(yk) ≤ ϕ(xk) (3.8)

for each positive integer k. Now we have non-increasing sequences (ϕ(xn)), (ϕ(yn)),
bounded by 0 by the definition of ϕ, and hence they converge. Let c ∈ R be the limit
of (ϕ(xn)). Inequalities (3.7a) and (3.8) yield

lim
n→∞

ϕ(xn) = lim
n→∞

ϕ(yn) = lim
n→∞

α(xn) = c. (3.9)

Since (ϕ(xn)) and (ϕ(yn)) are non-increasing, for every given positive integer k, we
can find a n0 = n0(k) ∈ N such that ϕ(xn) ≤ c+ 1

k and ϕ(yn) ≤ c+ 1
k for all integers

n ≥ n0. In particular for all integers m,n ≥ n0

c ≤ ϕ(xn) ≤ c+
1

k
and c ≤ ϕ(yn) ≤ c+

1

k
(3.10)

gives

|ϕ(xn)− ϕ(yn)| ≤ 1

k
. (3.11)

If m ≥ n, we have

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1) + · · ·+ d(xm, ym)

≤ ϕ(xn)− ϕ(yn) + ϕ(yn)− ϕ(xn+1) + · · ·+ ϕ(xm)− ϕ(ym)

= ϕ(xn)− ϕ(ym) ≤ 1

k

(3.12)
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by (3.6a), (3.6b) and (3.11), and similarly, if n ≥ m,

d(xn, ym) ≤ d(xn, yn−1) + d(xn−1, yn−1) + · · ·+ d(xm+1, ym)

≤ ϕ(yn−1)− ϕ(xn) + ϕ(xn−1)− · · ·+ ϕ(ym)− ϕ(xm+1)

= ϕ(ym)− ϕ(xn) ≤ 1

k
.

(3.13)

Thus lim
m,n→∞

d(xn, ym) = 0, and (xn, yn) is a Cauchy bisequence on the complete

bipolar metric space (X,Y, d), so it converges and hence biconverges to a point u ∈
X ∩ Y .
Since lim

m→∞
ym = u, also lim

m→∞
d(xn, ym) = d(xn, u) for each positive integer n, and in

particular lim inf
m→∞

d(xn, ym) = d(xn, u), and by Definition 3.3, we have

ϕ(u) ≤ lim inf
m→∞

ϕ(ym)

≤ lim inf
m→∞

[ϕ(xn)− d(xn, ym)]

≤ ϕ(xn)− d(xn, u),

(3.14)

that is

d(xn, u) ≤ ϕ(xn)− ϕ(u), (3.15)

which yields u ∈ P (xn), hence α(xn) ≤ ϕ(u) by (3.3a), and since (α(xn)) is a non-
increasing sequence converging to c by (3.9), (3.7a) and (3.8), we have c ≤ ϕ(u).
Moreover by (3.9),

ϕ(u) ≤ lim inf
m→∞

ϕ(ym) = lim
m→∞

ϕ(ym) = c. (3.16)

and so ϕ(u) = c. On the other hand, since u ∈ X ∩ Y and by (3.15) and (3.1a),

d(xn, Tu) ≤ d(xn, u) + d(u, u) + d(u, Tu)

= d(xn, u) + d(u, Tu)

≤ ϕ(xn)− ϕ(u) + ϕ(u)− ϕ(Tu)

= ϕ(xn)− ϕ(Tu),

(3.17)

which imply that Tu ∈ P (xn), hence α(xn) ≤ ϕ(Tu) by (3.3a), and non-increasingly
convergence of (αn) gives c ≤ ϕ(Tu), while (3.1a) implies ϕ(Tu) ≤ ϕ(u) = c. Then
ϕ(Tu) = ϕ(u) = c, and by (3.1a), we have d(u, Tu) = 0, which means that u is a
fixed point of T . �

Example 3.5. Consider the triple (C,D, d), where C is the set of complex numbers,
D is the set of dual numbers and d : C× D→ R+ be defined as

d(a1 + ib1, a2 + εb2) = |a1 − a2|+ |b1|+ |b2|

for all a1 + ib1 ∈ C and a2 + εb2 ∈ D where i is the imaginary unit, ε is the dual
unit and a1, a2, b1, b2 ∈ R. Then (C,D, d) is a complete bipolar metric space. Define
the function ϕ : (C,D) ⇒ R+ as ϕ(a + ib) = ϕ(a + εb) = 3 (|a|+ |b|). Given a
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contravariant map T : (C,D)↘↗ (C,D), with T (a+ ib) = b
2 + εa2 for all a+ ib ∈ C and

T (a+ εb) = b
2 + ia2 for all a+ εb ∈ D. Then, we observe that

d(a+ ib, T (a+ ib)) = |a− b
2 |+ |b|+ |

a
2 | ≤

3
2 (|a|+ |b|) = ϕ(a+ ib)− ϕ(T (a+ ib))

d(T (a+ εb), a+ εb) = | b2 − a|+ |
a
2 |+ |b| ≤

3
2 (|a|+ |b|) = ϕ(a+ εb)− ϕ(T (a+ εb))

Thus by Theorem 3.4, T has a fixed point. We observe that, 0 ∈ C∩D = R is a fixed
point of T .

Now we give two generalizations of Downing-Kirk’s fixed point theorem [14] on
bipolar metric spaces.

Corollary 3.6. Let (X,Y, d) and (X ′, Y ′, d′) be complete bipolar metric spaces and S :
(X,Y, d) ⇒ (X ′, Y ′, d′) be a covariant map with closed graph. Given a contravariant
map T : (X,Y )↘↗ (X,Y ) and a lower semi-continuous function ϕ : (S(X), S(Y )) ⇒
R+, such that there exists a constant λ > 0 satisfying

max{d(x, Tx), λd′(Sx, STx)} ≤ ϕ(Sx)− ϕ(STx), for all x ∈ X, (3.19a)

max{d(Ty, y), λd′(STy, Sy)} ≤ ϕ(Sy)− ϕ(STy), for all y ∈ Y. (3.19b)

Then T has a fixed point.

Corollary 3.6 can be deduced from Theorem 3.4 by letting e : X × Y → R+,
e(x, y) = max{d(x, y), λd′(Sx, Sy)}, which gives a complete bipolar metric on (X,Y ),
and defining a lower semi-continuous mapping ψ : (X,Y ) ⇒ R+ with ψ(z) = φ(Sz)
for each z ∈ X ∪ Y .

Another corollary of Theorem 3.4 can be given as follows.

Corollary 3.7. Let (X,Y, d) and (X ′, Y ′, d′) be complete bipolar metric spaces and S :
(X,Y, d)↘↗ (X ′, Y ′, d′) be a covariant map with closed graph. Given a contravariant
map T : (X,Y )↘↗ (X,Y ), a lower semi-continuous function ϕ : (S(X), S(Y )) ⇒ R+

and a constant λ > 0 such that

max{d(x, Tx), λd′(STx, Sx)} ≤ ϕ(Sx)− ϕ(STx), for all x ∈ X, (3.20a)

max{d(Ty, y), λd′(Sy, STy)} ≤ ϕ(Sy)− ϕ(STy), for all y ∈ Y. (3.20b)

Then T has a fixed point.

Example 3.8. Let Ln(R) and Un(R) be the sets of all n×n lower triangular matrices
over R and all n×n upper triangular matrices over R, respectively. Define a function
d : Ln(R)× Un(R)→ R+ as

d(A,B) =

n∑
i=1

|aii − bii|+
n−1∑
i=1

n∑
j=i+1

|aij |+ |bji|

for all A ∈ Ln(R), B ∈ Un(R), where A = (aij)n×n and B = (bij)n×n. Then
(Ln(R), Un(R), d) becomes a complete bipolar metric space. Also, given a contravari-
ant map T : (Ln(R), Un(R))↘↗ (Ln(R), Un(R)) defined as

TM =

(
mji + δij
i+ j

)
n×n

for all M = (mij)n×n ∈ Ln(R) ∪ Un(R)
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where δij denotes the Kronecker delta, and a covariant map S : (Ln(R), Un(R), d) ⇒
(R, e) defined as

SM =

n∑
i,j=1

∣∣∣∣mij − δij
mij + 1

i+ j

∣∣∣∣ for all M = (mij)n×n ∈ Ln(R) ∪ Un(R),

where e is the Euclidean metric on R, considered as a bipolar metric on (R,R). Noting
that (Mn) → N on (Ln(R), Un(R), d) and (SMn) → v on R implies SN = v, we
observe that S has closed graph, and taking into account that S(Ln(R)∪Un(R)) = R+,
we consider the lower semi-continuous function ϕ : R+ → R+ defined as ϕ(x) = 2x+1.

Now, we get for all A = (aij)n×n ∈ Ln(R)

d(A, TA) = d

((
aij
)
n×n,

(aji + δij
i+ j

)
n×n

)
=

n∑
i=1

∣∣∣∣aii − aii + δii
i+ i

∣∣∣∣+

n−1∑
i=1

n∑
j=i+1

|aij |+
∣∣∣∣aij + δji
j + i

∣∣∣∣
=

n∑
i=1

∣∣∣∣aii − aii + 1

2i

∣∣∣∣+

n−1∑
i=1

n∑
j=i+1

|aij |+
∣∣∣∣ aiji+ j

∣∣∣∣
=

n∑
i=1

∣∣∣∣2i− 1

2i
aii −

1

2i

∣∣∣∣+

n−1∑
j=1

n∑
i=j+1

i+ j + 1

i+ j
|aij |

since aij = 0 for i < j, and

ϕ(SA)− ϕ(STA) = 2

n∑
i,j=1

∣∣∣∣aij − δij aij + 1

i+ j

∣∣∣∣− 2

n∑
i,j=1

∣∣∣∣∣aji + δij
i+ j

− δij
aji+δij
i+j + 1

i+ j

∣∣∣∣∣
= 2

n−1∑
j=1

n∑
i=j+1

i+ j − 1

i+ j
|aij |+ 2

n∑
i=1

2i− 1

2i

(∣∣∣∣2i− 1

2i
aii −

1

2i

∣∣∣∣) .
Since i, j ≥ 1, d(A, TA) ≤ ϕ(SA)− ϕ(STA) and in particular ϕ(SA)− ϕ(STA) ≥ 0.
Moreover, we have d(SA, STA) = |SA − STA| = 1

2 (ϕ(SA) − ϕ(STA)), so that
max{d(A, TA), λe(SA, STA)} ≤ ϕ(SA)− ϕ(STA) for all A ∈ Ln(R) and λ = 2 > 0.
Similarly, it can be shown that max{d(TB,B), λe(STB, SB)} ≤ ϕ(SB) − ϕ(STB)
for all B ∈ Un(R). In this way, Corollary 3.6 implies that T has a fixed point. It can

be observed that C =
(

δij
i+j−1

)
n×n
∈ Ln(R) ∩ Un(R) is such a point.
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