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1. Introduction

In the study of nonlinear operators in ordered Banach spaces having an invariant
cone, it is often convenient to make use of minorants, majorants and the special
concept of the derivatives in order to establish the existence of non-zero fixed points.
Krasnosel’skii has provided in [10] many other interesting fixed point theorems. These
theorems and their generalization state that if such an operator is approximatively
linear at 0 and +∞, and the spectral radius of the linear approximations are oppositely
located with respect to 1, then it has a fixed point. See [Theorems 1 and 2] in [2],
[Theorem 7.4] by Amann [1], and [Theorem 4.9] by Krasnosel’skii [10], where the
maps are supposed to be monotone. The spirit of hypotheses in this work aries in
many results in the literature. Theorem 7.B in [12] state that if a positive mapping
T has a linear minorant having an eigensubsolution, then T has eigensolutions.

The main goal of this paper is to study completely continuous maps in ordered
Banach spaces having an invariant cone and give sufficient conditions on minorants
and majorants which yield the existence of at least one non-zero fixed point. We
are interested in giving some fixed point theorems that complete the results obtained
in [12] motivated by the works cited above and inspired from the works in [3], [5],
[6], [4] and [8] where the main assumptions are on the behavior of the operator at
0 and ∞. More precisely, we will assume that the mapping T has an asymptotically
linear minorant h and has a right differentiable at zero majorant g or vice visa and
existence of the fixed point is obtained under additional conditions about the positive
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spectrums of the derivatives. The proofs are based on the fixed point index theory,
developed in [7] and [9].

The paper is organized as follows. Section 2 gives some preliminaries. Section 3
is devoted to prove new fixed point theorems for positive maps having approximative
minorant and majorant at 0 and ∞ in specific classes of operators. Applications
to the existence of solutions to a φ−laplacian boundary value problem with mixed
boundary conditions are presented in the last section.

2. Abstract Background

We will use extensively in this work cones and the fixed point index theory; so
let us recall some facts related to these two tools. Let X be a real Banach space
endowed with a norm ‖ ·‖, and let L(X) = L(X,X) be the set of all linear continuous
mappings from X into X. A nonempty closed convex subset C of X is said to be a
cone if (tC) ⊂ C for all t ≥ 0 and C ∩ (−C) = {0X} . It is well known that a cone
C induces a partial order in the Banach space X. We write for all x, y ∈ X : x � y
if y − x ∈ C, x ≺ y if y − x ∈ C, y 6= x and x � y if y − x /∈ C. Notations �, �
and � denote respectively the reverse situations. We said that the cone C is solid if
int(C) 6= ∅ and is said to be normal with a constant nC > 0 if for all u, v in C, u � v
implies ‖u‖ ≤ nC ‖v‖ .
Let C be a cone in X and let L : X → X.
Definition 2.1. The mapping L is said to be positive if L (C) ⊂ C. In this case,
a nonnegative constant µ is said to be a positive eigenvalue of L if there exists u ∈
C r {0X} such that Lu = µu.
Definition 2.2. Let A be a nonempty set and let B be an ordered set. A map
g : A → B is said to be a majorant of the map f : A → B if f(x) ≤ g(x) for all
x ∈ X. Minorant is defined by reversing the above inequality sign.
Definition 2.3. Let L : X → X be a positive mapping. L is said to be

i) increasing if for all u, v ∈ X, u � v implies Lu � Lv,
ii) lower bounded on C if L−C = inf {‖Lu‖, u ∈ C and ‖u‖ = 1} > 0,

iii) upper bounded on C if L+
C = sup {‖Lu‖, u ∈ C and ‖u‖ = 1} > 0,

iv) u0-bounded below on C, (for u0 a fixed element of C?), if for every u ∈ C?, a
positive number α and a natural number n can be found such that Lnu � αu0,

v) u0-bounded on C, (for u0 a fixed element of C?), if for every u ∈ C?, a positive
numbers α, β and a natural number n can be found such that αu0 � Lnu �
β u0,

vi) C−normal if for all u, v ∈ C; u ≤ v implies ‖Lu‖ ≤ ‖Lv‖.
Remark 2.4. Strongly positive operators are the simplest examples of u0−positive
operators where u0 is an arbitrary interior element of the cone C.
Definition 2.5. Let L1, L2 : X → X be positive maps. We write L1 � L2 if for all
x ∈ C, L1x � L2x.
Definition 2.6. A function f : Ω ⊂ X → X is said to be bounded, if it maps
bounded sets into bounded sets, and it is said to be completely continuous, if it is
continuous and maps bounded sets into relatively compact sets. In general f is said
to be compact if it is continuous and f

(
Ω̄
)

is compact.
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Definition 2.7.[12] A map g : C → X is said to be differentiable at x0 ∈ C along C
if there exists g′(x0) ∈ L(X) such that

lim
h∈C,h→0

‖g(x0 + h)− g(x0)− g′(x0)h‖
‖h‖

= 0.

We said that g′(x0), is the derivative of g at x0 along C, and it is uniquely determined.
The map g is said to be asymptotically linear along C if there exists g′(∞) ∈ L(X)

such that

lim
x∈C,‖x‖→+∞

‖g(x)− g′(∞)x‖
‖x‖

= 0.

Again, g′(∞) is uniquely determined and is called the derivative at infinity along C.
Lemma 2.8.[10] The derivative g′(ν), (ν = +∞, or x0 ∈ C), with respect to a cone
of the positive operator g is a linear positive operator.
Detailed presentation of the differentiability with respect to a cone can be found in
[10] and [12].

Let us recall some lemmas providing fixed point index computations. Let C be
a cone in X. Let for R > 0, CR = C ∩ B (0X , R) where B (0X , R) is the open ball
of radius R centered at 0X , and let ∂CR be its boundary and consider a compact
mapping f : CR → C.
Lemma 2.9. If fx 6= λx for all x ∈ ∂CR and λ ≥ 1 then i (f, CR, C) = 1.
Lemma 2.10. If fx � x for all x ∈ ∂CR then i (f, CR, C) = 1.
Lemma 2.11. If fx � x for all x ∈ ∂CR then i (f, CR, C) = 0.
Lemma 2.12. If there exists e � 0X such that x 6= fx + te for all t ≥ 0 and all
u ∈ ∂CR then i (f, CR, C) = 0.
A detailed presentation of the fixed point index theory can be found in [7], [9] and
[12].

In all this section E is a real Banach space, K,P are two nontrivial cones in E with
P ⊂ K (it may happen that K = P ) and L(E) denote the set of all linear continuous
self mapping on E endowed with the norm, ‖L‖ = sup

‖u‖=1

‖Lu‖ . Let C+(E) denote the

subset of L(E) consisting of all compact positive operators. Hereafter � is the order
induced by the cone K on E and we set

LPK(E) = {L ∈ L(E), and L (K) ⊂ P} , and

CPK(E) =
{
L ∈ LPK(E) : L is compact

}
.

Now, for L ∈ LPK(E), we define the subsets

ΛLP = {λ ≥ 0 : there exists u ∈ P r {0E} such that Lu � λu} ,

ΘL
P = {θ ≥ 0 : there exists u ∈ P r {0E} such that Lu � θu} .

Remark 2.13. Note that
i) 0 ∈ ΘL

P and if θ ∈ ΘL
P , then [0, θ] ⊂ ΘL

P .
ii) If λ ∈ ΛLP then [λ,+∞) ⊂ ΛLP .
iii) ΛLP ⊂ ΛLK and ΘL

P ⊂ ΘL
K .

iv) If µ is positive eigenvalue of L, then µ ∈ ΘL
P ∩ ΛLP .
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In all this paper, we set for L ∈ LPK (E) ,

θLP = sup ΘL
P

and when ΛLP is nonempty

λLP = inf ΛLP .

If L : E → E is a bounded linear operator, then we define r(L), its spectral radius by

r(L) = lim
n→+∞

‖Ln‖ 1
n .

Lemmas 2 and 2 give sufficient conditions for the existence of λLP and θLP .
Lemma 2.14. [5] Let L ∈ LPK (E) . Then the subset ΛLP is nonempty.
Lemma 2.15. [5] Assume that K is normal and L ∈ LPK(E). Then the subset ΘL

P is
bounded from above by r(L).
Lemma 2.16.[5] Assume that L is K−normal and L ∈ LPK(E). Then the subset ΘL

P

is bounded from above by r(L). Observe that if L ∈ CPK (E) , then for all R > 0, the
permanence property of the fixed point index implies that

i (L,PR, P ) = i (L,KR,K) .

Lemma 2.17.[5] Let L ∈ CPK (E) and let γ be a positive real number. For any R > 0,
we have

i) i (γL, PR, P ) = 1, if γθLP < 1.
ii) i (γL, PR, P ) = 0, if the subset ΛLP is nonempty and γλLP > 1.

Theorem 2.18.[5] Let L ∈ CPK(E). Then, we have λLP ≤ θLP .
For L ∈ CPK(E), σK(L) denote the set of all positive eigenvalues of L and

σ−L = inf σL(N).

Remark 2.19. We deduce from iv) in Remark 2 and Theorem 2 that for all L ∈
CPK(E), σK(L) ⊂

[
λLP , θ

L
P

]
.

Lemma 2.20.[5] Let L be a compact operator with int(K) 6= ∅ and L (K r {0X}) ⊂
int(K), and either K is normal or L is K−normal. Then λLK = θLK = r(L) is the
principal and unique positive eigenvalue of L.
Remark 2.21.[5] Note that Lemma 2 affirms that 0 cannot be an eigenvalue of L,
then for every subset P ⊂ K, with L (K) ⊂ P, we have λLP = λLK and θLP = θLK .
Proposition 2.22. Let ξ be a fixed point on K (ξ may be +∞) and suppose that
the operator g : K → K has a Fréchet derivative on ξ such that g′(ξ) ∈ CPK(E). If

λ
g′(ξ)
P > 0, then λ

g′(ξ)
P = σ−g′(ξ).

Proof. Let (λn) ⊂
(
λ
g′(ξ)
P ,+∞

)
⊂ Λ

g′(ξ)
P be a decreasing sequence converging to λ

g′(ξ)
P

and (φn) ⊂ P r {0E} such that g′(ξ)φn � λnφn. Consider for each integer n ≥ 1,
Pn = {u ∈ P : g′(ξ)u � λnu} and note that the linearity of g′(ξ) makes of the set Pn
convex and so, a cone in E which is different from the trivial one, since φn ∈ Pn. We
have also, g′(ξ) (Pn) ⊂ Pn and so, consider the sets

Λg
′(ξ)
n = {λ ≥ 0 : there exists u ∈ Pn r {0E} such that g′(ξ)u � λu} ,

Θg′(ξ)
n = {θ ≥ 0 : there exists u ∈ Pn r {0E} such that g′(ξ)u � θu}
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and the constants

λg
′(ξ)
n = inf Λg

′(ξ)
n and θg

′(ξ)
n = sup Θg′(ξ)

n .

Clearly, we have 0 < λ
g′(ξ)
P ≤ λ

g′(ξ)
n ≤ θ

g′(ξ)
n ≤ λn and g′(ξ) admits for all n ≥ 1 a

positive eigenvalue µn associated with a normalized eigenvector ψn ∈ Pn with

0 < λ
g′(ξ)
P ≤ λg

′(ξ)
n ≤ µn ≤ θg

′(ξ)
n ≤ λn.

Thus, we have limµn = λ
g′(ξ)
P and for each n ≥ 1

(g′(ξ))
2
ψn = µng

′(ξ)ψn = µ2
nψn

and the compactness of g′(ξ) leads to φ = lim g′(ξ)ψn (up to a subsequence) satisfies

g′(ξ)φ = λ
g′(ξ)
P φ and ‖φ‖ = λ

g′(ξ)
P > 0. At the end, Remark 2 leads to λ

g′(ξ)
P = σ−g′(ξ).

Definition 2.23.[3] An operator L ∈ C+(E) is said to have the strongly index-jump
property at ν > 0 (SIJP for short) if λLP = θLP = ν.

3. Main results

Let T : K → K be a completely continuous mapping, the main goal of this section
is to prove fixed point theorems for the mapping T .
Theorem 2.24. Suppose that T has a right differentiable at zero majorant g : K → K

such that g(0) = 0, g′(0) ∈ CPK(E) is lower-bounded satisfying θ
g′(0)
P < 1. Then T has

at least one positive fixed point.
Proof. Let us prove existence of r > 0 small enough, such that for all t ∈ [0, 1],
equation tTu = u has no solution in ∂Kr. By the contrary suppose that for each
integer n ≥ 1 there exist tn ∈ [0, 1] and un ∈ ∂K 1

n
such that

un = tnTun.

Note that vn = un/ ‖un‖ ∈ ∂K1 and satisfies

vn �
g(un)

‖un‖
. (3.1)

Thus, we have:
g(un)

‖un‖
=
g(un)− g′(0)(un)

‖un‖
+
g′(0)(un)

‖un‖
. (3.2)

We set

Gn(un) =
g(un)− g′(0)(un)

‖un‖
.

Clearly
vn � Gn(un) + g′(0)(vn).

Using the fact that g′(0) is increasing, we get:

g′(0)(vn) � g′(0)(Gn(un)) + g′(0)(g′(0)(vn)). (3.3)

Because of the compactness of g′(0), there exists a subsequence (vnk) such that
lim g′(0)vnk = v ∈ P. In fact, we have that v � 0E . Indeed, if lim g′(0)vnk = 0E ,
then because of the lower boundeness of g′(0), we have:

‖v‖ = lim ‖g′(0)vnk‖ ≥ N
−
g,P > 0.
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Thus, letting k → ∞ in (3.3), we obtain v � g′(0)v and 1 ∈ Θ
g′(0)
P . This contradicts

the hypothesis 1 > θ
g′(0)
P and proves existence of r > 0 small enough such that for all

t ∈ [0, 1], equation tTu = u has no solution in ∂Kr. For a such r > 0, we deduce from
Lemma 2 that

i(T,Kr,K) = 1

and T has a positive fixed point u with ‖u‖ < r. This completes the proof.
Arguing as in the proof of Theorem 3, we obtain the following result.
Theorem 2.25. Suppose that T has an asymptotically linear majorant g : K → K

such that g′(∞) ∈ CPK(E) is lower-bounded satisfying θ
g′(∞)
P < 1. Then T has at least

one positive fixed point.
Corollary 2.26. Let u0 ∈ K?. Suppose that T has an asymptotically linear majorant

g : K → K such that g′(∞) ∈ CPK(E) is u0-bounded bellow satisfying θ
g′(∞)
P < 1.

Then T has at least one positive fixed point.
Theorem 2.27. Suppose that T has an asymptotically linear majorant g : K → K

such that g′(∞) ∈ CPK(E) satisfying θ
g′(∞)
P < 1 and K is a normal cone. Then T has

at least one positive fixed point.
Proof. Consider the function H∞ : [0, 1]×K → K defined by

H∞(t, u) = (1− t)Tu+ t g′(∞) (u)

and let us prove existence of R > 0 large enough, such that for all t ∈ [0, 1] , equation
H∞(t, u) = u has no solution in ∂KR. By the contrary, suppose that for each integer
n ≥ 1, there exist tn ∈ [0, 1] and un ∈ ∂Kn such that

un = (1− tn)Tun + tng
′(∞)un.

Note that wn = un/ ‖un‖ ∈ ∂K1 and satisfies

wn = (1− tn) (Tun/ ‖un‖) + tng
′(∞)wn. (3.4)

Thus, the inequality

(Tun/ ‖un‖) � Gn(un) + g′(∞)(wn). (3.5)

holds, where

Gn(un) =
g(un)− g′(∞)(un)

‖un‖
combined with the normality of the cone K implies that the sequence (Tun/ ‖un‖)
is bounded. Because of the compactness of g′(∞), there exists a subsequence (wnk)
such that lim g′(∞)wnk = w ∈ P. In fact, we have that w � 0E .
Indeed, if lim g′(∞)wnk = 0E , then inequality (3.5) and the normality of the cone
K imply lim (Tun/ ‖un‖) = 0E . This together with (3.4) leads to limwnk = 0E ,
contradicting ‖wnk‖ = 1.
Therefore, letting k →∞ in

g′(∞)wnk = g′(∞) ((1− tnk) (Tunk/ ‖unk‖) + tnkg
′(∞)wnk)

� g′(∞)(Gnk(unk)) + g′(∞) (g′(∞)wnk)

we have w � g′(∞)w and 1 ∈ Θ
g′(∞)
P , contradicting the hypothesis θ

g′(∞)
P < 1 in

Theorem 3 and proves existence of R > 0 large enough such that for all t ∈ [0, 1] ,
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equation H2(t, u) = u has no solution in ∂KR. For such a radius R > 0, homotopy
and permanence properties of the fixed point index and Lemma 2 lead to

i(T,KR,K) = i(H∞(0, ·),KR,K) = i(H∞(1, ·),KR,K)

= i(g′(∞),KR,K)

= i(g′(∞), PR, P )

= 1.

This completes the proof.

Remark 2.28. Note that Remark 2 and the hypothesis θ
g′(∞)
P < 1 in the last

theorem imply that g′(∞) does not possess a positive eigenvector to an eigenvalue
greater than or equal to 1 and is a generalization of Theorem 4.8 given by Krasnosel’kii
in [10] where the maps and the norm are supposed to be monotone.
Corollary 2.29. Suppose that K is a normal cone and g : K → K is an asymptot-

ically linear operator such that g′(∞) ∈ CPK(E) satisfies θ
g′(∞)
P < 1. Suppose that T

is a right differentiable on K such that T ′+ � g′(∞) on K. Then T has at least one
positive nontrivial fixed point.

In the fact, for all u ∈ K, we have

(T − g′(∞))
′
(u) = T ′+(u) + [g′(∞)]

′
(u) = T ′+(u)− g′(∞)(u) � 0.

This implies that operator T − g′(∞) is non-increasing on K and it follows from
above that for all u ∈ K, (T − g′(∞)) (u) � T (0) + g′(∞)(0) = T (0) leading to
T � T (0) + g′(∞) on K which implies that L = T (0) + g′(∞) is an asymptotically

linear majorant of T such that L′(∞) = g′(∞) and θ
L′(∞)
P = θ

g′(∞)
P < 1. We deduce

from Theorem 3 that T has a fixed point on K.
Arguing as in the proof of Theorem 3, we obtain the following Theorem.
Theorem 2.30. Suppose that T has a right differentiable at zero majorant g : K → K

such that g(0) = 0, g′(0) ∈ CPK(E) satisfying θ
g′(0)
P < 1 and K is a normal cone. Then

T has at least one positive fixed point.
Remark 2.31. Suppose, in addition, that K is solid and that g′(0) is strongly

positive, then the condition θ
g′(0)
P < 1 of the above theorem can be replaced by

r (g′(0)) < 1.
Theorem 2.32. Suppose that the cone K is a normal one with int(K) 6= ∅ and T has
an asymptotically linear minorant h : K → K such that h′(∞) ∈ CPK(E) is strongly
positive. Suppose that T has a right differentiable at zero majorant g : K → K such

that g(0) = 0, and g′(0) ∈ CPK(E) satisfying θ
g′(0)
P < 1 < r (h′(∞)) . Then T has at

least one positive nontrivial fixed point.
Proof. We have to prove existence of 0 < r < R such that

i(T,Kr,K) = 1 and i(T,KR,K) = 0.

In such a situation, additivity and solution properties of the fixed point index imply
that

i(T,KR rKr,K) = i(T,KR,K)− i(T,Kr,K) = −1

and T has a positive fixed point u with r < ‖u‖ < R.
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Let e > 0 and let us prove existence of R > 0 big enough, such that for all t ∈ R+,
equation Tu+ te = u has no solution in ∂KR. By the contrary suppose that for each
integer n ≥ 1, there exist tn ∈ R+ and un ∈ ∂Kn such that

un = Tun + tne.

Note that vn = un/ ‖un‖ ∈ ∂K1 and satisfies the inequality:

vn � (Tun/ ‖un‖) �
h(un)

‖un‖
. (3.6)

Thus, we have:
h(un)

‖un‖
=
h(un)− h′(∞)(un)

‖un‖
+
h′(∞)(un)

‖un‖
. (3.7)

We set

Hn(un) =
h(un)− h′(∞)(un)

‖un‖
.

Then
vn � Hn(un) + h′(∞)(vn). (3.8)

Using the fact that h′(∞) is increasing, we get:

h′(∞)(vn) � h′(∞)(Hn(un)) + h′(∞)(h′(∞)(vn)). (3.9)

Because of the compactness of h′(∞) there exists a subsequence (vnk) such that
limh′(∞)vnk = v ∈ P. Since h′(∞) is strongly positive on K and ‖vnk‖ = 1, then
h′(∞)vnk ∈ int (K) . We deduce from Lemma 3.7 in [12] that there exists r0 > 0
small enough such that h′(∞)vnk � r0vnk , we obtain v � 0E . Thus, letting k → ∞
in (3.9), we obtain v � h′(∞)v and 1 ∈ Λ

h′(∞)
P . This contradicts the hypothesis

1 < λ
h′(∞)
P = r (h′(∞)) and proves existence of R > 0 large enough such that for all

t ∈ R+, equation Tu+ te = u has no solution in ∂KR. For a such R > 0, we deduce
from Lemma 2 that

i(T,KR,K) = 0.

Let us prove existence of r > 0 small enough, such that for all t ∈ [0, 1], equation
tTu = u has no solution in ∂Kr. By the contrary, suppose that for each integer n � 1,
there exist tn ∈ [0, 1] and un ∈ ∂K 1

n
such that

un = tnTun.

Note that wn = un/ ‖un‖ ∈ ∂K1 and satisfies

wn �
g(un)

‖un‖
. (3.10)

Thus, we have:
g(un)

‖un‖
=
g(un)− g′(0)(un)

‖un‖
+
g′(0)(un)

‖un‖
. (3.11)

We set

Gn(un) =
g(un)− g′(0)(un)

‖un‖
.

Clearly
wn � Gn(un) + g′(0)(wn). (3.12)
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Using the fact that g′(0) is increasing, we get:

g′(0)(wn) � g′(0)(Gn(un)) + g′(0)(g′(0)(wn)). (3.13)

Because of the compactness of g′(0) there exists a subsequence (wnk) such that
lim g′(0)wnk = w ∈ P. In fact, we have that v � 0E . Indeed, if lim g′(0)wnk = 0E ,
then because of the compactness of g′(∞) there exists a subsequence (wnk) such that
lim g′(∞)wnk = w ∈ P. In fact, we have that w � 0E . Indeed, if lim g′(∞)wnk = 0E ,
then inequality (3.12) and the normality of the cone K lead to limwnk = 0E , contra-
dicting ‖wnk‖ = 1. Therefore, letting k → ∞ in (3.13), we have w � g′(∞)w. This

contradicts the hypothesis θ
g′(0)
P < 1 and proves existence of r > 0 small enough such

that for all t ∈ [0, 1], equation tTu = u has no solution in ∂Kr. For a such r > 0, we
deduce from Lemma 2 that

i(T,Kr,K) = 1.

This completes the proof.
Arguing as in the proof of Theorem 3, we obtain the following result.

Theorem 2.33. Suppose that the cone K is normal and solid and T has a right
differentiable at zero minorant h : K → K such that h(0) = 0 and h′(0) ∈ CPK(E) is
strongly positive. Suppose that T has an asymptotically linear majorant g : K → K

and g′(∞) ∈ CPK(E) satisfying θ
g′(∞)
P < 1 < r (h′(0)) . Then T has at least one positive

nontrivial fixed point.
Remark 2.34. If the cone K is solid and for every u of K?, a natural number n
can be found such that [h′(0)]

n
u is an interior element of the cone, then the operator

h′(0) is strongly positive.
Theorem 2.35. Suppose that K is solid and T has an asymptotically linear minorant
h : K → K such that h′(∞) ∈ CPK(E) is strongly positive. Suppose that T has a right
differentiable at zero and lower bounded majorant g : K → K, such that g(0) = 0

and g′(0) ∈ CPK(E) satisfying θ
g′(0)
P < 1 < λ

h′(∞)
P . Then T has at least one positive

nontrivial fixed point.
Proof. We have to prove existence of 0 < r < R such that

i(T,Kr,K) = 1 and i(T,KR,K) = 0.

In such a situation, additivity and solution properties of the fixed point index imply
that

i(T,KR rKr,K) = i(T,KR,K)− i(T,Kr,K) = −1

and T has a positive fixed point u with r < ‖u‖ < R.
Let e > 0 and let us prove existence of R > 0 big enough, such that for all t ∈ R+,
equation Tu+ te = u has no solution in ∂KR. By the contrary, suppose that for each
integer n ≥ 1, there exist tn ∈ R+ and un ∈ ∂Kn such that

un = Tun + tne.

Note that wn = un/ ‖un‖ ∈ ∂K1 and satisfies the inequality:

wn � (Tun/ ‖un‖) �
h(un)

‖un‖
. (3.14)
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Thus, we have
h(un)

‖un‖
=
h(un)− h′(∞)(un)

‖un‖
+
h′(∞)(un)

‖un‖
. (3.15)

We set

Hn(un) =
h(un)− h′(∞)(un)

‖un‖
.

Then
wn � Hn(un) + h′(∞)(wn). (3.16)

Using the fact that h′(∞) is increasing, we get

h′(∞)(wn) � h′(∞)(Hn(un)) + h′(∞)(h′(∞)(wn)). (3.17)

Because of the compactness of the operator h′(∞), there exists a subsequence (wnk)
such that limh′(∞)wnk = w ∈ P. Since h′(∞) is strongly positive on K and ‖wnk‖ =
1, then h′(∞)wnk ∈ int (K) ; we deduce from Lemma 3.7 in [12] that there exists
r0 > 0 small enough such that h′(∞)wnk � r0wnk and we obtain w � 0E . Therefore,
letting k → ∞ in (3.17), we have w � h′(∞)w. This contradicts the hypothesis

1 < λ
h′(∞)
P and proves existence of R > 0 large enough such that for all t ∈ R+,

equation Tu + te = u has no solution in ∂KR. For a such R > 0, we deduce from
Lemma 2 that

i(T,KR,K) = 0.

Let us prove existence of r > 0 small enough, such that for all t ∈ [0, 1], equation
tTu = u has no solution in ∂Kr. By the contrary suppose that for each integer n ≥ 1,
there exist tn ∈ [0, 1] and un ∈ ∂K 1

n
such that

un = tnTun.

Note that vn = un/ ‖un‖ ∈ ∂K1 and satisfies

vn �
g(un)

‖un‖
. (3.18)

Thus, we have:
g(un)

‖un‖
=
g(un)− g′(0)(un)

‖un‖
+
g′(0)(un)

‖un‖
. (3.19)

We set

Gn(un) =
g(un)− g′(0)(un)

‖un‖
.

Clearly
vn � Gn(un) + g′(0)(vn).

Using the fact that g′(0) is increasing, we get:

g′(0)(vn) � g′(0)(Gn(un)) + g′(0)(g′(0)(vn)). (3.20)

Because of the compactness of g′(0), there exists a subsequence (vnk) such that
lim g′(0)vnk = v ∈ P. In fact, we have that v � 0E . Indeed, if lim g′(0)vnk = 0E , then
because of the lower boundeness of g′(0), we have ‖v‖ = lim ‖g′(0)vnk‖ ≥ N−g,P > 0.

Thus, letting k →∞ in (3.20), we obtain v � g′(0)v and 1 ∈ Θ
g′(0)
P . This contradicts

the hypothesis 1 > θ
g′(0)
P and proves existence of r > 0 small enough such that for all
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t ∈ [0, 1], equation tTu = u has no solution in ∂Kr. For a such r > 0, we deduce from
Lemma 2 that

i(T,Kr,K) = 1.

This completes the proof.

Remark 2.36. If in addition, the cone K is normal, then the condition λ
h′(∞)
P can

be replaced by r (h′(∞)) .
Arguing as in the proof of Theorem 3, we obtain the following results.

Theorem 2.37. Suppose that K is a solid cone and T has a right differentiable at
zero minorant h : K → K such that h(0) = 0, h′(0) ∈ CPK(E) is strongly positive.
Suppose that T has an asymptotically linear and lower bounded majorant g : K → K

and g′(∞) ∈ CPK(E) satisfying θ
g′(∞)
P < 1 < λ

h′(0)
P . Then T has at least one positive

nontrivial fixed point.
Arguing as in the above proofs, we obtain the following results.

Theorem 2.38. Assume that the cone K is solid and suppose that T has a right
differentiable at zero minorant h : K → K such that h(0) = 0 and h′(0) ∈ CPK(E) is
strongly positive. Suppose that T has an asymptotically linear majorant g : K → K
and g′(∞) ∈ CPK(E) is strongly positive satisfying r (g′(∞)) < 1 < r (h′(0)) . Then, T
has at least one positive nontrivial fixed point.
Theorem 2.39. Assume that K is a normal cone in E. Suppose the cone K is solid
and T has a right differentiable at zero majorant g : K → K such that g(0) = 0
and g′(0) ∈ CPK(E) is strongly positive. Suppose that T has an asymptotically linear
minorant h : K → K and h′(∞) ∈ CPK(E) is strongly positive satisfying r (g′(0)) <
1 < r (h′(∞)) . Then T has at least one positive nontrivial fixed point.
Corollary 2.40. Assume that K is a normal cone in E. Suppose the cone K is solid
and T has a right differentiable at zero majorant g : K → K such that g(0) = 0
and g′(0) ∈ CPK(E) has a SIJP at r (g′(0)) . Suppose that T has an asymptotically
linear minorant h : K → K, h′(∞) ∈ CPK(E) is strongly positive and satisfying
r (g′(0)) < 1 < r (h′(∞)) . Then T has at least one positive nontrivial fixed point.

4. φ−Laplacian bvp with mixed boundary conditions

In this section, we present applications of Theorem 3 and Theorem 3 to a
φ−Laplacian bvp with mixed boundary conditions. In all this section, E is the Ba-
nach space of all continuous functions defined on [0, 1] equipped with its sup-norm
denoted ‖·‖, C is the normal cone of nonnegative functions in E and u ∈ E is said
to be positive if u ∈ C∗, f : [0, 1] × R+ → R+ is continuous, a : [0, 1] → R+ is
continuous and does not vanishes identically on any subinterval of [0, 1] and φ is an
odd increasing homeomorphism of R. Throughout we assume that

∃α, β ∈ R with 0 < α < β such that
tβφ(x) � φ(tx) ≤ tαφ(x) for all x ≥ 0 and t ∈ (0, 1) .

(4.1)

In what follows, ψ is the inverse function of φ and we have from (4.1)

t
1
αψ(x) ≤ ψ(tx) ≤ t

1
β ψ(x) for all x ≥ 0 and t ∈ (0, 1) . (4.2)
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Let ψ+,ψ− be the function defined on R+ by

ψ+ (x) =

{
x

1
β if x ≤ 1

x
1
α if x ≥ 1

, ψ− (x) =

{
x

1
α if x ≤ 1

x
1
β if x ≥ 1.

It follows from (4.2) that for all t ≥ 0 and x ≥ 0

ψ− (t)ψ(x) ≤ ψ(tx) ≤ ψ+ (t)ψ(x). (4.3)

Let F : C → C be the operator defined for u ∈ C by

Fu (x) = ψ (f(x, u(x))) for all x ∈ [0, 1] .

It is easy to see that F is continuous and bounded (maps bounded sets into bounded
sets).
We set

f0 = lim sup
u→0

(
max
t∈[0,1]

ψ (f(t, u))

u

)
, f∞ = lim sup

u→+∞

(
max
t∈[0,1]

ψ (f(t, u))

u

)
.

Consider the φ−Laplacian bvp{
− (φ (u′))

′
(t) = a (t) f(t, u(t)), t ∈ (0, 1)

u(0) = u′(1) = 0,
(4.4)

and let the following linear eigenvalue problem{
−u′′(t) = µa (t)u (t) , t ∈ (0, 1)
u(0) = u′(1) = 0.

(4.5)

Let

Y =
{
u ∈ C1 ([0, 1]) , u (0) = u′(1) = 0

}
,

equipped with C1-norm denoted ‖·‖1 (for u ∈ Y, ‖u‖1 = max (‖u‖ , ‖u′‖)). From
Ascoli-Arzéla Theorem, the embedding iY : Y → E is compact.
Let A, N : E → E be the operators defined for h ∈ E by

Nh(x) =

∫ x

0

ψ

(∫ 1

t

a(s)φ (h (s)) ds

)
dt, for all x ∈ [0, 1] ,

Ah(x) =

∫ x

0

(∫ 1

t

a(s)h (s) ds

)
dt, for all x ∈ [0, 1] ,

and AY , NY : Y → Y be the restrictions of A and N to Y.
It is easy to see that

P = {u ∈ C, u(x) ≥ x ‖u‖ , ∀x ∈ [0, 1]}

is a cone in E and CY = C ∩ Y = i−1Y (C) is a cone in Y.
The proof of the following Lemma is easy, so we omit it.
Lemma 3.1. We have that

1) A is increasing on C,
2) A is lower bounded on P and ‖Au‖ ≥M− ‖u‖ for all u ∈ P where

M− = ‖a‖
∫ 1

0

(∫ 1

t

s
a(s)

‖a‖
ds

)
dt.
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3) A (C) ⊂ P.
4) N is increasing on C.
5) N is upper bounded on C and ‖Nu‖ ≤M+

φ ‖u‖ for all u ∈ C where

M+
φ = ψ+ (‖a‖)

∫ 1

0

(∫ 1

t

a(s)

‖a‖
ds

) 1
β

dt,

6) N is lower bounded on P and ‖Nu‖ ≥M−φ ‖u‖ for all u ∈ P where

M−φ = ψ− (‖a‖)
∫ 1

0

(∫ 1

t

a(s)sβ

‖a‖
ds

) 1
α

dt.

7) A and N are completely continuous operators.

Observe that u is a positive solution of (4.4) if and only if u is a fixed point of the
completely continuous operator T = NF.
In view of Lemma 2, let us prove that A (C∗) ⊂ 0 ⊂ CY , where

O = {u ∈ Y, u(x) > 0, ∀x ∈ (0, 1] and u′(0) > 0}

is an open set in Y.
Let Oc = F1 ∪ F2 where

F1 = {u ∈ X : there exists x ∈ ]0, 1] , u(x) ≤ 0} and

F2 = {u ∈ X : u′(0) ≤ 0} .

It is clear that F2 is a closed set in X, so let (un) ⊂ F1 tending to u in X and
(xn) ⊂ ]0, 1] tending to x ∈ [0, 1] with un(xn) ≤ 0. We distinguish the following cases:

• x ∈ ]0, 1] ; in a such situation u(x) = limun(xn) ≤ 0 and u ∈ F1,
• x = 0; in this case we obtain

u′(0) = lim
un(xn)

xn
≤ 0 and u ∈ F2.

Now, let us show AY (C∗Y ) ⊂ O. We deduce that for all h ∈ C∗Y ,

‖Ah‖ = Ah(1) > 0 and Ah(x) ≥ x ‖Ah‖ > 0, ∀x ∈ (0, 1]

and since Ah(0) = 0, then (Ah)
′
(0) ≥ 0.

If (Ah)
′
(0) = 0, then after two integration we get

Ah(x) = −
∫ x

0

(∫ t

0

a(s)h(s)ds

)
dt ≤ 0

which is impossible. So we have (Ah)
′
(0) ≥ 0 and Ah ∈ O. That is,

A(CY
?) ⊂ O ⊂ int(CY ).

To complete the proof, we show that A is a CY−normal operator.
Let u1, u2 ∈ CY with u1 ≤ u2, v1 = Au1 and v2 = Au2.
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Clearly that ‖v1‖Y = max (‖v1‖, ‖v′1‖) = max (v1(1), v′1(0)) , which implies

‖v1‖X = v1(1) =

∫ 1

0

(∫ 1

t

a(s)u1 (s) ds

)
≤

∫ 1

0

(∫ 1

t

a(s)u2 (s) ds

)
= v2(1)

= ‖v2‖Y
and

‖v1‖Y = v′1(0) =

∫ 1

0

a(s)u1 (s) ds

≤
∫ 1

0

a(s)u2 (s) ds

= v′2(0)

= ‖v2‖Y .

At the end, Lemma 2 guaranties the existence of a unique positive eigenvalue of A
and we have µ−1 = λCY = θCY . Since 0 is not an eigenvalue of A and A (C) ⊂ CY , it
follows from Remark 2 that

µ−1 = λC = θC .

We get that A admits a unique positive eigenvalue λ? = λAC = θAC and (λ?)
−1

= µ.
Now, we discuss the existence of at least one positive solution to the boundary value
problem (4.4) .
Theorem 3.2. Suppose that φ satisfies

lim
x→+∞

φ (x)

x
= 1 , (4.6)

then if

f∞max
(
M+
φ , λ∗

)
< 1 (4.7)

holds true, Problem (4.4) admits a positive solution.
Proof. It follows from conditions (4.6) , that

lim
x→+∞

ψ (x)

x
= 1.

Then

Nu = Au+ ◦ (‖u‖) at ∞.

Moreover f∞max
(
M+
φ , λ∗

)
< 1, implies that there exists ε > 0 small enough and

positive constant c1 such that

F (u) ≤ (f∞ + ε)u+ c1, for all u ∈ C∗.

Leading to

Tu ≤ N ((f∞ + ε)u+ c1) , for all u ∈ C∗.
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We introduce the following notations

γ = f∞ + ε,

g (u) = N (γu+ c1) .

It is clear that

g (u) = γAu+ ◦ (‖u‖) at ∞.
We have

‖g(h)− g′(∞)(h)‖ = ‖N (γh+ c1)− γA(h)‖
= ‖A (γh+ c1) + ‖γh+ c1‖ε(h)− γA(h)‖
= ‖γA (h) +A (c1) + ‖γh+ c1‖ε (h)− γA (h) ‖
≤ ‖A(c1)‖+ ‖γh+ c1‖‖ε(h)‖
≤ c1M + ‖γh+ c1‖‖ε (h) ‖,

where

M =

∫ 1

0

a(s)ds and lim
h→∞

ε (h) = 0.

Since
‖g(h)− g′(∞)h‖

‖h‖
≤ c1M

‖h‖
+

(
γ +

c1
‖h‖

)
‖ε (h) ‖,

then g is asymptotically linear along C and we have

g′(∞) (u) = γ Au and θ
g′(∞)
P = γ λ∗ ≤ γ max

(
M+
φ , λ∗

)
< 1.

Applying Theorems 3, we deduce existence of a positive solution for Problem (4.4) .
Theorem 3.3. Suppose that φ satisfies

lim
x→0

φ (x)

x
= 1 , (4.8)

then if

f0 max
(
M+
φ , λ∗

)
< 1 (4.9)

holds true, Problem (4.4) admits a positive solution.
Proof. It follows from condition (4.8) that

lim
x→0

ψ (x)

x
= 1.

Then

Nu = Au+ ◦ (‖u‖) at 0.

Moreover f0 max
(
M+
φ , λ∗

)
< 1, implies that there exists ε > 0 small enough and

positive constants c1 such that

F (u) ≤
(
f0 + ε

)
u+Gu, for all u ∈ C∗,

where Gu(t) = max
{
ψ (f(t, u(t))− f0u(t), 0

}
.

Leading to

Tu ≤ N
((
f0 + ε

)
u+Gu

)
, for all u ∈ C∗.
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We introduce the following notations

γ = f0 + ε,

g (u) = N (γu+Gu) .

It is clear that

g (u) = γAu+ ◦ (‖u‖) at 0.

We have

‖g(h)− g′(0)(h)‖ = ‖N (γh+Gh)− γA(h)‖
= ‖A (γh+Gh) + ‖γh+Gh‖ε(h)− γA(h)‖
= ‖γA (h) +A (Gh) + ‖γh+Gh‖ε(h)− γA (h) ‖
= ‖A (Gh) ‖+ ‖γh+Gh‖‖ε(h)‖
≤ c‖Gh‖+ ‖γh+Gh‖‖ε(h)‖,

where lim
h→0

ε (h) = 0.

Since
‖g(h)− g′(0)h‖

‖h‖
≤ c‖Gh‖

‖h‖
+

(
γ +
‖Gh‖
‖h‖

)
‖ε (h) ‖,

then there exists the right derivative of g along P at 0 and that g′(0) (u) = γ Au with

θ
g′(0)
P = γ λ∗ ≤ γ max

(
M+
φ , λ∗

)
< 1.

Applying Theorem 3, we deduce existence of a positive solution for Problem (4.4) .

Acknowledgement. The author would like to thank the Ministry of Higher Educa-
tion and Scientific Research and his laboratory, Fixed Point Theory and Applications,
for supporting this work.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,

SIAM Rev., 18(1976), 620-709.

[2] H. Amann, Fixed points of asymptoticaly linear maps in ordered Banach spaces, J. Funct. Anal.,
14(1973), 162-171.

[3] N. Benkaci-Ali, A. Benmezai, S. Ntouyas, Eigenvalue criteria for existence of positive solutions
to singular third-order BVPs via the index-jump property, Comm. Appl. Nonl. Anal., 20(2013),
no. 2, 55-74.

[4] A. Benmezai, B. Bouchenb, J. Henderson, S. Mechrouk, The index-jump property for 1-

homogeneous positive maps and fixed point theorems in cones, Nonlinear Funct. Anal., (2017),
Article ID 6, 1-33.

[5] A. Benmezai, J.R. Graef, L. Kong, Positive solutions for the abstract Hammerstein equations
and applications, Commun. Math. Anal., 16(2014), no. 1, 47-65.

[6] A. Benmezai, S. Mechrouk, Positive solutions for the nonlinear abstract Hammerstein equation
and application to φ-Laplacian BVPs, NoDEA, 20(2013), 489-510.

[7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.



FIXED POINT THEOREMS IN THE STUDY OF OPERATOR EQUATIONS 777

[8] M.S. El Khannoussi, A. Zertiti, Topological methods in the study of positive solutions for

operator equations in ordered Banach spaces, Electronic Journal of Differential Equations,

2016(2016), no. 171, 1-13.
[9] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston,

1988.

[10] M.A. Krasnosel’skii, Positive Solutions of Operator Equations, P. Noordhoff, Gröningen, 1964.
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