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1. Introduction

Let (X, d) be a metric space. Berg and Nikolaev [5] introduced the concept of

quasilinearization in metric spaces. Let us formally denote a pair (a, b) ∈ X×X by
−→
ab

and call it a vector. Then quasilinearization is the map 〈·, ·〉 : (X×X)×(X×X)→ R
defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, (a, b, c, d ∈ X). (1.1)

It is clear that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉, 〈−→ax,

−→
cd〉 + 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉

and

d2(a, b) = d2(a, x) + d2(b, x)− 2〈−→ax,
−→
bx〉 (1.2)

for all a, b, c, d, x ∈ X.
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] to X such that
c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. The image of c is
called a geodesic segment with endpoints x and y. The metric space X is geodesically
connected if any two of its points can be joined by a geodesic segment. A geodesic
triangle ∆(x1, x2, x3) in a geodesically connected metric space (X, d) consists of three
points x1, x2, x3 in X (the vertices of ) and a geodesic segment between each pair of
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vertices (the edges of ). A comparison triangle for the geodesic triangle ∆(x1, x2, x3)
in (X, d) is a triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in the Euclidean plane E2 such
that dE2(xi, xj) = d(xi, xj) for all i, j ∈ {1, 2, 3}.

A metric space (X, d) is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane, that is, for all x, y ∈ ∆ and all comparison points x, y ∈ ∆,

d(x, y) ≤ dE2(x, y).

For other equivalent definitions and basic properties, we refer the reader to standard
texts such as [4, 7]. Complete CAT(0) spaces are often called Hadamard spaces. Let
x, y ∈ X and t ∈ [0, 1]. We write tx⊕ (1− t)y for the unique point z in the geodesic
segment joining from x to y such that

d(z, x) = (1− t)d(x, y) and d(z, y) = td(x, y). (1.3)

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] = {tx⊕ (1− t)y : t ∈ [0, 1]}.

A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C. The metric
space X is said to satisfy the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 6 d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is known [5, Corollary 3] that a geodesically connected metric
space is CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

The concept of ∆-convergence introduced by Lim [17] in 1976 was shown by Kirk
and Panyanak [15] in CAT(0) spaces to be very similar to the weak convergence in
Hilbert space setting. Next, we give the concept of ∆-convergence and collect some
basic properties. Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X,
we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from Proposition 7 of [10] that in a CAT(0) space, A({xn}) consists of
exactly one point.
A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk

}) = {x} for every sub-
sequence {xnk

} of {xn}. We say that a subset C of X is ∆-closed if for every sequence
{xn} ⊂ C that ∆-converges to x we have x ∈ C. In recent years, ∆-convergence of
iterative sequences to fixed points and solutions of optimization problems find more
attentions, see, e.g., [12, 1, 26, 20] and references therein. Uniqueness of asymptotic
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center implies that CAT(0) space X satisfies Opial’s property, i.e., for given {xn} ⊂ X
such that {xn} ∆-converges to x and given y ∈ X with y 6= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y). (1.4)

We need the following lemmas in the sequel.

Lemma 1.1. [15] Every bounded sequence in a complete CAT(0) space always has a
∆-convergent subsequence.

Lemma 1.2. [9] If C is a closed convex subset of a complete CAT(0) space and if
{xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C. In other
words, every closed convex subset of a complete CAT(0) space is ∆-closed.

Lemma 1.3. [13] Let X be a complete CAT(0) space, {xn} be a bounded sequence in
X and x ∈ X. Then {xn} ∆-converges to x if and only if lim supn→∞〈−−→xxn,−→xy〉 ≤ 0
for all y ∈ X.

Lemma 1.4. [11, Lemma 2.5] A geodesic space X is a CAT(0) space if and only if
the following inequality

d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y), (1.5)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1].

Let C be a nonempty closed convex subset of a complete CAT(0) space X. It is
known that for any x ∈ X there exists a unique point u ∈ C such that

d(x, u) = inf
y∈C

d(x, y).

The mapping PC : X → C defined by PCx = u is called the metric projection from
X onto C. Dehghan and Rooin [8] obtained the following characterization of metric
projection in CAT(0) metric spaces.

Theorem 1.5. [8, Theorem 2.2] Let C be a nonempty closed convex subset of a
complete CAT(0) space X, x ∈ X and u ∈ C. Then

u = PCx if and only if 〈−→ux,−→yu〉 ≥ 0, for all y ∈ C.

Lemma 1.6. [1, Lemma 4.3] Let C be a nonempty closed convex subset of a complete
CAT(0) space X and {zn} be a sequence in X such that

d(zn+1, z) ≤ d(zn, z),

for all z ∈ C and n ≥ 1. Then, {PCzn} converges to some u ∈ C.

Let l∞ be the Banach space of bounded real sequences with supremum norm. Let µ
be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value of µ
at f = (x1, x2, x3, . . .) ∈ l∞. Sometimes, we denote by µn(xn) the value µ(f). A linear
functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, . . .). A mean
µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn) for all f = (x1, x2, . . .) ∈ l∞.
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . .) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.
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In particular, if f = (x1, x2, x3, . . .) ∈ l∞ and xn → a ∈ R, then we have

µ(f) = µn(xn) = a.

For a proof of existence of a Banach limit and its other elementary properties, see
[24].

2. Some existence theorems in Hadamard spaces

In this section, we first prove some fundamental existence theorems in Hadamard
space. Then, using these results we obtain existence of fixed points for large class of
mappings.
Let X be an Hadamard space. Recall a function f : X → R is said to be lower
semicontinuous if for every α ∈ R the set

{x ∈ X : f(x) ≤ α},

is closed. If for each x, y ∈ X and each t ∈ [0, 1] the inequality

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds, we say that f is convex.
In a general topological space X, it is well known (see e.g., [21]) that if f : X → R
is lower semicontinuous then for every sequence {xn} in X that converges to x0, we
have

f(x0) ≤ lim inf
n→∞

f(xn).

Note that both of lower semicontinuity of f and covergence of xn are respect to the
same topology. Some known topologies in Hadamard spaces studied by Kakavandi
in [13], which are related to strong convergence, w-convergence and ∆-convergence.
A natural question is: what happen if we weaken the convergence condition on the
sequence? In the following lemma, we provide an appropriate answer to the question.

Lemma 2.1. [3, Lemma 3.2.3] Let X be an Hadamard space and f : X → R be a
lower semicontinuous and convex function. If the sequence {xn} in X, ∆-converges
to x0, then

f(x0) ≤ lim inf
n→∞

f(xn). (2.1)

The existing of minima for lower semicontinuous functions on complete metric
spaces (possibly noncompact) has been studied by many authors from different points
of view (see e.g. [6, 22]). Usually, there is at least an existence assumption in such
results (see e.g. [6, (iii) in Section 5]). In the next theorem, there is no existence
assumption. The existence of minima derived from structure of Hadamard spaces.

Theorem 2.2. Let C be a nonempty closed convex subset of an Hadamard space X
and o be an arbitrary and fixed element of X. Let f : X → R be a lower semicontin-
uous and convex function such that f(zm) → ∞ as d(zm, o) → ∞. Then f takes its
mimum, i.e., there exists x0 ∈ C such that

f(x0) = min{f(x) : x ∈ C}.
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Proof. Let {xn} be a minimizing sequence of f over C. This means that for the
sequence {xn} ⊂ C we have

lim
n→∞

f(xn) = inf{f(x) : x ∈ C}.

From the assumption f(zm)→∞ as d(zm, o)→∞ we conclude that {xn} is bounded.
Using Lemma 1.1 there exists a subsequence {xnk

} of {xn} that ∆-converges to x0.
It follows from Lemma 1.2 that x0 ∈ C. Note that C is closed and convex and so it
is an Hadamard space. Hence, by Lemma 2.1 we have

f(x0) ≤ lim inf
k→∞

f(xnk
).

Therefore,

f(x0) ≤ lim inf
k→∞

f(xnk
) = lim

n→∞
f(xn) = inf{f(x) : x ∈ C} ≤ f(x0).

This completes the proof. �
To prove fixed point theorem in Hadamard spaces we need the following lemma in
which we follow the techniques in [25].

Lemma 2.3. Let C be a nonempty closed convex subset of an Hadamard space X,
{xn} be a bounded sequence in X and µ be a Banach limit. If f : C → R is defined
by

f(x) = µnd
2(xn, x), ∀x ∈ C,

then there exists a unique x0 ∈ C such that

f(x0) = min{f(x) : x ∈ C}.

Proof. Put y, z ∈ C and t ∈ [0, 1]. Then by (1.5) we have

d2(xn, ty ⊕ (1− t)z) ≤ td2(xn, y) + (1− t)d2(xn, z)− t(1− t)d2(y, z)

≤ td2(xn, y) + (1− t)d2(xn, z).

Taking Banach limit µ from both sides we get

f(ty ⊕ (1− t)z) = µnd
2(xn, ty ⊕ (1− t)z)

≤ µntd2(xn, y) + µn(1− t)d2(xn, z)

= tf(y) + (1− t)f(z).

This shows that f is convex function. Let {zm} be a sequence in C such that zm → z.
For any n,m ∈ N, we have

d2(xn, zm)− d2(xn, z) = |d(xn, zm)− d(xn, z)| (d(xn, zm) + d(xn, z))

≤M1d(zm, z),

where M1 = supn,m∈N(d(xn, zm) + d(xn, z)). Therefore,

f(zm)− f(z) ≤M1d(zm, z).

Similarly, we have

f(z)− f(zm) ≤M1d(zm, z).
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So, we have

|f(zm)− f(z)| ≤M1d(zm, z).

This implies that f is continuous. Suppose that o is an arbitrary and fixed element
of X and {zm} is a sequence in C such that d(zm, o)→∞. Then, by (1.2) we have

d2(zm, o) = d2(zm, xn) + d2(o, xn) + 2〈−−−→zmxn,
−−→xno〉

≤ d2(zm, xn) + d2(o, xn) + 2(d(o, zm) + d(o, xn))d(o, xn)

≤ d2(zm, xn) +M2
2 + 2(d(o, zm) +M2)M2,

where M2 = supn∈N d(o, xn). Therefore, we have

d(zm, o)(d(zm, o)− 2M2)− 3M2
2 ≤ d2(zm, xn).

So,

d(zm, o)(d(zm, o)− 2M2)− 3M2
2 ≤ µnd2(zm, xn) = f(zm).

It follows that f(zm)→∞ as d(zm, o)→∞. Using Theorem 2.2, there exists x0 ∈ C
such that

f(x0) = min{f(x) : x ∈ C}.
To prove uniqueness, let x0 and y0 be elements in C such that x0 6= y0 and

f(x0) = f(y0) = min{f(x) : x ∈ C} = t.

Put an arbitrary t0 ∈ (0, 1). It follows from (1.5) that

d2(xn, t0x0 ⊕ (1− t0)y0) ≤ t0d2(xn, x0) + (1− t0)d2(xn, z0)− t0(1− t0)d2(x0, y0).

Applying Banach limit µ, we have

f(t0x0 ⊕ (1− t0)y0) ≤ t0f(x0) + (1− t0)f(y0)− t0(1− t0)d2(x0, y0)

= t− t0(1− t0)d2(x0, y0)

< t.

This is a contradiction. So, we have x0 = y0. �
The following theorem is a generalization of [25, Theorem 4.1].

Theorem 2.4. Let C be a nonempty closed convex subset of an Hadamard space X
and T : C → C be a mapping. Suppose that there exists an element x ∈ C such that
{Tnx} is bounded and

µnd
2(Tnx, Ty) ≤ µnd2(Tnx, y), ∀y ∈ C,

for some Banach limit µ. Then, T has a fixed point in C.

Proof. For a Banach limit µ on l∞, we can define f : C → (−∞,+∞) as follows:

f(z) = µnd
2(Tnx, z), ∀z ∈ C.

From Lemma 2.3, there exists a unique x0 ∈ C such that

f(x0) = min{f(x) : x ∈ C}.
Hence,

f(Tx0) = µnd
2(Tnx, Tx0) ≤ µnd2(Tnx, x0) = f(x0).
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Since Tx0 ∈ C, it follows from uniqueness of x0 that Tx0 = x0. This completes the
proof. �

3. λ-hybrid mappings and fixed point theorems

In this section, we present definition of a broad class of mappings containing the
class of nonexpansive mappings, nonspreading mappings and hybrid mappings in
metric space.

Let C be a nonempty subset of a metric space X. Then the mapping T : C → X
is said to be λ-hybrid if

d2(Tx, Ty) ≤ d2(x, y) + 2(1− λ)〈
−−→
xTx,

−−→
yTy〉 (3.1)

or equivalently

2d2(Tx, Ty) ≤ d2(x, Ty) + d2(y, Tx)− 2λ〈
−−→
xTx,

−−→
yTy〉 (3.2)

for all x, y ∈ C. This is a generalization of the concept of λ-hybrid mappings intro-
duced by Aoyama et al. [2]. Let T : C → X be a λ-hybrid mapping.

• If λ = 0, then T is called nonspreading;
• if λ = 1/2, then T is called hybrid;
• if λ = 1, then T is called nonexpansive.

Also, a λ-hybrid mapping with a fixed point is quasi-nonexpansive.

Example 3.1. Consider R2 with the usual Euclidean norm ‖ · ‖. Let X = R2 be an
R-tree with the radial metric dr, where dr(x, y) = d(x, y) = ‖x − y‖ if x and y are
situated on a Euclidean straight line passing through the origin 0 = (0, 0) and

dr(x, y) = d(x,0) + d(y,0) := ‖x‖+ ‖y‖

otherwise (see [14] and [18, page 65]). Let λ ∈ [0, 1),

α =
λ(1− λ) +

√
2(1− λ)

1− λ2
,

A = {x ∈ X : ‖x‖ ≤ 1}, B = {x ∈ X : ‖x‖ ≤ α}, and define the mapping T : X → X
as follows:

Tx =

 0 (x ∈ B)

PA(x) = x/‖x‖ (x ∈ X\B).

We show that Then T is λ-hybrid. First, note that α > 1. We may write the inequality
(3.1) as

λd2r(x, y) + (λ− 2)d2r(Tx, Ty) + (1− λ)
(
d2r(x, Ty) + d2r(y, Tx)

)
≥ 0. (3.3)

(i) In the case that x, y ∈ B we have dr(Tx, Ty) = 0 and so (3.3) clearly holds.
(ii) (a) In the case that x, y ∈ X\B are on a straight ray initiating from the

origin, again we have dr(Tx, Ty) = 0 and so (3.3) holds.
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(b) If x, y ∈ X\B are not on a straight ray initiating from the origin, then

λd2r(x, y) + (λ− 2)d2r(Tx, Ty) + (1− λ)
(
d2r(x, Ty) + d2r(y, Tx)

)
= λ(‖x‖+ ‖y‖)2 + 4(λ− 2) + (1− λ)

(
(‖x‖+ 1)2 + (‖y‖+ 1)2

)
= 2λ(‖x‖ − 1)(‖y‖ − 1) + ‖x‖2 + ‖y|2 + 2‖x‖+ 2‖y‖ − 6

≥ ‖x‖2 + ‖y‖2 + 2‖x|+ 2‖y‖ − 6

≥ 0.

(iii) (a) Let x ∈ B and y ∈ X\B be on a straight ray initiating from the origin.
Since in this case dr(x, y) = d(x, y) = ‖x − y‖ and quasilinearization

〈
−→
ab,
−→
cd〉 coincides with the inner product 〈a− b, c− d〉 for all a, b, c, d on

this ray, the conclusion follows from [2, Example 3.4].
(b) If x ∈ B and y ∈ X\B are not on a straight ray initiating from the

origin, then

λd2r(x, y) + (λ− 2)d2r(Tx, Ty) + (1− λ)
(
d2r(x, Ty) + d2r(y, Tx)

)
= λ(‖x‖+ ‖y‖)2 + (λ− 2) + (1− λ)

(
(‖x‖+ 1)2 + ‖y‖2

)
= 2λ‖x‖‖y‖ − 1) + ‖x‖2 + ‖y‖2 + 2‖x‖ − 1

≥ ‖x‖2 + ‖y‖2 + 2‖x‖ − 1

≥ 0.

Note that T is not nonexpansive mapping.
In fact, if x = (α− 1/4, 0) and y = (α+ 1/4, 0), then we have

dr(Tx, Ty) = 1 >
1

2
= dr(x, y).

The following theorem generalizes the known results from Hilbert spaces in [19, 23, 16].

Theorem 3.2. Let X be an Hadamard space and T : X → X be a λ-hybrid mapping.
Then T has a fixed point if and only if {Tnz} is bounded for some z ∈ X.

Proof. If F (T ) 6= ∅, then {Tnz} = {z} for all z ∈ F (T ). Therefore, {Tnz} is bounded.
To show the reverse, take z ∈ X such that {Tnz} is bounded. Since T : X → X is a
λ-hybrid mapping, then we have

d2(Tx, Ty) ≤ d2(x, y) + 2(1− λ)〈
−−→
xTx,

−−→
yTy〉 (3.4)

for all x, y ∈ X. Let n ∈ N. Replacing x by Tnz in (3.4) gives us

d2(Tn+1z, Ty) ≤ d2(Tnz, y) + 2(1− λ)〈
−−−−−−−→
TnzTn+1z,

−−→
yTy〉

= d2(Tnz, y) + 2(1− λ)
(
〈
−−−−−→
zTn+1z,

−−→
yTy〉 − 〈

−−−→
zTnz,

−−→
yTy〉

)
for all y ∈ X. Let µ be a Banach limit. Since {Tnz} is bounded, we can apply a
Banach limit µ to both sides of the above inequality. Then, we get

µnd
2(Tn+1z, Ty) ≤ µnd2(Tnz, y) + 2(1− λ)

(
µn〈
−−−−−→
zTn+1z,

−−→
yTy〉 − µn〈

−−−→
zTnz,

−−→
yTy〉

)
.
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This together with shift property of Banach limit implies that

µnd
2(Tnz, Ty) ≤ µnd2(Tnz, y) + 2(1− λ)

(
µn〈
−−−→
zTnz,

−−→
yTy〉 − µn〈

−−−→
zTnz,

−−→
yTy〉

)
.

So, we obtain

µnd
2(Tnz, Ty) ≤ µnd2(Tnz, y)

for all y ∈ X. By Theorem 2.4, we have a fixed point in X.

4. ∆-convergence theorem

In this section, we prove a ∆-convergence theorem of Mann’s type for λ-hybrid
mappings in Hadamard spaces. Before proving the theorem, we need the following
lemma.

Lemma 4.1. Let X be an Hadamard space, C be a nonempty closed convex subset
of X, λ ∈ R and T : C → X be a λ-hybrid mapping. Then, I − T is demiclosed, i.e.,
{xn} ∆-converges to z and d(xn, Txn)→ 0 imply z ∈ F (T ).

Proof. Since T : C → X is a λ-hybrid mapping, we have

d2(Tx, Ty) ≤ d2(x, y) + 2(1− λ)〈
−−→
xTx,

−−→
yTy〉 (4.1)

for all x, y ∈ C. Suppose {xn} ∆-converges to z and d(xn, Txn)→ 0. It is easily seen
that the sequences {xn} and {Txn} are bounded. Also, using the Cauchy-Schwarz
inequality, we obtain

lim
n→∞

〈
−−−−→
xnTxn,

−→
ab〉 = 0, (4.2)

lim
n→∞

〈
−−−−→
xnTxn,

−→
xnb〉 = 0, (4.3)

for all a, b ∈ X. Replacing x and y respectively by xn and z in (4.1) we get

d2(Txn, T z) ≤ d2(xn, z) + 2(1− λ)〈
−−−−→
xnTxn,

−−→
zTz〉.

This inequality together with (1.2) implies that

d2(Txn, xn) + d2(Tz, xn)− 2〈
−−−−→
xnTxn,

−−−→
xnTz〉 ≤ d2(xn, z) + 2(1− λ)〈

−−−−→
xnTxn,

−−→
zTz〉.

Since the sequences {xn} and {Txn} are bounded, we can apply a Banach limit µ to
both sides of the above inequality. Then, we have

µn

(
d2(Txn, xn) + d2(Tz, xn)− 2〈

−−−−→
xnTxn,

−−−→
xnTz〉

)
≤ µn

(
d2(xn, z) + 2(1− λ)〈

−−−−→
xnTxn,

−−→
zTz〉

)
.

It follows from linearity of Banach limit and (4.2) and (4.3) that

µnd
2(xn, T z) ≤ µnd2(xn, z).

Again, from (1.2), we obtain

µnd
2(xn, z) + µnd

2(Tz, z)− 2µn〈−−→zxn,
−−→
zTz〉 ≤ µnd2(xn, z).
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It follows from Lemma 1.3 that

µnd
2(Tz, z) ≤ 2µn〈−−→zxn,

−−→
zTz〉 ≤ 2 lim sup

n→∞
〈−−→zxn,

−−→
zTz〉 ≤ 0.

Therefore, d2(Tz, z) ≤ 0 and so Tz = z. This implies that I − T is demiclosed. �

Theorem 4.2. Let X be an Hadamard space, T : X → X be a λ-hybrid mapping
with F (T ) 6= ∅. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim inf
n→∞

αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ X and

xn+1 = αnxn ⊕ (1− αn)Txn, n ≥ 1. (4.4)

Then the sequence {xn} is ∆-convergent to an element q ∈ F (T ), where

q = lim
n→∞

PF (T )xn.

Proof. Let z ∈ F (T ). Since every λ-hybrid mapping is quasi-nonexpansive, we have

d(xn+1, z) = d(αnxn ⊕ (1− αn)Txn, z)

≤ αnd(xn, z) + (1− αn)d(Txn, z)

≤ αnd(xn, z) + (1− αn)d(xn, z)

= d(xn, z).

That is, the sequence {d(xn, z)} is decreasing and so lim
n→∞

d(xn, z) exists. So, we have

that {xn} is bounded. It follows from (1.5) that

d2(xn+1, z) = d2(αnxn ⊕ (1− αn)Txn, z)

≤ αnd2(xn, z) + (1− αn)d2(Txn, z)− αn(1− αn)d2(Txn, xn)

≤ αnd2(xn, z) + (1− αn)d2(xn, z)− αn(1− αn)d2(Txn, xn)

= d2(xn, z)− αn(1− αn)d2(Txn, xn).

So, we have

αn(1− αn)d2(Txn, xn) ≤ d2(xn, z)− d2(xn+1, z).

Since lim
n→∞

d(xn, z) exists and lim inf
n→∞

αn(1 − αn) > 0, we have lim
n→∞

d(Txn, xn) = 0.

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} such that ∆-converges

to q. By Lemma 4.1, we obtain q ∈ F (T ). Let {xmi
} and {xki} be two subsequences

of {xn} such that ∆-converges to q1 and q2. To complete the proof, we show q1 = q2.
We know q1, q2 ∈ F (T ) and hence lim

n→∞
d(xn, q1) and lim

n→∞
d(xn, q2) exist. If q1 6= q2,

then from (1.4) we conclued that

lim
n→∞

d(xn, q1) = lim sup
i→∞

d(xmi
, q1) < lim sup

i→∞
d(xmi

, q2)

= lim
n→∞

d(xn, q2) = lim sup
i→∞

d(xki , q2)

< lim sup
i→∞

d(xki , q1) = lim
n→∞

d(xn, q1),
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which is a contradiction. Hence, q1 = q2. Thus {xn} ∆-converges to q.
Put un = PF (T )xn. We show that q = lim

n→∞
un. Since q ∈ F (T ), it follows from

Theorem 1.5 that

〈−−−→unxn,
−−→qun〉 ≥ 0.

By Lemma 1.6, {un} converges strongly to some u ∈ F (T ). Also,

0 ≤ 〈−−−→unxn,
−−→qun〉

= 〈−−→unq,−−→qun〉+ 〈−−→qxn,−→qu〉+ 〈−−→qxn,−−→uun〉
≤ 〈−−→unq,−−→qun〉+ 〈−−→qxn,−→qu〉+ d(q, xn)d(u, un).

Taking lim sup
n→∞

, using Lemma 1.3 and the fact that {xn}∆-converges to q and un → u,

we obtain

0 ≤ 〈−→qu,−→uq〉 = −d2(q, u),

which gives us q = u and the proof is complete. �
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