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1. Technical preliminaries

The metric fixed point theory has inspired many researchers since the emergence of
Banach Contraction Principle in 1922. Therefore, many interesting works are there
in existing literature involving various types of contractive conditions and abstract
spaces, see [2, 3, 4, 5, 7, 8, 10, 12, 18]. Of late, a very novel generalization of the
above-mentioned principle is proposed by Gordji et al. [9]. They firstly came up
with the notion of an orthogonal set and further, obtained the extension of Banach
fixed point result for such kind of sets. We here put down the formal definition of an
orthogonal set.
Definition 2.1. Suppose that X is a non-empty set and ⊥ is a binary relation on
X. If there exists x0 ∈ X such that

(∀y ∈ X)x0 ⊥ y ∨ (∀y ∈ X)y ⊥ x0,
713
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then the element x0 is said to be an orthogonal element and (X,⊥) is said to be an
orthogonal set (O-set). An O-set can possess more than one orthogonal element.
Definition 2.2. In an orthogonal set (X,⊥), any two elements x, y ∈ X are called
orthogonally related if x ⊥ y.

Suppose that (X,⊥) is an orthogonal set equipped with a metric d on X. Then
(X,⊥, d) is termed as an orthogonal metric space (O-metric space). In [9], the authors
also introduced the allied notions of sequences, completeness and continuity for such
metric structures, which we omit here. In fact, we refer the reader to [1, 19] for more
notations, terminologies and results on orthogonal metric setting.

On the other hand, in 1996, Kada et al. [11] proposed the concept of a w-distance
in usual metric spaces and derived some interesting results using this notion. The
definition of w-distance is as follows.
Definition 2.3. Assume that (X, d) is a metric space. A map q : X ×X → [0,∞) is
termed as a w-distance when the following hold:

(w1) q(x, z) ≤ q(x, y) + q(y, z) for any x, y, z ∈ X;
(w2) for every x ∈ X, q(x, .) : X → [0,∞) is lower semi-continuous;
(w3) for each ε > 0, there is a δ > 0 such that if q(z, x) ≤ δ and q(z, y) ≤ δ, then

d(x, y) ≤ ε.

For further examples and references on such generalized distances, keen readers are
referred to [13, 14, 21, 25]. Afterwards, Senapati et al. [22] revised the definition of
w-distances for the setting of an orthogonal metric space.
Definition 2.4. Assume that (X,⊥, d) is an O-metric space. Consider the mapping
q : X ×X → [0,∞) which satisfies the succeeding hypotheses:

(w1′) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;
(w2′) for each x ∈ X, q(x, .) : X → [0,∞) is O-lower semi-continuous;
(w3′) for any ε > 0, there is a δ > 0 with q(z, x) ≤ δ and q(z, y) ≤ δ imply that

d(x, y) ≤ ε.

Then q is said to be a w-distance on X. The authors also revised the following lemma
in orthogonal metric context.
Lemma 2.5. Suppose that q is a w-distance defined on an O-metric space (X,⊥, d).
Also suppose that (xn) and (yn) are two O-sequences in X and x, y, z ∈ X. Let (un)
and (vn) be sequences of positive reals which converge to 0. Subsequently, the following
hold:

(i) If q(xn, y) ≤ un and q(xn, z) ≤ vn, then y = z. Besides, when q(x, y) = 0
and q(x, z) = 0, then y = z.

(ii) If q(xn, yn) ≤ un and q(xn, z) ≤ vn, then yn → z as n→∞.
(iii) If q(xn, xm) ≤ un for every m > n, then (xn) is a Cauchy O-sequence in X.
(iv) If q(xn, y) ≤ un, then (xn) is a Cauchy O-sequence in X.

Recently, Wardowski [23] introduced the notion of an F -contraction, in the frame-
work of usual metric space and established a fixed point result involving the said
contractions. Here we note down the definition first.
Definition 2.6. Let F : R+ → R be a mapping which holds the following:
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(F1) F is strictly increasing, that is, for each α, β ∈ R+ such that α < β implies
F (α) < F (β);

(F2) for every sequence (γn) of positive reals, lim
n→∞

γn = 0 if and only if

lim
n→∞

F (γn) = −∞;

(F3) there is k ∈ (0, 1) so that lim
γ→0+

γkF (γ) = 0.

We denote the collection all functions F : R+ → R which satisfies (F1), (F2) and
(F3) by F. Now we recall the following:
Definition 2.7. A self-map f on a metric space (X, d) is said to be an F -contraction
if there exists τ > 0 such that for x, y ∈ X

d(fx, fy) > 0⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)),

where F ∈ F.
Many other results related to the F -contractions can be found in [6, 15, 16, 17, 20,

24] and the references therein.
In the existing literature of the metric fixed point theory, one can observe that the

fixed point results related to F -contractions and w-distances require the underlying
space to be complete. So naturally a question comes that whether we can obtain
some fixed point results concerning F -contractions and w-distances in the context
of a metric space which is not necessarily complete. Since an O-complete metric
space need not to be complete, results involving F -contractions and w-distances in
the context of O-complete metric spaces can provide an affirmative answer to the
aforementioned question. Keeping all these facts in mind, we propose the notions
of Fw-contractions and Hardy-Rogers type Fw-contractions in the setting of an or-
thogonal metric space. In addition to that, we establish a pair of fixed point results
involving such kind of contractions in O-complete metric spaces. Moreover, we make
use of the results to investigate the possibility of existence a unique solution for a
class of initial value problems and another class of boundary value problems. Along
with these, we construct a couple of non-trivial numerical examples to support our
obtained results.

2. Fixed point results

At the beginning of this section, we propose the notions of an orthogonal Fw-
contraction and orthogonal Fw-contraction of Hardy-Rogers type in orthogonal metric
spaces.
Definition 3.1. Assume that p is a w-distance defined on an orthogonal metric space
(X,⊥, d). A self-map T on X is said to be an orthogonal Fw-contraction if there is a
function F ∈ F such that for all x, y ∈ X with x ⊥ y, the following hold:

(i) p(x, y) = 0⇒ p(Tx, Ty) = 0;
(ii) there exists a real number τ > 0 such that

p(Tx, Ty) > 0⇒ τ + F (p(Tx, Ty)) ≤ F (p(x, y)).

If the condition (ii) is replaced by
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(ii′) there exists a number τ > 0 with

τ + F (p(Tx, Ty)) ≤ F (αp(x, y) + βp(x, Tx) + γp(y, Ty) + δp(x, Ty) + Lp(y, Tx))

for any two orthogonally related elements x, y ∈ X with p(Tx, Ty) > 0, where
α, β, γ, δ are positive real numbers such that α + β + γ + 2δ = 1, γ 6= 1 and L ≥ 0,
then T is called an orthogonal Fw-contraction of Hardy-Rogers type.

To begin with, we derive the subsequent theorem regarding the existence and
uniqueness of a fixed point of orthogonal Fw-contractions.
Theorem 3.2. Assume that p is a w-distance defined on an O-complete metric
space (X,⊥, d). Also let T : X → X be an O-continuous, ⊥-preserving, orthogonal
Fw-contraction. Then

(i) T owns a unique fixed point x̃.
(ii) (Tnx) converges to x̃ for every x ∈ X.

Proof. (i) Suppose that x0 is an orthogonal element in X. Then we have

(∀y ∈ X)x0 ⊥ y ∨ (∀y ∈ X)y ⊥ x0.
Let us now define the sequence (xn) by setting xn = Txn−1 for all n ∈ N. Since x0
is an orthogonal element of X and T is an ⊥-preserving map, (xn) is an O-sequence,
that is,

(∀n ∈ N)xn ⊥ xn+1 ∨ (∀n ∈ N)xn+1 ⊥ xn.
We first assume that

p(xk−1, xk) = 0 (2.1)

for some k ∈ N. Then from condition (i) of Definition 3.1, we have

p(xk, xk+1) = 0. (2.2)

By the triangular condition of a w-distance, we have

p(xk−1, xk+1) ≤ p(xk−1, xk) + p(xk, xk+1).

Here, using (2.1) and (2.2), it follows that

p(xk−1, xk+1) = 0. (2.3)

Therefore from (2.1), (2.3) and by Lemma 2.5, we have xk = xk+1, i.e., xk is a fixed
point of T .

Next, we assume that p(xn+1, xn) > 0 for each n ∈ N. Since, T is an orthogonal
Fw-contraction and (xn) is an O-sequence, it follows that

τ + F (p(xn, xn+1)) ≤ F (p(xn−1, xn)). (2.4)

Let γn = p(xn, xn+1) for all n ∈ N. Then (γn) is a sequence of non-negative real
numbers. Then from (2.4), we have

F (γn) ≤ F (γn−1)− τ ≤ · · · ≤ F (γ0)− nτ, (2.5)

which implies that
lim
n→∞

F (γn) = −∞. (2.6)

By (F2) and (2.6), we get
lim
n→∞

γn = 0. (2.7)
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Again by condition (F3), there is a real number k ∈ (0, 1) with

lim
n→∞

γknF (γn) = 0. (2.8)

Now from (2.5), we have

γknF (γn)− γknF (γ0) ≤ γkn(F (γ0)− nτ)− γknF (γ0) = −nγknτ ≤ 0. (2.9)

Employing (2.7), (2.8) and (2.9), we can conclude that

lim
n→∞

nγkn = 0.

Therefore there is a natural number n0 with

γn <
1

n
1
k

for all n ≥ n0.

Hence the infinite series

∞∑
n=1

γn is convergent. Since p is a w-distance, for all m > n,

we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

= γn + γn+1 + ....+ γm−1 < αn, (2.10)

where αn =

∞∑
i=n

γi. Thus (αn) is a sequence of positive real numbers which converges

to 0. Therefore, (xn) is a Cauchy O-sequence in X. By the O-completeness of X,
there is x̃ ∈ X with

lim
n→∞

xn = x̃.

By the O-continuity of T , we get

d(x̃, T x̃) = lim
n→∞

d(xn+1, T x̃) = lim
n→∞

d(Txn, T x̃) = d(T x̃, T x̃) = 0.

This shows that x̃ is a fixed point of T . Next, we check for the uniqueness of the fixed
point. If possible, let x̃ and ỹ be two distinct fixed points of T . Then we have

(x0 ⊥ x̃ ∧ x0 ⊥ ỹ) ∨ (x̃ ⊥ x0 ∧ ỹ ⊥ x0).

As T is ⊥-preserving, it follows that for every n ∈ N, we have

(Tnx0 ⊥ x̃ ∧ Tnx0 ⊥ ỹ) ∨ (x̃ ⊥ Tnx0 ∧ ỹ ⊥ Tnx0).

Since T is an orthogonal Fw-contraction, we have

F (p(Tnx0, T
nx̃)) ≤ F (p(x0, x̃))− nτ. (2.11)

Letting n tending to ∞ in (2.11), we get

lim
n→∞

F (p(xn, x̃)) = −∞.

By (F2), it follows that
lim
n→∞

p(xn, x̃) = 0. (2.12)

In a similar manner, it can be proved that

lim
n→∞

p(xn, ỹ) = 0. (2.13)
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Now we have

p(Tnx0, T
nx̃) ≤ p(Tnx0, Tnx̃) +

1

n
(2.14)

and

p(Tnx0, T
nỹ) ≤ p(Tnx0, Tnỹ) +

1

n
. (2.15)

Therefore using (2.14), (2.15) and Lemma 2.5, we get x̃ = ỹ. This proves the unique-
ness of the fixed point.

(ii) Let x ∈ X be arbitrary. Then we have

x0 ⊥ x ∨ x ⊥ x0.

Since T is ⊥-preserving, we have

(Tnx0 ⊥ Tnx) ∨ (Tnx ⊥ Tnx0).

Again, as T is an orthogonal Fw-contraction, it follows that

F (p(Tnx0, T
nx)) ≤ F (p(x0, x))− nτ.

Thus we get

lim
n→∞

F (p(Tnx0, T
nx)) = −∞,

which implies that

lim
n→∞

p(Tnx0, T
nx) =0

⇒ lim
n→∞

p(xn, T
nx) =0. (2.16)

Hence using (2.12), (2.16) and Lemma 2.5, we get lim
n→∞

Tnx = x̃. Since x ∈ X was

chosen arbitrarily, it follows that the sequence (Tnx) converges to the fixed point for
any x ∈ X.

In Theorem 3.2, we can replace the continuity of T by some other suitable condition.
We discuss this in the following theorem.
Theorem 3.3. Let a w-distance p is defined on an O-complete metric space (X,⊥, d).
Also suppose that T : X → X is a ⊥-preserving, orthogonal Fw-contraction and there
exists an orthogonal element x0 ∈ X such that the iterative sequence (Tnx0) converges
to x̃ and

(∀n ∈ N)Tnx0 ⊥ x̃ ∨ (∀n ∈ N)x̃ ⊥ Tnx0.

Then

(i) T owns a unique fixed point x̃.
(ii) (Tnx) converges to x̃ for every x ∈ X.

Proof. Proceeding in a similar way to that of Theorem 3.2, we obtain that for any
orthogonal element x0 in X, the iterative sequence (xn) converges to some x̃ ∈ X.
Now, by the lower semi-continuity of p and (2.10), we get

p(xn+1, x̃) ≤ lim inf
m→∞

p(xn+1, xm+1) < αn+1
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where αn+1 =

∞∑
i=n+1

γi. Taking n→∞ in the above equation and using the fact that

the infinite series

∞∑
n=1

γn is convergent, we get

p(xn+1, x̃) = 0.

Since Tnx0 ⊥ x̃, by (F1) and taking into account the lower semi-continuity of p and
(2.10), we get

p(Tn+1x0, T x̃) < p(xn, x̃) ≤ lim inf
m→∞

p(xn, xm) < αn,

where αn =

∞∑
i=n

γi. Since the infinite series

∞∑
n=1

γn is convergent, we have

p(xn+1, T x̃) = 0.

Therefore we can conclude that T x̃ = x̃. The rest of the claims follow from Theorem
3.2.

Next, we present some examples in support of Theorem 3.2.
Example 3.4. Let us consider the O-complete orthogonal metric space (X,⊥, d),
where X = (0,∞), d : X×X → R is defined by d(x, y) = |x−y| and a binary relation
‘⊥’ is defined as x ⊥ y if and only if x+ y ≥ 2. We take a w-distance

p(x, y) =

{
x+ y, if x 6= y;

0, if x = y.

Also, we take τ = ln 2 > 0 and F (x) = lnx. Next, we define a mapping T : X → X
by

Tx =

{
1, if x ≤ 5;
x
5 , if x > 5.

Then clearly T is O-continuous, ⊥-preserving and also p(x, y) = 0 ⇒ p(Tx, Ty) = 0.
Let x, y ∈ X be such that p(Tx, Ty) > 0. Then the following two cases arise.
Case I: Let x, y > 5. Then

τ + F (p(Tx, Ty)) = ln 2 + ln
(x

5
+
y

5

)
≤ ln(x+ y) = F (p(x, y)).

Case II: Let x ≤ 5 and y > 5. Then

τ + F (p(Tx, Ty)) = ln 2 + ln
(

1 +
y

5

)
≤ ln y ≤ F (p(x, y)).

Thus T is an orthogonal Fw-contraction. Hence all the assumptions of Theorem 3.2
are satisfied and so T has a unique fixed point. Indeed 2 is the only fixed point of T .
Further, note that for any x ∈ X, the sequence (Tnx) converges to 2.
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Example 3.5. Let us consider an O-complete orthogonal metric space (X,⊥, d)
where X = {0} ∪ { 1n : n ∈ N} and define d : X ×X → R by

d(x, y) =

{
x+ y, if x 6= y;

0, if x = y.

We also define a binary relation ‘⊥’ on X such that, for x, y ∈ X, x ⊥ y if and only
if xy ≤ x or xy ≤ y. We now define a w-distance q : X ×X → R by q(x, y) = y for
each x, y ∈ X. Next, we consider a self-map T : X → X by

Tx =


0, if x = 0;
1

n+5 , if x = 1
n and n ≤ 5;

0, if x = 1
n and n > 5.

Note that if q(x, y) = 0, then q(Tx, Ty) = 0. Next, we suppose that x ⊥ y and
q(Tx, Ty) > 0. Then y = 1

n for n ≤ 5. Also, we take τ = ln
(
3
2

)
> 0 and F (x) = lnx.

Therefore,

τ + F (q(Tx, Ty))− F (q(x, y)) = ln
( 3n

2n+ 10

)
≤ 0

⇒ τ + F (q(Tx, Ty)) ≤ F (q(x, y)).

It is easy to check that T is ⊥-preserving and O-continuous. Thus we see that all the
conditions of Theorem 3.2 hold good. So employing the result, we conclude that, T
has a unique fixed point and we can easily check that 0 is the solitary fixed point of
the map.
Example 3.6. Let us consider an O-complete orthogonal metric space ([0, 1],⊥, d),
where d is the usual metric on [0, 1] and ‘⊥’ be an orthogonal relation on [0, 1],
defined by u ⊥ v if and only if uv ≤ u ∨ v, u, v ∈ [0, 1]. We now define a function
q : [0, 1] × [0, 1] → R by q(u, v) = max{u, v}. One can easily check that q is a
w-distance on [0, 1]. Now we consider the function T : [0, 1]→ R defined by

T (u) =
u

3 + u
.

If q(u, v) = 0, then q(Tu, Tv) = 0. Let us take τ = ln 3 and F (u) = lnu. Then clearly
τ > 0 and F ∈ F . Let u, v ∈ [0, 1] be arbitrary with u ⊥ v and q(Tu, Tv) > 0. Then
u > 0 or v > 0. Let q(u, v) = u. Then u > v and so u

3+u >
v

2+v . Therefore, we obtain

τ + F (q(Tu, Tv)) ≤ F (q(u, v)).

Similarly if q(u, v) = v, then we can show that

τ + F (q(Tu, Tv)) ≤ F (q(u, v)).

Thus T is an orthogonal Fw-contraction. It is quite easy to check that T is ⊥-
preserving and O-continuous. Hence T satisfies all the hypotheses of Theorem 3.2
and therefore T owns a unique fixed point. Indeed 0 is the unique fixed point of T .

Now we proof the following theorem which is an analogous version of Theorem 3.2
involving orthogonal Fw-contraction of Hardy-Rogers type.
Theorem 3.7. Suppose that p is a w-distance defined on an O-complete metric space
(X,⊥, d). Also suppose that T : X → X is an O-continuous, ⊥-preserving orthogonal
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Fw-contraction of Hardy-Rogers type. Assume that there exists an orthogonal element
x0 ∈ X such that p(x0, x0) = 0. Then T possesses a fixed point.
Proof. Since x0 be an orthogonal element in X, we have

(∀y ∈ X)x0 ⊥ y ∨ (∀y ∈ X)y ⊥ x0.

Now let us define a sequence (xn) by setting xn = Txn−1 for all n ∈ N. Since x0
is an orthogonal element of X and T is an orthogonal preserving map, (xn) is an
O-sequence, which implies,

(∀n ∈ N)xn ⊥ xn+1 ∨ (∀n ∈ N)xn+1 ⊥ xn.

If p(xk+1, xk) = 0 for some k ∈ N, then proceeding similarly to the arguments of
Theorem 3.2, we can show that xk is a fixed point of T .
Therefore we can assume that p(xn+1, xn) > 0 for all n ∈ N. Since, T is an orthogonal
Fw-contraction of Hardy-Rogers type and xn ⊥ xn+1, we have

τ + F (p(xn, xn+1)) ≤F (αp(xn−1, xn) + βp(xn−1, xn) + γp(xn, xn+1)

+ δp(xn−1, xn+1) + Lp(xn, xn)). (2.17)

Now, as p(x0, x0) = 0 using (i) of Definition 3.1, we obtain p(xn, xn) = 0 for each
n ∈ N. Again, since F is strictly increasing, we have

τ + F (p(xn, xn+1)) ≤ F (αp(xn−1, xn) + βp(xn−1, xn) + γp(xn, xn+1)

+ δ[p(xn−1, xn) + p(xn, xn+1)])

⇒ τ + F (p(xn, xn+1)) ≤ F ((α+ β + δ)p(xn−1, xn) + (γ + δ)p(xn, xn+1)). (2.18)

As F is strictly increasing, we get

p(xn, xn+1) ≤ (α+ β + δ)p(xn−1, xn) + (γ + δ)p(xn, xn+1)

⇒ p(xn, xn+1) ≤ (α+ β + δ)

(1− γ − δ)
p(xn−1, xn)

⇒ p(xn, xn+1) ≤ p(xn−1, xn).

Using the above fact in (2.18), we get

τ + F (p(xn, xn+1)) ≤ F (p(xn−1, xn)).

Now the remaining portion of the proof is analogous to that of Theorem 3.2 and so
excluded.

3. Applications to differential equations

In this section, we consider two different types of second order differential equations,
one is an initial value problem and another is a boundary value problem, and by using
our established result we try to find the solutions to those.

Firstly, let us consider the following initial value problem:{
d2y
dt2 + k dydt = K(t, y(t)), o ≤ t ≤ I;
y(0) = 0, y′(0) = a,

(3.1)

where K(t, y(t)) is a continuous function from [0, I]× R+ to R+, for some I > 0.
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(The above initial value problem exhibits the engineering problem of activation of
spring that is affected by an exterior force). It is quite easy to check that the above
initial value problem is equivalent to the following integral equation:

y(t) =

∫ t

0

G(t, s)K(s, y(s))ds, t ∈ [0, I], (3.2)

where G(t, s) is the Green’s function defined by

G(t, s) =

{
(t− s)eτ(t−s), if 0 ≤ s ≤ t ≤ I;
0, if 0 ≤ t ≤ s ≤ I,

where τ > 0 is a constant, which depends on the value of k in the initial value problem
(3.1). Let X = C([0, I],R+) be the set of all continuous functions from [0, I] to R+.
For all functions y(t) ∈ X we define

||y||τ = sup
t∈[0,I]

{|y(t)|e−2tτ}

where τ > 0 is a constant. Let us now consider an orthogonal relation on X by f ⊥ g
if and only if fg ≥ 0, where f, g ∈ X and a w-distance p : X ×X → [0,∞) by

p(x, y) = max{‖x‖τ , ‖y‖τ}

for all f, g ∈ X. Now we also consider a function T : X → X by

Ty(t) =

∫ t

0

G(t, s)K(s, y(s))ds > 0

for all y ∈ X and t ∈ [0, I]. It is quite obvious to note that the fixed point of the
mapping T will be the solution of the initial value problem (3.1). In the following
theorem we prove the existence and uniqueness of the fixed point of T , when T is an
orthogonal Fw-contraction.
Theorem 4.1. Consider the non-linear integral equation (3.2) and assume that the
following conditions hold:

(i) K is an increasing function;
(ii) there exists τ > 0 such that

|K(s, y)| ≤ τ2e−τy,

where s ∈ [0, I] and y ∈ R+;

Then there exists a unique solution to the integral equation.
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Proof. Let x, y ∈ X be arbitrary. We have

|Ty(s)| ≤
∫ t

0

G(t, s)|K(s, y(s))|ds

≤
∫ t

0

G(t, s)τ2e−τ |y(s)|ds [from the condition (b)]

≤
∫ t

0

(t− s)eτ(t−s)τ2e−τe2sτ ||y||τds

= τ2||y||τe−τ+tτ
∫ t

0

(t− s)esτds

= ||y||τe2τ+tτ [1− τte−tτ − e−tτ ].

Since (1− τte−tτ − e−tτ ) ≤ 1, we have

||Ty||τ ≤ e−τ ||y||τ ≤ e−τ max{‖x‖τ , ‖y‖τ}.
Similarly we can show that

‖Tx‖τ ≤ e−τ max{‖x‖τ , ‖y‖τ}.
Thus

max{‖Tx‖τ , ‖Ty‖τ} ≤ e−τ max{‖x‖τ , ‖y‖τ}
⇒ τ + ln(p(Tx, Ty)) ≤ ln(p(x, y)).

Now we take F ∈ F, defined by F (β) = lnβ, then we obtain

τ + F (p(Tx(t), T y(t)) ≤ F (p(x(t), y(t))).

This shows that T is a ⊥-preserving, O-continuous, orthogonal Fw-contraction. Con-
sequently, from Theorem 3.2, it can be concluded that the self-map has a unique
solution, i.e., the integral equation possesses a unique solution.
Subsequently, let us consider the following second order differential equation{

y′′(t) + y′(t) + f(t, y(t)) = 0, 0 ≤ t ≤ 1
3

y(0) = a, y
(
1
3

)
= b.

(3.3)

One can comfortably obtain the following theorem which deals with the equivalence
between the previous boundary value problem and an integral equation.
Theorem 4.2. The boundary value problem (3.3) is equivalent to the following inte-
gral equation:

y(t) = a+ 3bt− 3at+

∫ 1
3

0

3ty(x)dx−
∫ t

0

y(x)dx+

∫ 1
3

0

G(x, t)f(x, y(x))dx, (3.4)

where

G(x, t) =

{
x− 3xt, if x ≤ t;
t− 3xt, if x > t.

Now we prove the following result which plays a crucial role in our further findings.
Lemma 4.3. For the function G(x, t) of Theorem 4.2, we have, G(x, t) ≥ 0 for all

x, t ∈ [0, 13 ] and sup
t∈[0, 13 ]

∫ 1
3

0

G(x, t)dx =
1

72
.
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Proof. Since x, t ∈
[
0, 13
]
, it follows that 1 − 3t ≥ 0 and 1 − 3x ≥ 0 and hence

G(x, t) ≥ 0 for all x, t ∈
[
0, 13
]
. Again we can easily calculate that∫ 1

3

0

G(x, t)dx =
t

6
− t2

2
.

Therefore,
∫ 1

3

0
G(x, t)dx attains its maximum value at t = 1

6 and the maximum value

is 1
72 .

Theorem 4.4. Assume that the following conditions hold:

(i) f(x, y(x)) is continuous;
(ii) |f(x, y1(x))− f(x, y2(x))| ≤ K|y1(x)− y2(x)| where K is a positive constant

such that there exists a positive real number α > 0 satisfying 2
3 + K

72 ≤ α < 1.

Then the boundary value problem (3.3) has a unique solution.
Proof. Let us consider the metric space C[0, 13 ] of all real-valued continuous functions

defined on [0, 13 ] endowed with the sup norm metric d. We define a relation ⊥ on

C[0, 13 ] by the following rule: for x, y ∈ C[0, 13 ], x ⊥ y if and only if x ·y is continuous

on [0, 13 ]. If we take x0(t) = 1 for each t ∈ [0, 13 ], then x ⊥ x0 for every x ∈ C[0, 13 ].

Therefore,
(
C[0, 13 ], d,⊥

)
is an orthogonal metric space. Also we know that the metric

space
(
C[0, 13 ], d

)
is a complete metric space. We take F (x) = ln(x) and τ = − lnα,

then clearly F ∈ F and τ > 0. Next, we consider a function T : C[0, 13 ]→ C[0, 13 ] by

Ty(t) = a+ 3bt− 3at+

∫ 1
3

0

3ty(x)dx−
∫ t

0

y(x)dx+

∫ 1
3

0

G(x, t)f(x, y(x))dx (3.5)

for all y(t) ∈ C[0, 13 ], where G(x, t) is given by Theorem 4.2. Then, it is clear that to
find a solution of boundary value problem (3.3) is equivalent to find a fixed point of
T . Now for any y1, y2 ∈ C[0, 13 ] and t ∈ [0, 13 ], we have

Ty1(t)− Ty2(t) =

∫ 1
3

0

3t(y1(x)− y2(x))dx−
∫ t

0

(y1(x)− y2(x))dx

+

∫ 1
3

0

G(x, t)(f(x, y1(x))− f(x, y2(x)))dx

⇒ |Ty1(t)− Ty2(t)| ≤
∫ 1

3

0

3t|(y1(x)− y2(x))|dx+

∫ t

0

|(y1(x)− y2(x))|dx

+

∫ 1
3

0

G(x, t)|(f(x, y1(x))− f(x, y2(x)))|dx

≤ d(y1, y2)

∫ 1
3

0

3tdx+ d(y1, y2)

∫ t

0

dx

+

∫ 1
3

0

KG(x, t)|y1(x)− y2(x)|dx

≤ td(y1, y2) + td(y1, y2) +Kd(y1, y2)

∫ 1
3

0

G(x, t)dx.
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Therefore,

sup
0≤t≤ 1

3

|Ty1(t)− Ty2(t)| ≤ sup
0≤t≤ 1

3

2td(y1, y2) +Kd(y1, y2) sup
0≤t≤ 1

3

∫ 1
3

0

G(x, t)dx.

Using Lemma 4.3 in above equation, we get

d(Ty1, Ty2) ≤
(

2

3
+
K

72

)
d(y1, y2)

⇒ d(Ty1, Ty2) ≤ αd(y1, y2). (3.6)

Now we define a function p : C[0, 13 ] × C[0, 13 ] → R by p(x, y) = d(x, y) for all

x, y ∈ C[0, 13 ]. Then p is a w-distance on C[0, 13 ] and p(x, y) = 0 ⇒ p(Tx, Ty) = 0.

Let y1(t), y2(t) ∈ C[0, 13 ] be arbitrary with y1 ⊥ y2 and p(Ty1, T y2) > 0. Then using
(3.6), we get

p(Ty1, T y2) ≤ αp(y1, y2)

⇒ − ln(α) + ln(p(Ty1, Ty2)) ≤ ln(p(y1, y2))

⇒ τ + F (p(Ty1, Ty2)) ≤ F (p(y1, y2)).

Further, T is ⊥-preserving and O-continuous. Thus we see that all the conditions of
Theorem 3.2 hold good and so by that theorem, T has a unique fixed point in C[0, 13 ]
and hence the boundary value problem (3.3) has a unique solution.
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