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1. Introduction and Preliminaries

Let E be a reflexive Banach space with norm ‖ · ‖ and its dual E∗. Let L1(I) be
the space of Lebesgue integrable functions on an interval I.
Denote by C[I, E] the Banach space of strongly continuous functions x : I → E with
sup-norm ‖.‖0.
The study of weak solutions for Cauchy problems in reflexive Banach spaces was
initiated by, among others, Szep [26], Chow and Schur[3]. However, if E is nonreflexive
Banach space the situation is quite different (see [1] and [18]).
In 2005, the existence of weakly differentiable solutions for the initial value problem

x′(t) = f(t,Dγx(t)), x(0) = x0, t ∈ [0, 1] (1.1)

in reflexive Banach spaces has been considered, for the first time, by Salem and El-
Sayed [25].
For further existence results of solutions for some integral and differential equations
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in Banach spaces (see [5], [4], [12], [10] [17] and [19]-[26] and references therein).
In this paper, we shall study the existence of weak and pseudo solutions for the initial
value problem

dx

dt
= f(t, g(t,Dγx(t))), γ ∈ (0, 1), t ∈ I = [0, T ]

x(0) = x0.
(1.2)

which generalizes various known results (see [5],[6], [7],[9], [27] and [25] ).
Our consideration will be discussed in reflexive Banach space using O’Regan fixed
point theorem, we present two approaches under two sequences of assumptions on f
and g.
Now, let us recall the following basic definitions and propositions [25], [26] which will
be needed further on.

Proposition 1.1. A subset of a reflexive Banach space is weakly compact if and only
if it is closed in the weak topology and bounded in the norm topology.

Proposition 1.2. Let E be a normed space with x0 6= 0. Then there exists a φ ∈ E∗
with ‖φ‖ = 1 and φ(x0) = ‖x0‖.

Definition 1.3. A function x(.) is said to be pseudo-differentiable on I to a function
y(.) if for every φ ∈ E∗, there exists a null set N(φ) (i.e., N is depending on φ and
mes(N(φ) = 0) such that the real function t→ φ(x(t)) is differentiable a.e. on I and

φ(x′(t)) = φ(y(t)), t ∈ I\N(φ).

The function y(.) is called a pseudo-derivative of x(.)

Proposition 1.4. [23] Let x(.) : I → E be a weakly measurable function.

(A) If x(.) is Pettis integrable on I, then the indefinite Pettis integral

y(t) =

∫ t

0

x(s)ds, t ∈ I,

is absolutely continuous on I and x(.) is a pseudo-derivative of y(.).
(B) If y(.) is an absolutely continuous function on I and it has a pseudo-derivative

x(.) on I, then x(.) is Pettis integrable on I and

y(t) = y(0) +

∫ t

0

x(s)ds, t ∈ I.

Lemma 1.5. [20], [23] The integral of weakly continuous (Pettis integrable)function is
weakly (absolutely continuous and pseudo) differentiable with respect to the right end-
point of the integration interval and its weak (pseudo) derivative equals the integrand
at that point.

Definition 1.6. [24] Let x : I → E. The fractional Pettis integral of x of order α > 0
is defined by

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t > 0.

In the above definition the sign ”
∫

” denotes the Pettis integral.
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Salem and Cichoń [24] observed that such an integral

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds

is a convolution of a function h(τ) = τα−1/Γ(α) for τ > 0, h(τ) = 0 for τ ≤ 0, and
the function (x̃)(t) = x(t) for t ∈ I, where (x̃)(t) = 0 outside the interval I. Note that
Pettis integrability of x(t) implies Pettis integrability of x(t + h)(h > 0) and x(−t),
so the convolution of Pettis integrable function with real-valued function h can be
properly defined. We start with an obvious observation that for φ ∈ E∗

φ(Iαx(t)) =

∫ t

0

(t− s)α−1

Γ(α)
φ(x(s))ds. (1.3)

For more properties of fractional order integral in Banach spaces (see [25] and [24]).
Also, we have the following fixed point theorem, due to O’Regan, in reflexive

Banach space (see [21]).

Theorem 1.7. (O’Regan fixed point theorem) Let E be a Banach space and let Q be
a nonempty, bounded, closed and convex subset of the space E and let F : Q→ Q be
a weakly sequentially continuous and assume that FQ(t) is relatively weakly compact
in E for each t ∈ I . Then, F has a fixed point in the set Q.

2. Existence theorems

In the light of two sequences of assumptions on the functions f and g, we proceed
to prove two existence theorems of solutions to the initial value problem (1.2).

The question of proving the existence of solutions to the initial value problem
(1.2) reduces to proving the existence of solutions to a functional integral equation of
fractional order or proving the existence of solutions to a coupled system.

Consider the initial value problem (1.2). Operating by I1−γ on both sides we
obtain

Dγx(t) = I1−γf(t, g(t,Dγx(t)).

Let Dγx(t) = u(t) ∈ C[I, E], then we obtain

x(t) = x0 + Iγu(t) = x0 + I1f(t, g(t, u(t))), (2.1)

where u is the solution of the functional integral equation

u(t) = Iαf(t, g(t, u(t))), t ∈ I = [0, T ], α = 1− γ. (2.2)

So, we have proved the following lemma.

Lemma 2.1. The solution of the problem (1.2), if it exists, then it can be represented
by the solution of the nonlinear functional integral equation (2.2), this solution is
given by (2.1).
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2.1. Coupled system approach. In this subsection, we prove an existence result
in a reflexive Banach space for the functional integral equation (2.2) which can be
rewritten as a coupled system. Some existence results for coupled systems of integral
and differential equations in reflexive Banach space are proved in [13]-[11].

Let f, g : I × E → E satisfy the following assumptions:

(i) For each t ∈ I, f(t, .) is weakly sequentially continuous.

(ii) For each v ∈ C[I, E], f(., v(.)) is weakly measurable on I.

(iii) For each t ∈ I, g(t, .) is weakly Lipschitz in u with Lipschitz constant K < 1.

(iv) For each u ∈ C[I, E], g(., u(.)) is continuous on I.

(v) There exist a constant M1 such that ‖f(t, u)‖ ≤M1.

Now, let v(t) = g(t, u(t)), t ∈ I, then the nonlinear functional integral equation (2.2)
can be written in the form of a coupled system

u(t) = Iαf(t, v(t)), t ∈ I. (2.3)

v(t) = g(t, u(t)), t ∈ I. (2.4)

Let X be the class of all ordered pairs (u, v), u, v ∈ C[I, E] with the norm

||(u, v)|| = ||u||+ ||v||.

Definition 2.2. By a solution to (2.3)-(2.4) we mean a pair of functions (u, v) ∈ X,
u, v ∈ C[I, E] which satisfies the coupled system (2.3)-(2.4). This is equivalent to find
(u, v) ∈ X,u, v ∈ C[I, E] with

φ(u(t)) = φ

(∫ t

0

(t− s)α−1

Γ(α)
f(s, v(s))ds

)
, t ∈ I

φ(v(t)) = φ(g(t, u(t))), t ∈ I

Now, we can prove the following theorem.

Theorem 2.3. Let assumptions (i)-(v) be satisfied, then the coupled system (2.3)-
(2.4) has at least one solution (u, v) ∈ X,u, v ∈ C[I, E].

Proof. Define the operator A by

A(u, v)(t) = A(u(t), v(t)) = (A1v(t), A2u(t))

where

A1v(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, v(s))ds, t ∈ I

A2u(t) = g(t, u(t)), t ∈ I.

For any v ∈ C[I, E], since f(., v(.)) is weakly measurable on I and ‖f(t, v)‖ ≤ M1,
then φ(f(., v(.))) is Lebesgue integrable on I for all φ ∈ E∗. As a consequence of (1.3)
we have

φ(Iαf(t, v(t))) =

∫ t

0

(t− s)α−1

Γ(α)
φ(f(s, v(s)))ds
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is Lebesgue integrable on I for all φ ∈ E∗, which implies that the fractional Pettis
integrability of the function f . Thus the operator A1 makes sense.
Define the set Q by

Qr =

{
(u, v) ∈ X,u, v ∈ C[I, E] : ‖(u, v)‖0 ≤ r, r =

M1T
α

Γ(α+ 1)
+

M2

1−K

}
.

For notational purposes

‖x‖0 = sup
t∈I
‖x(t)‖.

The remainder of the proof will be given in four steps.

Step 1: The operator A maps Qr into itself.
Let (u, v) ∈ Q then using proposition 1.2 we have,

‖A1v(t)‖ = φ(A1v(t)) =

∫ t

0

(t− s)α−1

Γ(α)
φ(f(s, v(s)))ds

≤ M1

∫ t

0

(t− s)α−1

Γ(α)
ds ≤ M1t

α

Γ(α+ 1)
≤ M1T

α

Γ(α+ 1)
= r1,

and

‖A2u(t)‖ = φ(A2u(t)) = φ(g(t, u(t)))

≤ φ(g(t, 0)) +Kφ(u(t))

≤ φ(g(t, 0)) +K‖u(t)‖
≤ M2 +K‖u‖0

≤ M2 +Kr2, r2 =
M2

1−K
where M2 = sup{φ(g(t, 0)) : t ∈ I}.

‖A(u, v)(t)‖ = ‖(A1v(t), A2u(t))‖
= ‖A1v(t)‖+ ‖A2u(t)‖

≤ M1T
α

Γ(α+ 1)
+

M2

1−K
.

Then

‖A(u, v)‖0 = sup
t∈I
‖A(u, v)(t)‖ ≤ r, r =

M1T
α

Γ(α+ 1)
+

M2

1−K
.

Hence A(u, v) ∈ Qr, this means that AQr ⊂ Qr, i.e., A : Qr → Qr and AQr is
uniformly bounded.

Step 2: AQr(t) is relatively weakly compact in E.
Note that Qr is nonempty, closed, convex and uniformly bounded subset of X.
According to proposition 1.1, AQr is relatively weakly compact in X implies AQr(t)
is relatively weakly compact in E for each t ∈ I.
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Step 3: The operator A maps X into itself.
First, we shall prove that A1, A2 : C[I, E]→ C[I, E].
Let t1, t2 ∈ I, t2 > t1, without loss of generality, assume that

A1v(t2)−A1v(t1) 6= 0

then there exists φ ∈ E∗ with ‖φ‖ = 1 and

‖A1v(t2)−A1v(t1)‖ = φ(A1v(t2)−A1v(t1))

= φ(Iαf(t2, v(t2))− Iαf(t1, v(t1)))

=
∣∣∣ ∫ t2

0

(t2 − s)α−1

Γ(α)
φ(f(s, v(s)))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, v(s)))ds

∣∣∣
=

∣∣∣ ∫ t1

0

(t2 − s)α−1

Γ(α)
φ(f(s, v(s)))ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
φ(f(s, v(s)))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, v(s)))ds

∣∣∣
≤

∫ t1

0

∣∣∣ (t2 − s)α−1 − (t1 − s)α−1

Γ(α)

∣∣∣ | φ(f(s, v(s))) | ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
| φ(f(s, v(s))) | ds

≤ M1

∫ t1

0

∣∣∣ (t2 − s)α−1 − (t1 − s)α−1

Γ(α)

∣∣∣ds
+ M1

∫ t2

t1

∣∣∣ (t2 − s)α−1
Γ(α)

∣∣∣ds
≤ M1

Γ(α+ 1)
(| tα2 − tα1 | +2(t2 − t1)α)

Now, for A2 : C[I, E]→ C[I, E].
Without loss of generality, assume that A2u(t2)−A2u(t1) 6= 0

A2u(t2)−A2u(t1) = g(t2, u(t2))− g(t1, u(t1))

= g(t2, u(t2))− g(t1, u(t1))− g(t2, u(t1)) + g(t2, u(t1)).

Then

‖A2u(t2)−A2u(t1)‖ = φ(A2u(t2)−A2u(t1))

≤ φ(g(t2, u(t2))− g(t2, u(t1))) + φ(g(t2, u(t1))− g(t1, u(t1)))

≤ Kφ(u(t2)− u(t1)) + φ(g(t2, u(t1))− g(t1, u(t1)))

≤ K‖u(t2)− u(t1)‖+ ‖g(t2, u(t1))− g(t1, u(t1))‖.



FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS 677

Now, we shall prove that A : X → X.

‖A(u, v)(t2)−A(u, v)(t1)‖ = ‖(A1v(t2), A2u(t2))− (A1v(t1), A2u(t1))‖
= ‖(A1v(t2)−A1v(t1), A2u(t2)−A2u(t1))‖
= ‖A1v(t2)−A1v(t1)‖+ ‖A2u(t2)−A2u(t1))‖

≤ M1

Γ(α+ 1)
(| tα2 − tα1 | +2(t2 − t1)α)

+ K‖u(t2)− u(t1)‖+ ‖g(t2, u(t1))− g(t1, u(t1))‖.

Step 4: The operator A is weakly sequentially continuous.
The two sequences in C[I, E] {un(t)} and {vn(t)} which converge weakly to u(t), v(t)
respectively for all t ∈ I. Since g(t, u(t)) is weakly Lipschitz ⇒ g(t, u(t)) is weakly
continuous ⇒ g(t, u(t)), f(t, v(t)) are weakly sequentially continuous in the sec-
ond argument (assumption (i)), then f(t, vn(t)), g(t, un(t)) are convergent weakly
to f(t, v(t)), g(t, u(t)) respectively. Hence φ(f(t, vn(t))), φ(g(t, un(t))) are convergent
strongly to φ(f(t, v(t))), φ(g(t, u(t))) respectively. Using assumption (v) and applying
Lebesgue dominated convergence theorem for Pettis integral ([16]), then we have

φ

(∫ t

0

(t− s)α−1

Γ(α)
f(s, vn(s))ds

)
=

∫ t

0

(t− s)α−1

Γ(α)
φ(f(s, vn(s)))ds

→
∫ t

0

(t− s)α−1

Γ(α)
φ(f(s, v(s)))ds.

Thus φ(A1vn(t))→ φ(A1v(t)) and φ(A2un(t))→ φ(A2u(t)), i.e.,

‖A1vn(t)‖ → ‖A1v(t)‖ and ‖A2un(t)‖ → ‖A2u(t)‖.
Therefore,

‖A(un, vn)(t)‖ = ‖(A1vn(t), A2un(t))‖
= ‖A1vn(t)‖+ ‖A2un(t)‖
→ ‖A1v(t)‖+ ‖A2u(t)‖
→ ‖(A1v(t), A2u(t))‖
→ ‖A(u, v)(t)‖.

This means that A : Qr → Qr is weakly sequentially continuous.
Since all conditions of Theorem 1.7 are satisfied, then the operator A has at least one
solution (u, v) ∈ Qr. �

2.1.1. Initial Value Problem. Here, we shall study existence theorems of weak
solutions and pseudo-solutions for the initial value problem (1.2).
As particular cases of Theorem 2.3, we can obtain existence theorems of weak and
pseudo solutions for the initial value problem (1.2).

Definition 2.4. A function x : I → E is said to be a pseudo-solution of (1.2) if

(a) x(.) is absolutely continuous,
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(b) x(0) = x0,
(c) f(t, v(t)) is a pseudo-derivative of x(t).

Theorem 2.5. Let assumptions of Theorem 2.3 be satisfied, then the initial value
problem (1.2) has a pseudo-solution.

Proof. Since f(t, v(t)) is Pettis integrable and weakly measurable function, then the
solution

x(t) = x0 + I1f(t, v(t)), t ∈ I
of (1.2) is absolutely continuous. Also x(0) = x0, then

x′(t) = f(t, v(t)).

�

Now, we can deduce the existence of pseudo solutions of the initial value problem

x′(t) = f(t,Dγx(t)), x(0) = x0, t ∈ [0, 1] (2.5)

Corollary 2.6. Let assumptions of Theorem 2.3 be satisfied with

g(t,Dγx(t)) = Dγx(t),

then the initial value problem (2.5) has pseudo solutions x ∈ C[I, E].

Consider the following assumption

(i∗) f : I × E → E is weakly-weakly continuous.

Remark 2.7. It is obvious that if f satisfies the assumption (i∗), then it satisfies
assumptions (i), (ii) and (v).

Therefore, we have the following theorem

Theorem 2.8. Let assumptions (i∗) and (iii)−(iv) be satisfied, then the initial value
problem (1.2) has weakly differentiable solutions x ∈ C[I, E].

Proof. From Theorem 2.3 and Lemma 2.1, the solution of the initial value problem
(1.2) is given by

x(t) = x0 + I1f(t, v(t)),

where v(t) = g(t, u(t)), u(t) = Dγx(t) is given by (2.2). Since f is weakly continuous
in t, then the integral of f is weakly differentiable with respect to the right end point
of the integration interval and its derivative equals the integrand at that point ([20]),
therefore x(.) is weakly differentiable and

x′(t) = f(t, v(t)) = f(t, g(t,Dγx(t))). �

Taking g(t,Dγx(t)) = Dγx(t), we obtain the following corollary which is proved in
[25].

Corollary 2.9. Let assumptions (i∗) and (v) of Theorem 2.3 be satisfied with
g(t,Dγx(t)) = Dγx(t), then the initial value problem (2.5) has weakly differentiable
solution x ∈ C[I, E].
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2.2. Functional equation approach. Now, equation (2.2) will be investigated un-
der the following:
Let f, g : I × E → E satisfy the assumptions:

(I) for each t ∈ I, f(t, .) is weakly sequentially continuous;
(II) for each x ∈ C[I, E], f(., x(.)) is weakly measurable on I;

(III) for each t ∈ I, g(t, .) is weakly Lipschitz in u with Lipschitz constant K;
(IV) for each u ∈ C[I, E], g(., u(.)) is weakly continuous on I;
(V) there exist a function a : I → R+, a ∈ L1(I) and a positive constant b such

that ‖f(t, u)‖ ≤ a(t) + b‖u‖, for all t ∈ I and u ∈ E;
(VI) for any β < α, Iβa(t) ≤M.

Definition 2.10. By a weak solution to (2.2) we mean a function u ∈ C[I, E] which
satisfies the integral equation (2.2). This is equivalent to find u ∈ C[I, E] with

φ(u(t)) = φ(Iαf(t, g(t, u(t)))), t ∈ I, 0 < α < 1.

is satisfied for all φ ∈ E∗.

Now, we shall prove the following existence theorem

Theorem 2.11. Let assumptions (I)-(VI) be satisfied, then the functional integral
equation of fractional order (2.2) has at least one weak solution u ∈ C[I, E].

Proof. Let A be an operator defined by

Au(t) = Iαf(t, g(t, u(t))), t ∈ [0, T ], 0 < α < 1

and define the set Q by

Qr = {u ∈ C[I, E] : ‖u‖0 ≤ r}.
We shall show that A satisfies the assumptions of Theorem 1.7. The proof will be
given in four steps.

Step 1: The operator A maps Qr into itself.
Let u ∈ Qr, then by using Proposition 1.2 we get

‖Au(t)‖ = φ(Au(t)) = φ(Iαf(t, g(t, u(t))))

= Iαφ(f(t, g(t, u(t)))))

=

∫ t

0

(t− s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

≤
∫ t

0

(t− s)α−1

Γ(α)
| a(s) | ds+ b

∫ t

0

(t− s)α−1

Γ(α)
‖g(s, u(s))‖ds

≤ M

∫ t

0

(t− s)α−β−1

Γ(α− β)
ds+ b

∫ t

0

(t− s)α−1

Γ(α)
[(φ(g(s, 0)) +K‖u(s)‖)]ds

≤ MTα−β

Γ(α− β + 1)
+ b

∫ t

0

(t− s)α−1

Γ(α)
[M2 +K‖u‖0]ds

≤ MTα−β

Γ(α− β + 1)
+
b[M2 +Kr]Tα

Γ(α+ 1)
≤ r.
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Thus

‖Au‖0 = sup
t∈I
‖Au(t)‖ ≤ r

where

r =

(
MTα−β

Γ(α− β + 1)
+

bM2T
α

Γ(α+ 1)

)(
1− KTα

Γ(α+ 1)

)−1
.

Hence, Au ∈ Qr and hence AQr ⊂ Qr which proves that A : Qr → Qr and AQr is
bounded in C[I, E].

Step 2: The operator A maps C[I, E] into itself.
Let t1, t2 ∈ I, t2 > t1, without loss of generality, assume that Au(t2)−Au(t1) 6= 0

‖Au(t2)−Au(t1)‖ = φ(Au(t2)−Au(t1))

= φ(Iαf(t2, g(t2, u(t2)))− Iαf(t2, g(t1, u(t1))))

=
∣∣∣ ∫ t2

0

(t2 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

∣∣∣
=

∣∣∣ ∫ t1

0

(t2 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

∣∣∣
=

∣∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
φ(f(s, g(s, u(s))))ds

∣∣∣
≤

∫ t2

t1

(t2 − s)α−1

Γ(α)
| φ(f(s, g(s, u(s)))) | ds

≤
∫ t2

t1

(t2 − s)α−1

Γ(α)
[a(s) | +b‖g(s, u(s))‖]ds

≤
∫ t2

t1

(t2 − s)α−1

Γ(α)
[a(s) + b[φ(g(s, 0)) +K‖u(s)‖]]ds

≤ M

∫ t2

t1

(t2 − s)α−β−1

Γ(α− β)
ds

+ b[M2 +K‖u‖0]

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds
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≤ M(t2 − t1)α−β

Γ(α− β + 1)
+
b[M2 +K‖u‖0]

Γ(α+ 1)
((t2 − t1)α).

Thus

‖Au(t2)−Au(t1)‖ ≤ M(t2 − t1)α−β

Γ(α− β + 1)
+
b[M2 +K‖u‖0]

Γ(α+ 1)
((t2 − t1)α).

This means that A : C[I, E]→ C[I, E].

Step 3: AQr(t) is relatively weakly compact in E.
Note that Qr is nonempty, closed, convex and uniformly bounded subset of Qr.
According to proposition 1.1, AQr is relatively weakly compact in Qr implies AQr(t)
is relatively weakly compact in E for each t ∈ I.

Step 4: The operator A is weakly sequentially continuous.
Let {un} be sequence in Qr converges weakly to u on I, since f(t, .) and g(t, .) are
weakly sequentially continuous in the second argument, then g(t, un(t)) converges
weakly to g(t, u(t)) and f(t, g(t, un(t))) converges weakly to f(t, g(t, u(t))). Thus
φ(f(t, g(t, un(t)))) converges strongly to φ(f(t, g(t, u(t)))). By applying Lebesgue
dominated convergence theorem we have

φ(Iαf(t, g(t, un(t)))) = Iαφ(f(t, g(t, un(t))))→ Iαφ(f(t, g(t, u(t)))), ∀φ ∈ E∗, t ∈ I.

i.e., φ(Aun(t))→ φ(Au(t)),∀φ ∈ E∗, t ∈ I.
Since all conditions of Theorem 1.7 are satisfied, then the operator A has at least one
fixed point u ∈ Qr and the nonlinear functional integral equation of fractional order
(2.2) has at least one solution u ∈ C[I, E]. �

2.2.1. Initial value problems. As done in subsection 2.1.1, we shall study existence
theorems of weak solutions and pseudo-solutions for the initial value problem (1.2) as
a consequence of Theorem 2.11.

Theorem 2.12. Let assumptions of Theorem 2.11 be satisfied, then the initial value
problem (1.2) has weakly differentiable solutions x ∈ C[I, E].

Proof. From Lemma 2.1, the solution of initial value problem (1.2) is given by

x(t) = x0 + I1f(t, g(t, u(t)))

where u is given by (2.2). Since f is weakly continuous in t, then the integral of f
is weakly differentiable with respect to the right end point of the integration interval
and its derivative equals the integrand at that point ([20]), therefore x(.) is weakly
differentiable and

x′(t) = f(t, g(t, u(t))) = f(t, g(t,Dγx(t))). �

Corollary 2.13. Under assumptions of Theorem 2.11, with g(t,Dγx(t)) = Dγx(t),
the equation (2.5) has weakly differentiable solution x ∈ C[I, E].

This result generalized the result in [25].
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Conclusions

Our results are concerning the existence of solutions in a reflexive Banach spaces
for an initial value problem of fractional order which contains various ones, some of
them are:

• for real-valued function; the function f is independent of the fractional deriva-
tives and g(t, x) = x, then we have the problems studied in, for examples [7]
and [27].
• for real-valued function with γ ∈ (0, 1) and g(t, x) = x we have the problem

studied in [9] with nonlocal and integral condition.
• in abstract spaces with conditions related to the weak topology on a reflexive

Banach space E, then we have the problem studied in [25] with g(t, x) = x
which was studied for the first time, by Salem and El-Sayed.
• in abstract spaces with conditions related to the weak topology on E and the

function f is independent of the fractional derivatives and g(t, x) = x, then
we have the problem studied in [5] and [6].

which shows how our work generalize many known results in nonlinear analysis.
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[5] M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Differ.
Inc., 15(1995), 5-14.
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