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Abstract. In this work, we approximate a common fixed point of mappings F,G : M ∪N →M ∪N,
satisfying the conditions

(1) G(M) ⊆M,G(N) ⊆ N,F (M) ⊆M and F (N) ⊆ N ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M, v ∈ N ; and

(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M,

where M and N are nonempty bounded closed convex subsets of a uniformly convex Banach space.

We consider Ishikawa iteration associated with F and G and von Neumann sequence associated with

Ishikawa iteration to approximate the common fixed point of F and G. We prove convergent results
for common fixed point of F and G. Finally, we give corollaries on common best proximity point for

cyclic mappings.

Key Words and Phrases: Nonexpansive mappings, best proximity points, fixed points, Banach
space, Von Neumann sequences.
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1. Introduction

Let X be a nonempty set. For a given function F : X → X, a point u0 ∈ X is said
to be a fixed point of F if F (u0) = u0. Two fundamental theorems namely Banach
contraction principle and Brouwer fixed point theorem which guarantee the existence
of fixed point. Later, many authors contributed for the development of fixed point
theory and its application in other branch of Mathematics. The study of common
fixed point theorem plays crucial role in the theory of fixed point and it is attracted by
many researchers. A point u is said to be common fixed point of two self mappings F
and G, if it satisfies F (u) = G(u) = u. In recent years, many researchers are interested
in convergent results of fixed point and common fixed point for a pair of mappings
[6, 14, 21, 20]. In [17], the author proved the convergent result of common fixed
point via Mann iteration. In [18], the authors studied the convergence of Ishikawa
iteration to a common fixed point of a pair of mappings. In [9], the author defined
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the pair of mean nonexpansive mappings and proved the existence of the common
fixed point results in Banach space settings. In [22], the authors gave approximation
methods for common fixed points of mean nonexpansive mappings in Banach spaces.
Recently, Eldred et al [3], approximated a fixed point using Mann’s iterative process
for the mapping of the form G : M ∪ N → M ∪ N , which satisfies (i)G(M) ⊆ M
and G(N) ⊆ N and (ii) ‖Gu−Gv‖ ≤ ‖u− v‖ , ∀u ∈M, v ∈ N, where M and N are
nonempty bounded closed convex subsets of a uniformly convex Banach space.

Motivated by Eldred et al [3], in this paper, we define a relatively nonexpansive
condition for the non-cyclic pair of mappings of the type F,G : M ∪ N → M ∪ N,
and we prove convergent results for the common fixed points through the Ishikawa’s
iteration process associated with the mappings F and G. Finally, we provide some
corollaries on common best proximity point of a pair of cyclic mappings.

2. Preliminaries

Consider M and N are non-void subsets of a normed linear space. The following
notations are used subsequently:

d(u,M) = inf{‖u− v‖ : v ∈M};
PM (u) = {v ∈M : ‖u− v‖ = d(u,M)};
dist(M,N) = inf{‖u− v‖ : u ∈M,v ∈ N};
M0 = {u ∈M : ‖u− v′‖ = dist(M,N) for some v′ ∈ N};
N0 = {v ∈ N : ‖u′ − v‖ = dist(M,N) for someu′ ∈M}.

If M is convex, closed subset of a reflexive and strictly convex space, then PM (u)
contains one element and if M and N are convex, closed subsets of a reflexive space,
with either M or N is bounded, then M0 6= ∅.

The following definitions and theorems are very useful to prove our main results:
First, we collect the following Ishikawa iteration sequence from [22]. Let X be a
Banach space and let F,G be mappings from X to X. Then the Ishikawa iteration
sequence {un} of F and G is defined as

vn = (1− ηn)un + ηnFun,

un+1 = (1− δn)un + δnGvn, (2.1)

where u0 ∈ X and δn, ηn ∈ [0, 1].

Definition 2.1. [3] Let M and N be nonempty subsets of a Banach space X.
A mapping G : M ∪N →M ∪N is relatively non expansive if

(1) G(M) ⊆M,G(N) ⊆ N,
(2) ‖Gu−Gv‖ ≤ ‖u− v‖ , for all u ∈M,v ∈ N.

Definition 2.2. [23] Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2], define the
modulus of convexity of ‖ · ‖ by

δX(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε
}
,
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where BX is the unit ball of Banach space X.
The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ · ‖)
is then called uniformly convex space.

Definition 2.3. [22] Let X be a Banach space. The pair of mappings F,G : X → X
is said to be mean nonexpansive if

‖Fu−Gv‖ ≤ a‖u− v‖+ b{‖u− Fu‖+ ‖v −Gv‖}+ c{‖u−Gv‖+ ‖v − Fu‖},

for all u, v ∈ X, a, b, c ∈ [0, 1] and a+ 2b+ 2c ≤ 1.

Remark 2.4. In Definition 2.3, for a = 1, b = c = 0, then the pair of mappings
F,G : X → X is said to be nonexpansive.

Using the above definition for a pair of mappings, in [22], the authors proved the
following convergence result for a common fixed point.

Theorem 2.5. [22] Let K be a convex subset of a uniformly convex Banach space and
suppose G,F : K → K is a pair of mean nonexpansive mappings with a nonempty
common fixed points set; if b > 0, 0 < δ ≤ δn ≤ 1/2, 0 ≤ ηn ≤ η < 1, then the Ishikawa
sequence {un} converges to the common fixed points of F and G.

Proposition 2.6. [8] If X is a uniformly convex space and δ ∈ (0, 1) and ε > 0, then
for any d > 0, if u, v ∈ X are such that ‖u‖ ≤ d, ‖v‖ ≤ d, ‖u− v‖ ≥ ε, then there

exists δ = δ( εd ) > 0 such that ‖δu+ (1− δ)v‖ ≤
(

1− 2δ( εd )min(δ, 1− δ)
)
d.

Lemma 2.7. [4] Suppose X be a uniformly convex Banach space. Suppose 0 < a <
b < 1, and {tn} is a sequence in [a, b]. Suppose {wn}, {vn} are sequences in X such
that ‖wn‖ ≤ 1, ‖vn‖ ≤ 1 for all n. Define {zn} in X by zn = (1 − tn)wn + tnvn. If
limn→∞ ‖zn‖ = 1, then limn→∞ ‖wn − vn‖ = 0.

We prove the following result which shows that, if F,G is a pair of nonexpansive
mappings then the Ishikawa’s iteration associated with F and G, converges to a
common fixed point of F,G. Moreover, it is useful to prove our main results.

Theorem 2.8. Let K be a nonempty bounded closed convex subset of a uniformly con-
vex Banach space X and suppose G,F : K → K is a pair of nonexpansive mappings
with a nonempty common fixed point set. Let u0 ∈ K and define

un+1 = (1− δn)un + δnG((1− ηn)un + ηnFun),

where δn, ηn ∈ (ε, 1− ε), n = 0, 1, 2, ... and ε ∈ (0, 12 ). Then

lim
n→∞

‖un −Gvn‖ = 0

and

lim
n→∞

‖un − Fun‖ = 0.

Moreover, if F (K) lies in a compact set, then {un} and {vn} converge to a common
fixed point of G and F .
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Proof. By assumption, there exist v ∈ K such that Gv = Fv = v. Now,

‖un+1 − v‖ = ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
− v‖

= ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
−
(
(1− δn)v + δnv

)
‖

≤ (1− δn)‖un − v‖+ δn‖G
(
(1− ηn)un + ηnFun

)
− Fv‖

≤ (1− δn)‖un − v‖+ δn‖(1− ηn)un + ηnFun − v‖
= (1− δn)‖un − v‖

+δn‖(1− ηn)un + ηnFun −
(
(1− ηn)v + ηnv

)
‖

≤ (1− δn)‖un − v‖+ δn
(
‖(1− ηn)(un − v)‖+ ηn‖Fun −Gv‖

)
≤ ‖un − v‖.

This implies that the sequence {‖un − v‖} is nonincreasing and bounded below by 0.
Hence there exists d ≥ 0, such that ‖un − v‖ → d.
Case (i) : If ‖un − v‖ → 0.

‖un − Fun‖ ≤ ‖un − v‖+ ‖v − Fun‖
= ‖un − v‖+ ‖Gv − Fun‖
≤ ‖un − v‖+ ‖v − un‖.

As n→∞, we get ‖un − Fun‖ → 0.
And also ‖un − vn‖ → 0. Let vn = (1− ηn)un + ηnFun. Now

‖vn − v‖ = ‖(1− ηn)un + ηnFun − v‖
= ‖(1− ηn)un + ηnFun − ((1− ηn)v + ηnv)‖
≤ (1− ηn)‖un − v‖+ ηn‖Fun −Gv‖
≤ (1− ηn)‖un − v‖+ ηn‖un − v‖
= ‖un − v‖.

And also

‖un −Gvn‖ ≤ ‖un − v‖+ ‖v −Gvn‖
= ‖un − v‖+ ‖Fv −Gvn‖
≤ ‖un − v‖+ ‖v − vn‖
≤ ‖un − v‖+ ‖v − un‖.

As n→∞, we get ‖un −Gvn‖ → 0.
From the Ishikawa’s iteration, we obtain

‖un+1 − un‖ = δn‖Gvn − un‖.

As n→∞, we get ‖un+1 − un‖ → 0.
Case (ii) : If ‖un−v‖ → d > 0. We need to show that ‖un−Fun‖ → 0. Suppose not.
Then there exists a subsequence {unk

} of {un} and an ε > 0 such that ‖unk
−Funk

‖ ≥
ε > 0 for all k.
Since the modulus of convexity of δ of X is continuous and increasing function we
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choose ξ > 0 as small that
(

1− cδ
(

ε
d+ξ

))
(d+ ξ) < d, where c > 0.

Now we choose k, such that ‖unk
− v‖ ≤ d+ ξ. By using Proposition 2.6,

‖v − unk+1‖ = ‖v −
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

= ‖(1− δnk
)v + δnk

v

−
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

≤ (1− δnk
)‖v − unk

‖+ δnk
‖Fv −G

(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

≤ (1− δnk
)(d+ ξ) + δnk

‖v −
(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

= (1− δnk
)(d+ ξ) + δnk

‖(1− ηnk
)(v − unk

) + ηnk
(v − Funk

)‖

≤ (1− δnk
)(d+ ξ) + δnk

(
1− 2δ

( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− δnk
+ δnk

− 2δnk
δ
( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− 2δ
( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ).

Since there exists l > 0 such that 2 min{δnk
ηnk

, δnk
(1− ηnk

)} ≥ l,(
1− 2δ

( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ) ≤
(

1− lδ
( ε

d+ ξ

))
(d+ ξ).

Suppose we choose very small ξ > 0, we have(
1− lδ

( ε

d+ ξ

))
(d+ ξ) < d,

which is contradiction. This implies that

lim
n→∞

‖un − Fun‖ = lim
n→∞

‖un − vn‖ = 0.

Now we prove that ‖un+1 − un‖ → 0. We know that

‖un+1 − un‖ = δn‖Gvn − un‖,

where vn = (1− ηn)un + ηnFun. Now, we define

zn =
un+1 − v
‖un − v‖

, yn =
Gvn − v
‖un − v‖

and wn =
un − v
‖un − v‖

.

One can note that ‖wn‖ = 1. Now,

‖Gvn − v‖ = ‖Gvn − Fv‖
≤ ‖vn − v‖
≤ ‖(1− ηn)un + ηnFun − v‖
≤ ‖(1− ηn)un + ηnFun − ((1− ηn)v + ηnv)‖
≤ (1− ηn)‖un − v‖+ ηn‖Fun −Gv‖
≤ (1− ηn)‖un − v‖+ ηn‖un − v‖
= ‖un − v‖.
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Therefore

‖yn‖ =
‖Gvn − v‖
‖un − v‖

≤ ‖un − v‖
‖un − v‖

= 1.

From the Ishikawa’s iteration, we obtain

un+1 − v = (1− δn)(un − v) + δn(Gvn − v).

Dividing by ‖un − v‖, we get

un+1 − v
‖un − v‖

= (1− δn)
(un − v)

‖un − v‖
+ δn

(Gvn − v)

‖un − v‖
.

Then zn = (1− δn)wn + δnyn. Now we prove that ‖zn‖ → 1. Now,

lim
n→∞

‖zn‖ = lim
n→∞

‖un+1 − v‖
‖un − v‖

=
d

d
= 1.

By Lemma 2.7, ‖wn − yn‖ → 0. This implies that ‖un −Gvn‖ → 0. Therefore

‖un+1 − un‖ → 0.

Since F (K) is contained in a compact set, {Fun} has a subsequence {Funk
} that

converges to a point z ∈ K. Also {unk
} and {unk+1} converge to z. This implies that

{un} converges to z. And also {vn} converges to z. Then Fun → z,Gvn → z. Since F
and G are continuous, implies that Fun → Fz,Gvn → Gz. Therefore Fz = Gz = z,
which completes the proof. �

Let M be a convex closed subset of a Hilbert Space X. Then for u ∈ X, we know
that PM (u) is the unique nearest point of M to u. Also PM is non expansive and
distinguished by the Kolmogorov’s criterion:
〈u− PMu, PMu− z〉 ≥ 0, for all u ∈ X and z ∈M.

Let M and N be two convex closed subsets of X. Suppose define

P (u) = PM (PN (u)) for eachu ∈ X,
then the sequences {Pn(u)} ⊂ M and {PN (Pn(u))} ⊂ N. The convergence of
these sequences in norm were proved by von Neumann [15] when M and N are
closed. The sequences {Pn(u)} and {PN (Pn(u))} are called von Neumann sequences
or alternating projection algorithm for two sets.

Definition 2.9. [5] Let M and N be nonempty closed convex subsets of a Hilbert
space X. We say that (M,N) is boundedly regular if for each bounded subset F of
X and for each ε > 0 there exist δ > 0 such that

max{d(u,M), d(u,N − v)} ≤ δ ⇒ d(u,N) ≤ ε, ∀u ∈ F, (2.2)

where v = PN−M (0), the displacement vector from M to N . (v is the unique vector
satisfying ‖v‖ = dist(M,N)).

Theorem 2.10. [5] If (M,N) is boundedly regular, then the von Neumann sequences
converges in norm.

Theorem 2.11. [5] If M or N is boundedly compact, then (M,N) is boundedly
regular.



APPROXIMATING COMMON FIXED POINT 651

Lemma 2.12. [4] Let M be a nonempty closed and convex subset and N be nonempty
closed subset of a uniformly convex Banach space. Let {un} and {zn} be sequences in
M and {vn} be a sequence in N satisfying:

(1) ‖un − vn‖ → dist(M,N), and
(2) ‖zn − vn‖ → dist(M,N).Then‖un − zn‖converges to zero.

Lemma 2.13. [4] Let M be a nonempty closed convex subset and N be a nonempty
closed subset of uniformly convex Banach space. Let {un} be a sequence in M and
v0 ∈ N such that ‖un − v0‖ → dist(M,N). Then {un} converges to PM (v0).

Proposition 2.14. [2] Let M and N be two closed and convex subsets of a Hilbert
space X. Then PN (M) ⊆ N,PM (N) ⊆ M, and ‖PNu− PMv‖ ≤ ‖u− v‖ for u ∈ M
and v ∈ N .

Lemma 2.15. [3] Let M and N be two closed and convex subsets of a Hilbert space
X. For each u ∈ X,

‖Pn+1(u)− z‖ ≤ ‖Pn(u)− z‖, for each z ∈M0 ∪N0.

3. Main results

In this section, we prove convergent results for common fixed point.

Theorem 3.1. Let M and N be nonempty bounded closed convex subsets of a uni-
formly convex Banach space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆M,G(N) ⊆ N,F (M) ⊆M and F (N) ⊆ N ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M,v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M,

with a nonempty common fixed point set. Let u0 ∈M, and define

un+1 = (1− δn)un + δnGvn, vn = (1− ηn)un + ηnFun, δn, ηn ∈ (ε, 1− ε),
where ε ∈ (0, 1/2) and n = 0, 1, 2, ....
Suppose d(un,M0)→ 0, then limn→∞ ‖un −Gvn‖ = 0 and limn→∞ ‖un − Fun‖ = 0.
Moreover, if F (M) lies in a compact set, then {un} and {vn} converges to a common
fixed point of G and F .

Proof. If dist(M,N) = 0, then M0 = N0 = M ∩N and by Theorem 2.8, we can prove
the result from the truth that F,G : M ∩ N → M ∩ N is a pair of nonexpansive.
Therefore let us take that dist(M,N) > 0. For a common fixed point v ∈ N of F and
G, we get

‖un+1 − v‖ = ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
− v‖

= ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
−
(
(1− δn)v + δnv

)
‖

≤ (1− δn)‖un − v‖+ δn‖G
(
(1− ηn)un + ηnFun

)
− Fv‖

≤ (1− δn)‖un − v‖+ δn‖(1− ηn)un + ηnFun − v‖
= (1− δn)‖un − v‖+ δn‖(1− ηn)un + ηnFun −

(
(1− ηn)v + ηnv

)
‖

≤ (1− δn)‖un − v‖+ δn
(
(1− ηn)‖un − v‖+ ηn‖Fun −Gv‖

)
≤ ‖un − v‖.
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This implies that the sequence {‖un − v‖} is nonincreasing. Then we can find d > 0
such that

lim
n→∞

‖un − v‖ = d.

Suppose there exists a subsequence {unk
} of {un} and an ε > 0 such that

‖unk
− Funk

‖ ≥ ε > 0 for all k.

Since the modulus of convexity of δ of X is continuous and increasing function we
choose ξ > 0 as small that (

1− cδ
( ε

d+ ξ

))
(d+ ξ) < d,

where c > 0.
Now we choose k, such that ‖unk

− v‖ ≤ d+ ξ. By using the Proposition 2.6,

‖v − unk+1‖ = ‖v −
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

= ‖(1− δnk
)v + δnk

v

−
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

≤ (1− δnk
)‖v − unk

‖+ δnk
‖Fv −G

(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

≤ (1− δnk
)(d+ ξ) + δnk

‖v −
(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

= (1− δnk
)(d+ ξ) + δnk

‖(1− ηnk
)(v − unk

) + ηnk
(v − Funk

)‖

≤ (1− δnk
)(d+ ξ) + δnk

(
1− 2δ

( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− δnk
+ δnk

− 2δnk
δ
( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− 2δ
( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ).

Since there exists l > 0 such that 2 min{δnk
ηnk

, δnk
(1− ηnk

)} ≥ l,(
1− 2δ

( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ) ≤
(

1− lδ
( ε

d+ ξ

))
(d+ ξ).

Suppose we choose very small ξ > 0, we have(
1− lδ

( ε

d+ ξ

))
(d+ ξ) < d,

which is contradiction. This implies that

lim
n→∞

‖un − Fun‖ = lim
n→∞

‖vn − un‖ = 0.

Next we prove that

lim
n→∞

‖un −Gvn‖ = 0.

Now we define

zn =
un+1 − v
‖un − v‖

, yn =
Gvn − v
‖un − v‖

and

wn =
un − v
‖un − v‖

.
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Here ‖wn‖ = 1, and since

‖Gvn − v‖ = ‖Gvn − Fv‖
≤ ‖vn − v‖
= ‖(1− ηn)un + ηnFun − v‖
= ‖(1− ηn)un + ηnFun − ((1− ηn)v + ηnv)‖
≤ (1− ηn)‖un − v‖+ ηn‖Fun −Gv‖
≤ (1− ηn)‖un − v‖+ ηn‖un − v‖
= ‖un − v‖.

Therefore

‖yn‖ =
‖Gvn − v‖
‖un − v‖

≤ ‖un − v‖
‖un − v‖

= 1.

From the Ishikawa’s iteration, we obtain

un+1 − v = (1− δn)(un − v) + δn(Gvn − v).

Dividing by ‖un − v‖, we get

un+1 − v
‖un − v‖

= (1− δn)
(un − v)

‖un − v‖
+ δn

(Gvn − v)

‖un − v‖
.

Then zn = (1− δn)wn + δnyn. Now we prove that ‖zn‖ → 1. Now

lim
n→∞

‖zn‖ = lim
n→∞

‖un+1 − v‖
‖un − v‖

=
d

d
= 1.

By Lemma 2.7, we get ‖wn − yn‖ → 0. This implies that ‖un −Gvn‖ → 0. We know
that ‖un+1 − un‖ = |δn|‖Gvn − un‖. Therefore ‖un+1 − un‖ → 0.

Since F (M) is contained in a compact set, then {Fun} has a subsequence {Funk
},

that converges to a point z ∈ M. Also {unk
} and {unk+1} converge to z. Therefore,

un → z. Also vn → z.
Since d(un,M0) → 0, there exist {an} ⊆ M0, such that ‖un − an‖ → 0. Therefore,
ank
→ z, which gives that z ∈M0.

Let D = dist(M,N) and choose w ∈ N0 such that ‖z − w‖ = D.
So we have ‖unk

−w‖ → ‖z−w‖ = D, and ‖unk
−w‖ ≥ ‖Funk

−Gw‖ → ‖z−Gw‖.
So ‖z −Gw‖ = D. By strict convexity of the norm, Gw = w.
And also ‖vnk

− w‖ → ‖z − w‖ = D, and ‖vnk
− w‖ ≥ ‖Gvnk

− Fw‖ → ‖z − Fw‖.
So ‖z − Fw‖ = D. Again by strict convexity of the norm, Fw = w.
And we have ‖Gz − Fw‖ ≤ ‖z − w‖ = D, then ‖Gz − Fw‖ = D. By strict convexity
of the norm, we obtain Gz = z.
And also ‖Fz − Gw‖ ≤ ‖z − w‖ = D, then ‖Fz − Gw‖ = D. By strict convexity of
the norm, we obtain Fz = z. Therefore, Gz = Fz = z, theorem follows. �

Corollary 3.1. Let M and N be nonempty bounded closed convex subsets of a uni-
formly convex Banach space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆M,G(N) ⊆ N,F (M) ⊆M and F (N) ⊆ N ; and
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M, v ∈ N.
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.
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Let u0 ∈M0, and define

un+1 = (1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
, δn, ηn ∈ (ε, 1− ε),

where ε ∈ (0, 1/2) and n = 0, 1, 2, ..., then

lim
n→∞

‖un −Gvn‖ = 0 and lim
n→∞

‖un − Fun‖ = 0.

Moreover, if F (M) lies in a compact set, then {un} and {vn} converges to a common
fixed point of G and F .

Corollary 3.2. Let M and N be nonempty bounded closed convex subsets of a Hilbert
Space and Let G,F be as in Theorem 3.1. Let u0 ∈M0, and define

un+1 = Pn
(
(1− δn)un + δnGvn

)
,

where vn = (1−ηn)un+ηnFun, δn, ηn ∈ (ε, 1−ε), where ε ∈ (0, 1/2) and n = 0, 1, 2, ...,
then

lim
n→∞

‖un −Gvn‖ = 0 and lim
n→∞

‖un − Fun‖ = 0.

Moreover, if F (M) lies in a compact set, then {un} and {vn} converges to a common
fixed point of G and F .

Proof. One can note that Pn
(
(1−δn)un+δnGvn

)
= (1−δn)un+δnGvn, by Corollary

3.1, the result follows. �

We illustrate the above theorem through the following example.

Example 3.1. Let (R2, ‖.‖) with ‖(u1, u2) − (v1, v2)‖ =
√

(u1 − v1)2 + (u2 − v2)2.
Let M = {(0, u) ∈ R2 : u ∈ [0, 1]} and N = {(1, u) ∈ R2 : u ∈ [2, 3]}, then

dist(M,N) =
√

2. And we define a pair of mappings F,G : M ∪ N → M ∪ N by
F (0, u) = (0, 1), F (1, u) = (1, u) and G(0, u) = (0, u), G(1, u) = (1, 2).
For (0, u) ∈M, (1, v) ∈ N, we have

‖G(0, u)− F (1, v)‖ = ‖(0, u)− (1, v)‖.

For (0, u) ∈M, (1, v) ∈ N, we have

‖F (0, u)−G(1, v)‖ = ‖(0, 1)− (1, 2)‖ =
√

2 ≤ ‖(0, u)− (1, v)‖.

Clearly, the set {(0, 1), (1, 2)} is common fixed points of F and G. Fix

δn =
3

4
, ηn =

3

4
, ∀n.

Let (0, u0) ∈M , then the Ishikawa iteration becomes

(0, vn) =
(

1− 3

4

)
(0, un) +

3

4
F (0, un)

=
1

4
(0, un) +

3

4
(0, 1)

=
(

0,
un
4

)
+
(

0,
3

4

)
=

(
0,
un + 3

4

)
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and

(0, un+1) =
(

1− 3

4

)
(0, un) +

3

4
G(0, vn)

=
1

4
(0, un) +

3

4
G
(

0,
un + 3

4

)
=

(
0,
un
4

)
+

3

4

(
0,
un + 3

4

)
=

(
0,
un
4

)
+
(

0,
3un + 9

16

)
=

(
0,

7un + 9

16

)
.

Using Matlab coding, we give the following table to show that the iteration {(0, un+1)}
and {(0, vn)}, converge to a common fixed point of F,G for a initial point

(0, u0) = (0, 0.2) ∈M.

n (0, un+1) (0, vn)
22 (0,0.999999989893349) (0,0.999999999999954)
23 (0,0.999999995578340) (0,0.999999999999989)
24 (0,0.999999998065524) (0,0.999999999999997)
25 (0,0.999999999153667) (0,0.999999999999999)
26 (0,0.999999999629729) (0,1.000000000000000)
...

...
...

41 (0,0.999999999999998)
42 (0,0.999999999999999)
43 (0,1.000000000000000)

As a next main result, we want to approximate common best proximity pair using
the Theorem 3.1.

Definition 3.2. [12] Let (M,N) be a nonempty pair of subsets of a metric space
(X, d) and F : M ∪N →M ∪N be a noncyclic mapping. A point (p, q) ∈M ×N is
said to be a best proximity pair for the noncyclic mapping F if

p = Fp, q = Fq, d(p, q) = dist(A,B).

Definition 3.3. [12] Let F and G be two noncyclic mappings defined on M ∪ N,
where (M,N) is a nonempty pair in a normed linear space X. A point (p, q) ∈M ×N
is called a common best proximity pair for the noncyclic pair (F,G) if (p, q) is a best
proximity pair for both F and G, that is, p and q are two common fixed points of the
mappings F and G in M and N respectively, such that ‖p− q‖ = dist(A,B).

Lemma 3.4. [11] Let (M,N) be a nonempty, bounded, closed and convex pair in a
reflexive and strictly convex Banach space X. Define P : M0 ∪N0 →M0 ∪N0 as

P (x) =

{
PM0(x) if x ∈ N0,

PN0(x) if x ∈M0.
(3.1)

Then the following statements hold.
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(1) ‖x−Px‖ = dist(M,N) for any x ∈M0∪N0 and P (M0) ⊆ N0, P (N0) ⊆M0.
(2) P is an isometry, that is, ‖Px− Py‖ = ‖x− y‖ for all (x, y) ∈M0 ×N0.
(3) P is affine.

Definition 3.5. [16] If M0 6= ∅ then the pair (M,N) is said to have P -property if
for any u1, u2 ∈M0 and v1, v2 ∈ N0{

d(u1, v1) = dist(M,N)

d(u2, v2) = dist(M,N)
⇒ d(u1, u2) = d(v1, v2).

Lemma 3.6. [1] Every, nonempty, bounded, closed and convex pair in a uniformly
convex Banach space X has the P -property.

Lemma 3.7. [12] Let (M,N) be a nonempty, closed and convex pair in a uniformly
convex Banach space X. Then for the projection mapping P : M0 ∪ N0 → M0 ∪ N0

defined in (3.1) we have both P |M0 and P |N0 are continuous.

Here we prove the convergence result:

Theorem 3.8. Let M and N be nonempty bounded closed convex subsets of a uni-
formly convex Banach space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆M,G(N) ⊆ N,F (M) ⊆M and F (N) ⊆ N ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M, v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M,

with a nonempty common fixed point set. Let u0 ∈M, and define

un+1 = (1− δn)un + δnGvn, vn = (1− ηn)un + ηnFun, δn, ηn ∈ (ε, 1− ε),

where ε ∈ (0, 1/2) and n = 0, 1, 2, ... and wn+1 = Pun+1, where P is the projection
mapping defined in (3.1). Assume d(un,M0) → 0. Suppose F (M) lies in a compact
set, then the sequence {(un, wn)} ∈ M ×N converges to a best proximity pair of the
mappings G and F .

Proof. Let x ∈M0. Then we have

‖Fx−GPx‖ ≤ ‖x− Px‖ = dist(M,N).

Therefore, ‖Fx − GPx‖ = dist(M,N) = ‖Fx − PFx‖. By Lemma 3.6, we get
GPx = PFx. In the same way, we can prove FPx = PGx. Also by Theorem 3.1,
the Ishikawa’s iteration {un} converges to a common fixed point z ∈M0 of G and F.
From Lemma 3.7, we know that P |M0 is continuous. Then wn = Pun → Pz := z′.
Clearly ‖z − z′‖ = dist(M,N). So we can obtain

Fz′ = FPz = PGz = Pz = z′.

Also,

Gz′ = GPz = PFz = Pz = z′.

So the result follows. �
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4. Approximating common fixed point using von Neumann sequences

In the next result, we provide a stronger version to approximate the common fixed
point via von Neumann sequences.

Theorem 4.1. Let M and N be nonempty bounded closed convex subsets of a Hilbert
space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆M,G(N) ⊆ N,F (M) ⊆M and F (N) ⊆ N ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M,v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

with nonempty common fixed point set. Let u0 ∈M, and define

un+1 = Pn
(
(1− δn)un + δnGvn

)
, vn = (1− ηn)un + ηnFun, δn, ηn ∈ (ε, 1− ε),

where ε ∈ (0, 1/2) and n = 1, 2, ..., then

lim
n→∞

‖un − Fun‖ = 0.

Moreover, if F (M) lies in a compact set and ‖un − Gvn‖ → 0, then {un} and {vn}
converges to a common fixed point of G and F .

Proof. If dist(M,N) = 0, then M0 = N0 = M ∩N and F,G : M ∩N → M ∩N is a
pair of nonexpansive with

un+1 = Pn
(
(1− δn)un + δnG

(
(1− ηn)un + ηnFun

))
= (1− δn)un + δnG

(
(1− ηn)un + ηnFun

)
,

the usual Ishikawa’s iteration. So let us take that dist(M,N) > 0. For a common
fixed point v ∈ N of F and G. Now,

‖un+1 − v‖ = ‖Pn
(
(1− δn)un + δnG

(
(1− ηn)un + ηnFun

))
− v‖

≤ ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
− v‖

= ‖(1− δn)un + δnG
(
(1− ηn)un + ηnFun

)
−
(
(1− δn)v + δnv

)
‖

≤ (1− δn)‖un − v‖+ δn‖G
(
(1− ηn)un + ηnFun

)
− Fv‖

≤ (1− δn)‖un − v‖+ δn‖(1− ηn)un + ηnFun − v‖
= (1− δn)‖un − v‖

+δn‖(1− ηn)un + ηnFun −
(
(1− ηn)v + ηnv

)
‖

≤ (1− δn)‖un − v‖+ δn
(
(1− ηn)‖un − v‖+ ηn‖Fun −Gv‖

)
≤ ‖un − v‖.

This implies that the sequence {‖un − v‖} is nonincreasing. Then we can find d > 0
such that

lim
n→∞

‖un − v‖ = d.

Suppose there exists a subsequence {unk
} of {un} and an ε > 0 such that

‖unk
− Funk

‖ ≥ ε > 0 for all k.
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Since the modulus of convexity of δ of X is continuous and increasing function we
choose ξ > 0 as small that (

1− cδ
( ε

d+ ξ

))
(d+ ξ) < d,

where c > 0.
Now we choose k, such that ‖unk

− v‖ ≤ d+ ξ. By using the proposition 2.6,

‖v − unk+1‖ = ‖v − Pn
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

≤ ‖v −
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

= ‖(1− δnk
)v + δnk

v

−
(
(1− δnk

)unk
+ δnk

G
(
(1− ηnk

)unk
+ ηnk

Funk

))
‖

≤ (1− δnk
)‖v − unk

‖+ δnk
‖Fv −G

(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

≤ (1− δnk
)(d+ ξ) + δnk

‖v −
(
(1− ηnk

)unk
+ ηnk

Funk

)
‖

= (1− δnk
)(d+ ξ) + δnk

‖(1− ηnk
)(v − unk

) + ηnk
(v − Funk

)‖

≤ (1− δnk
)(d+ ξ) + δnk

(
1− 2δ

( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− δnk
+ δnk

− 2δnk
δ
( ε

d+ ξ

)
min{ηnk

, 1− ηnk
}
)

(d+ ξ)

=
(

1− 2δ
( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ).

Since there exists l > 0 such that 2 min{δnk
ηnk

, δnk
(1− ηnk

)} ≥ l,(
1− 2δ

( ε

d+ ξ

)
min{δnk

ηnk
, δnk

(1− ηnk
)}
)

(d+ ξ) ≤
(

1− lδ
( ε

d+ ξ

))
(d+ ξ).

Suppose we choose very small ξ > 0, we have(
1− lδ

( ε

d+ ξ

))
(d+ ξ) < d,

which is contradiction. This implies that

lim
n→∞

‖un − Fun‖ = lim
n→∞

‖vn − un‖ = 0.

Since ‖un −Gvn‖ → 0, and we know that

‖un+1 − un‖ = ‖Pn
(
(1− δn)un + δnGvn

)
− un‖ ≤ δn‖Gvn − un‖,

we obtain ‖un+1 − un‖ → 0.
Since F (M) is contained in a compact set, then {Fun} has a subsequence {Funk

}
that converges to a point v0 ∈ M. Also {unk

}, {vnk
}, {Gvnk

} and {unk+1} converge
to v0, which implies that un → v0. Also we have vn → v0 as n→∞.
Now, ‖Funk

−G(PN (v0))‖ ≤ ‖unk
− PN (v0)‖ which implies that

‖v0 −G(PN (v0))‖ ≤ ‖v0 − PN (v0)‖.
Hence G(PN (v0)) = PN (v0).
Similarly, ‖Gvnk

− F (PN (v0))‖ ≤ ‖vnk
− PN (v0)‖ which implies that

‖v0 − F (PN (v0))‖ ≤ ‖v0 − PN (v0)‖.
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Hence F (PN (v0)) = PN (v0). Also,

‖G(P (v0))− PN (v0)‖ = ‖G(P (v0))− F (PN (v0))‖ ≤ ‖P (v0)− PN (v0)‖.
So G(P (v0)) = P (v0). And also,

‖F (P (v0))− PN (v0)‖ = ‖F (P (v0))−G(PN (v0))‖ ≤ ‖P (v0)− PN (v0)‖.
So F (P (v0)) = P (v0). Now,

‖GPN (P (v0))− P (v0)‖ = ‖GPN (P (v0))− F (P (v0))‖ ≤ ‖PN (P (v0))− P (v0)‖.
Thus GPN (P (v0)) = PN (P (v0)).
For any n, we have F (Pn(v0)) = Pn(v0) and GPN (Pn(v0)) = PN (Pn(v0)).
Similarly,

‖FPN (P (v0))− P (v0)‖ = ‖FPN (P (v0))−G(P (v0))‖ ≤ ‖PN (P (v0))− P (v0)‖.
Thus FPN (P (v0)) = PN (P (v0)).
For any n, we have

G(Pn(v0)) = Pn(v0) and FPN (Pn(v0)) = PN (Pn(v0)).

By Theorem 2.10, for each u ∈M the sequence {Pn(u)} converges to some r(u) ∈M0.
Now,

‖G(r(v0))− PN (r(v0))‖ ≤ lim
n→∞

‖G(r(v0))− PN (Pn(v0))‖

= lim
n→∞

‖G(r(v0))− F (PN (Pn(v0)))‖

≤ lim
n→∞

‖r(v0)− PN (Pn(v0))‖

= ‖r(v0)− PN (r(v0))‖.
So

‖G(r(v0))− PN (r(v0))‖ ≤ ‖r(v0)− PN (r(v0))‖.
Therefore G(r(v0)) = r(v0) and similarly, we get GPN (r(v0)) = PN (r(v0)).
In the same way, we prove that F (r(v0)) = r(v0) and FPN (r(v0)) = PN (r(v0)).
Now we define gn : M → R by gn(u) = ‖Pn(u)− r(u)‖.
Since ‖r(u)− r(v)‖ = limn→∞ ‖Pn(u)− Pn(v)‖ ≤ ‖u− v‖, then we conclude that u
is continuous. Therefore gn(u) is continuous and converges pointwise to zero. Since
r(u) ∈ M0, by Lemma 2.15, we obtain gn+1 ≤ gn. Therefore gn converges uniformly
on the compact set

F = {(1− δnk
)unk

+ δnk
Gvnk

} ∪ {v0}.
Therefore

lim
k→∞

‖Pnk((1− δnk
)unk

+ δnk
Gvnk

)− r((1− δnk
)unk

+ δnk
Gvnk

)‖ = 0.

Since r((1 − δnk
)unk

+ δnk
Gvnk

) → r(v0), we get unk+1 → r(v0), which gives that
r(v0) = v0. Therefore Gv0 = G(r(v0)) = r(v0) = v0 and Fv0 = F (r(v0)) = r(v0) = v0,
which completes the proof. �

Suppose X is a Hilbert space and let M and N be nonempty bounded closed convex
subsets of X and suppose F,G : M ∪N →M ∪N satisfy
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(1) G(M) ⊆ N,G(N) ⊆M,F (M) ⊆ N and F (N) ⊆M ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M,v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

Consider PMG : M →M,PNF : N → N,PNG : N → N and PMF : M →M . From
the Proposition 2.14, ‖PMF (u) − PNG(v)‖ ≤ ‖u − v‖ for u ∈ M and v ∈ N and
‖PNF (u)− PMG(v)‖ ≤ ‖u− v‖ for u ∈ N and v ∈ M, by Theorem 4.1, we give the
following results on convergence of best proximity points.

Corollary 4.1. Let M and N be nonempty bounded closed convex subsets of a Hilbert
space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆ N,G(N) ⊆M,F (M) ⊆ N and F (N) ⊆M ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M, v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

If F (M) is mapped into a compact subset of N , then for any u0 ∈ M0 the sequence
defined by

un+1 = (1− δn)un + δnPM
(
G((1− ηn)un + ηnPMFun)

)
converges to u in M0 such that ‖u−Gu‖ = ‖u− Fu‖ = dist(M,N).

Corollary 4.2. Let M and N be nonempty bounded closed convex subsets of a Hilbert
space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆ N,G(N) ⊆M,F (M) ⊆ N and F (N) ⊆M ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M, v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

If F (M) is mapped into a compact subset of N , then for any u0 ∈ M the sequence
defined by

un+1 = (1− δn)un + δnPM
(
G((1− ηn)un + ηnPMFun)

)
converges to u in M0 such that ‖u − Gu‖ = ‖u − Fu‖ = dist(M,N), provided that
d(un,M0)→ 0.

Corollary 4.3. Let M and N be nonempty bounded closed convex subsets of a Hilbert
space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆ N,G(N) ⊆M,F (M) ⊆ N and F (N) ⊆M ;
(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M,v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

If F (M) is mapped into a compact subset of N , then for any u0 ∈ M0 the sequence
defined by

un+1 = Pn
(
(1− δn)un + δnPM

(
G((1− ηn)un + ηnPMFun)

))
converges to u in M0 such that ‖u−Gu‖ = ‖u− Fu‖ = dist(M,N).

Proof. The result follows by Corollary 4.1. �

Corollary 4.4. Let M and N be nonempty bounded closed convex subsets of a Hilbert
space and suppose F,G : M ∪N →M ∪N satisfy

(1) G(M) ⊆ N,G(N) ⊆M,F (M) ⊆ N and F (N) ⊆M ;
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(2) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈M,v ∈ N ; and
(3) ‖Fu−Gv‖ ≤ ‖u− v‖ for u ∈ N, v ∈M.

If F (M) is mapped into a compact subset of N and ‖un−PMGvn‖ → 0, then for any
u0 ∈M the sequence defined by

un+1 = Pn
(
(1− δn)un + δnPM

(
G((1− ηn)un + ηnPMFun)

))
converges to u in M0 such that ‖u−Gu‖ = ‖u− Fu‖ = dist(M,N).

Proof. The result follows by Theorem 4.1. �
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