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1. Introduction and preliminaries

Throughout this paper X is a vector space over the field of real or complex numbers
K with the origin 0. Let 0 < r ≤ 1. A mapping p : X → R is called an r-seminorm
if it satisfies the requirements :

(i) p(x) ≥ 0, for all x ∈ X,
(ii) p(λx) = |λ|r p(x), for all x ∈ X, λ ∈ K,
(iii) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X.

An r-seminorm is called an r-norm if x = 0 whenever p(x) = 0. A vector space with
a specific r-norm is called an r-normed space. The r-norm of an element x ∈ X will
usually be denoted by ‖x‖r. If r = 1, X is a usual normed space. If X is an r-normed
space, then (X, dr) is a metric linear space with a translation invariant metric dr such
that dr(x, y) = ‖x − y‖r for each x, y ∈ X. We point out that r-normed spaces are
very important in the theory of topological vector spaces. Specifically, a Hausdorff
topological vector space is locally bounded if and only if it is an r-normed space for
some r-norm ‖.‖r, 0 < r ≤ 1 (see [13, p.114]). Examples of r-normed spaces include
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the Lr(µ)-spaces and Hardy spaces Hr, 0 < r < 1, endowed with their usual r-norms.
As stressed in [9], there is no open convex non-void subset in Lr[0, 1], (0 < r < 1)
except Lr[0, 1] itself. This example leads us to conclude that r-normed spaces with
0 < r < 1 are not necessarily locally convex. However, we know that every r-normed
space is locally r-convex (see Section 3). In [25, Theorem 2.13], the authors proved
the following interesting fixed point result of Schauder type in a complete r-normed
space.

Theorem 1.1. Let (X, ‖.‖r) be a complete r-normed space and C be a compact s-
convex subset of X, where 0 < s ≤ r ≤ 1. If T : C → C is continuous, then there
exists z ∈ C such that Tz = z.

We should emphasize that the completeness of the space in not required in the
original result of Schauder in a normed space [1, Theorem 4.14, p.38]. So, it is quite
natural to ask whether this condition could be removed from Theorem 1.1. It should
also be mentioned that Theorem 1.1 does not include the case of convex sets in r-
normed spaces with 0 < r < 1.

Somewhat later, Alghamdi et al. [2], took an interesting step in the same direction
by proving the analogue of Krasnosel’skii’s and Sadovskii’s fixed point theorems for s-
convex sets in complete r-normed spaces. Further progress was achieved in [24] where
the results of [2, 25] were greatly improved. On the other hand, Bayoumi [5, Theorem
34, p.64] proved the following Schauder’s type fixed point theorem for r-convex sets
in locally r-convex F-spaces ( with 0 < r < 1). Recall that an F-space is a topological
vector space whose topology is induced by a complete translation invariant metric
(see [21, p.9]).

Theorem 1.2. If K is a nonempty compact r-convex set in a locally r-convex F-space
X (0 < r < 1) and f : K → K is continuous, then f has at least one fixed point in K.

We point out that Theorem 1.2 requires metrizability and completeness of the
space and does not include the case of non-convex sets in usual locally convex spaces
(r = 1).

The main purpose of this paper is to extend and improve the aforementioned results
and to establish some new fixed point theorems on s-convex sets in r-normed spaces
and locally r-convex spaces. We will also provide a partial affirmative answer to
Schauder’s conjecture (see Section 2).

The paper is arranged as follows. In Section 2, we prove some fixed point theorems
for single-valued mappings defined on s-convex subsets of r-normed spaces. In Section
3, we provide some fixed point theorems for single-valued mappings on s-convex sub-
sets of locally r-convex spaces. In Section 4, we present some fixed point theorems for
multi-valued mappings in s-convex subsets of r-normed and locally r-convex spaces
(0 < r ≤ 1, 0 < s ≤ 1). Finally, Section 5 is devoted to applications.

2. Fixed point theorems in r-normed spaces

In this section we shall prove that the completeness of the space in Theorem 1.1 is
redundant and could be removed. This result is of fundamental importance for our
subsequent analysis. Before making a formal statement of the principal theorem of
this section, we present an example of an r-normed space which is not complete.
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Example 2.1. Let E = C([0, 1],R) be the vector space of real valued continuous
functions on the compact interval [0, 1] endowed with the r-norm ‖.‖r defined by

‖f‖r =

∫ 1

0

|f(t)|rdt

for all f ∈ C([0, 1],R), where 0 < r ≤ 1. In order to show that this space is not
complete, we consider the sequence (fn)n≥2 of functions of E defined by

fn(t) =


0 if 0 ≤ t < 1

2
− 1

n
,

n

2

(
t− 1

2
+

1

n

)
if

1

2
− 1

n
≤ t ≤ 1

2
+

1

n
,

1 if
1

2
+

1

n
< t ≤ 1.

Clearly,

‖fm − fn‖r =
21−r

r + 1

(
1

n
− 1

m

)r
1

n1−r
≤ 21−r

r + 1

1

n
,

for each m ≥ n ≥ 2. Hence, ‖fm − fn‖r → 0 as m,n→∞. This shows that (fn)n≥2
is a Cauchy sequence in E. We claim that (fn)n≥2 admits no ‖.‖r-limit in E. Indeed,
let f : [0, 1]→ R be defined by

f(t) =


0 for 0 ≤ t < 1

2
1

2
for t =

1

2

1 for
1

2
< t ≤ 1.

Obviously, limn→∞ fn(t) = f(t) for all t ∈ [0, 1].
This implies limn→∞ |fn(t)− f(t)|rdt = 0 for all t ∈ [0, 1]. Since |fn(t)− f(t)|r ≤ 2r

for all t ∈ [0, 1], the Lebesgue dominated convergence theorem yields

lim
n→∞

∫ 1

0

|fn(t)− f(t)|rdt = 0.

Consequently, the sequence (fn)n converges in the ‖.‖r-norm to f ∈ Lr
(
[0, 1],R

)
\

C
(
[0, 1],R

)
. Since the ‖.‖r-limit is unique, then (fn)n has no ‖.‖r-limit in C

(
[0, 1],R

)
.

Now, we recall the definition of r-convex and absolutely r-convex sets.

Definition 2.1. Let 0 < r ≤ 1. A subset A of a vector space X is called :

(i) r-convex if αx+ β y ∈ A for all x, y ∈ A and all α, β ≥ 0 with αr + βr = 1.
(ii) Absolutely r-convex if αx + β y ∈ A for all x, y ∈ A and all α, β ∈ R with
|α|r + |β|r ≤ 1.

Remarks 2.1.

(i) A subset A of a vector space X is 1-convex if and only if it is convex.
(ii) An absolutely r-convex set is r-convex and contains 0.

(iii) A subset A of X is absolutely r-convex if and only if it is r-convex and
balanced (see [4, Lemma 4.1.4, p.176]).
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The following lemma was stated in [20, Remark 2.1]. For the reader’s convenience
we give a proof here.

Lemma 2.1. Let A be an r-convex subset of a vector space X with 0 < r < 1. Then,
αx ∈ A for any x ∈ A and any 0 < α ≤ 1.
Proof. We will use mathematical induction to prove that the statement P (n) given

by ”for all x ∈ A and all α ∈
[
2
(n+1)

(
1− 1

r

)
, 2

n
(
1− 1

r

)]
we have αx ∈ A” is true

for all integers n ≥ 0. First, we verify that the base case P (0) is true. To do so, let

x ∈ A and α ∈ [β, 1] with β = 21−
1
r . Since [β, 1] is the range of the continuous function

t 7→ t
1
r +(1−t)

1
r defined on [0, 1], then there exists t ∈ [0, 1] such that α = t

1
r +(1−t)

1
r .

The r-convexity of the set A implies that αx = t
1
r x+ (1− t)

1
r x ∈ A. Thus, the base

case P (0) has been verified. Next, we perform the inductive step. Assume that P (n)
is true for some integer n ≥ 0. We will use this to show that P (n + 1) is true. To

this end, take x ∈ A and α ∈
[
2
(n+2)

(
1− 1

r

)
, 2

(n+1)
(
1− 1

r

)]
. From P (0) we know that

βx ∈ A. Keeping in mind that αβ−1 ∈
[
2
(n+1)

(
1− 1

r

)
, 2

n
(
1− 1

r

)]
we infer from our

inductive assumption that αx = αβ−1(βx) ∈ A. Thus, we have shown our statement
P (n+ 1) to be true and thus our inductive step is complete. Taking into account the

fact that (0, 1] =
⋃

n≥0

[
2
(n+1)

(
1− 1

r

)
, 2

n
(
1− 1

r

)]
we get the desired result. �

The following lemma is crucial for our purposes.

Lemma 2.2. Let A be a subset of a vector space X.

(i) If A is convex and 0 ∈ A, then A is s-convex for any real s ∈ (0, 1].
(ii) If A is r-convex for some r ∈ (0, 1), then A is s-convex for any s ∈ (0, r].
(ii) If A is absolutely r-convex for some r ∈ (0, 1], then it is absolutely s-convex

for any s ∈ (0, r].

Proof.

(i) Assume that A is a convex subset of X with 0 ∈ A and take a real s ∈ (0, 1].
We show that A is s-convex. To see this, let x, y ∈ A and α, β > 0 such that

αs + βs = 1. Since A is convex then,
α

α+ β
x +

β

α+ β
y ∈ A. Keeping in

mind that 0 < α+ β ≤ αs + βs = 1, we deduce that

αx+ β y = (α+ β)

(
α

α+ β
x+

β

α+ β
y

)
+ (1− α− β) 0 ∈ A.

(ii) Now, assume that A is r-convex for some r ∈ (0, 1) and pick up any real
s ∈ (0, r]. We show that A is s-convex. To do this, let x, y ∈ A and α, β > 0

such that αs + βs = 1. First notice that 0 < α
r−s
r ≤ 1 and 0 < β

r−s
r ≤ 1

imply α
r−s
r x ∈ A and β

r−s
r y ∈ A. From the r-convexity of A and the equality(
α

s
r

)r
+
(
β

s
r

)r
= 1,
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we deduce

αx+ β y = α
s
r

(
α

r−s
r x

)
+ β

s
r

(
β

r−s
r y

)
∈ A.

(iii) Assume that A is absolutely r-convex for some r ∈ (0, 1) and take a real
s ∈ (0, r]. If x, y ∈ A and α, β ∈ R satisfy |α|s + |β|s ≤ 1, then

|α|r + |β|r ≤ |α|s + |β|s ≤ 1.

Taking into account the absolute r-convexity of the set A, we infer that αx+
β y ∈ A. This proves that A is absolutely s-convex. �

Now, we are in a position to state and prove the main result of this section.

Theorem 2.1. Let (X, ‖.‖r) be an r-normed space and K be a compact s-convex
subset of X, where 0 < r ≤ 1 and 0 < s ≤ 1. Let T : K → K be a continuous
mapping. Then T has at least one fixed point in K.
Proof. To prove Theorem 2.1, we distinguish three cases.
First case: Assume that 0 < r ≤ 1 and 0 < s ≤ r. Notice first that X is a metric
space with the metric dr defined by dr(x, y) = ‖x − y‖r for all x, y ∈ X. Let X̂
be a completion of the metric space (X, dr). Then there exists a linear isometric

embedding i : X → X̂ with i(X) dense in X̂ ( see [14, p.41, p.69 and p.70]). Define

T̂ : i(K)→ i(K) by T̂
(
i(x)

)
= i
(
T (x)

)
, x ∈ K. The continuity of i and T imply the

continuity of T̂ on i(K). The s-convexity of i(K) follows easily from the fact that
i is linear and K is s-convex. Also, the compactness of K and the continuity of i
imply the compactness of i(K). Hence, by Theorem 1.1, there exists x ∈ K such that

T̂
(
i(x)

)
= i(x). Thus, i

(
T (x)

)
= i(x) and so T (x) = x.

Second case: Assume that 0 < r < 1 and r < s < 1. Since K is s-convex then,
according to Lemma 2.2, K is r-convex. The result then follows from an application
of the first case.
Third case: Assume that 0 < r < 1 and s = 1. Let us fix any element x0 ∈ K and
let K0 = {x − x0 : x ∈ K}. Plainly, the set K0 is compact convex and 0 ∈ K0.
Referring to Lemma 2.2 we see that K0 is r-convex. Define the map T0 : K0 → K0

by T0(x − x0) = T (x) − x0. It is easy to verify that the result of the first case may
be applied to T0, giving thus an element x ∈ K such that T0(x− x0) = x− x0, that
is T (x) = x. �

Remarks 2.2.

(i) Theorem 2.1 extends [25, Theorem 2.13]. In our considerations, the space is
not necessarily complete and the real s may be greater than r.

(iii) The set of fixed points of T is compact.

As a convenient specialization of Theorem 2.1, we obtain the following sharpen-
ing of Schauder’s fixed point theorem in normed spaces. We particularly show that
Schauder’s statement remains valid for both convex and s-convex sets (with 0 < s ≤ 1)
in normed spaces.

Corollary 2.1. Let K be a nonempty compact s-convex set in a normed space X for
some 0 < s ≤ 1 and let T : K → K be a continuous mapping. Then T has at least
one fixed point in K.
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Proof. Apply Theorem 2.1 with r = 1. �

Another consequence of Theorem 2.1 is the following.

Corollary 2.2. Let K be a nonempty compact convex set in an r-normed space X
for some 0 < r ≤ 1 and let T : K → K be a continuous mapping. Then T has at least
one fixed point in K.
Proof. Apply Theorem 2.1 with s = 1. �

Now we are in a position to state the following interesting fixed point result in
locally bounded Hausdorff topological vector spaces. Recall that a topological vector
space is said to be locally bounded if it contains a bounded neighborhood of the origin.

Theorem 2.2. Every nonempty compact convex subset K of a Hausdorff locally
bounded topological vector space X has the fixed point property, that is, every contin-
uous function T : K → K has at least a fixed point in K.
Proof. Since X is a Hausdorff locally bounded topological vector space then, according
to [13, p.114], X is an r-normed space for some r-norm ‖.‖r, with 0 < r ≤ 1. The
result follows from Corollary 2.2. �

Remark 2.3. Schauder’s conjecture which states that every compact convex subset of
a topological vector space has the fixed point property is one of the most resistant open
problems in the fixed point theory of non-locally convex topological vector spaces.
This problem is still open despite great efforts by topologists for more than half a
century. Up to now only some partial answers to Schauder’s problem have been
obtained, see for instance [15, 17, 18, 19]. In Theorem 2.2, we provide another partial
affirmative answer to Schauder’s conjecture. More precisely, we prove that every
nonempty compact convex subset of a Hausdorff locally bounded topological vector
space X has the fixed point property. Our result particularly yields that compact
convex sets in Lr, `r or Hardy spaces Hr with 0 < r < 1, have the fixed point
property.

3. Fixed point theorems in locally r-convex spaces

In this section, we prove some fixed point theorems in locally r-convex spaces.
Specifically, we shall use the results of the previous section to extend and improve The-
orem 1.2. In our considerations, the underlying space is neither metrizable nor com-
plete. Also, our result includes as a special case the well known Schauder-Tychonov
fixed point theorem for both convex and s-convex sets (0 < s < 1) in usual locally
convex spaces (r = 1), a fact that does not follow from Theorem 1.2. We carried out
substantial modifications and changes on an ingenious proof of Schauder-Tychonov
fixed point theorem presented in [6] to apply in this setting. The proof is technical
and leads to the complete analogue of the Schauder-Tychonov theorem for s-convex
sets in locally r-convex spaces.

We first recall some basic definitions and facts concerning locally r-convex spaces.
Let 0 < r ≤ 1. A topological vector space is said to be locally r-convex space if it
has a basis U of neighborhoods of 0 whose members are absolutely r-convex ( see [13,
p.108]).
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Now, we make a short note about the so-called Minkowsky r-functionals. Let A
be an r-convex and absorbing subset of a vector space X with 0 < r ≤ 1. Define
pA : X → R by

pA(x) = inf

{
t > 0; x ∈ t

1
r A

}
, x ∈ X.

It is easy to check that pA is subadditive and

pA(λx) = λr pA(x),

for all λ > 0 and x ∈ X. If, in addition, A is absolutely r-convex, then pA is an r-
seminorm. Also, we plainly have pB ≤ pA for any two r-convex and absorbing subsets
A and B of X with A ⊂ B. Further details concerning Minkowsky r-functionals are
provided in [4, p.179] and [25, Lemma 1.5].

It is well-known [5, p.52] that if X is a locally r-convex space with a basis U of
absolutely r-convex neighborhoods of the origin, then the topology of X is generated
by the directed family of continuous r-seminorms P = (pU )U∈U .

Before we state the main results of this section, we give an example of a locally
r-convex space. Let (E, ‖.‖r) be an r-normed space and let X = C(R, E) be the vector
space of E-valued continuous mappings on the real field R. For any integer n ≥ 1,
the mapping pn defined on X by:

pn(f) = sup
−n≤t≤n

‖f(t)‖r,

for each f ∈ X is an r-seminorm on X. It is easily seen that the family (pn)n≥1 of
r-seminorms produces a metrizable locally r-convex topology on X with a metric d
defined by:

d(f, g) =

∞∑
n=1

2−n min
(
1, pn(f − g)

)
, f, g ∈ X.

Proposition 3.1. X is complete if and only if E is complete.
Proof. Assume that E is complete and let (fk)k≥1 be a Cauchy sequence in X. For
each n ≥ 1, let fk,n denote the restriction of fk to [−n, n]. Clearly, (fk,n)k≥1 is a
Cauchy sequence in the complete r-normed space Xn = C([−n, n], E), and converges
to some gn ∈ Xn. Note that for each integer n ≥ 1, gn is the restriction of gn+1 to
[−n, n]. Let f ∈ X defined by f(x) = gn(x) for all x ∈ [−n, n] and all n ≥ 1. It is
easy to check that f is well defined and (fk)k≥1 converges to f in X. We conclude
that X is a complete metrizable locally r-convex space.
Conversely, we suppose that X is complete. Let (xk)k be a Cauchy sequence in E.
The sequence (fk)k in X defined by:

fk(t) = xk for all t ∈ R, k ∈ N,
is a Cauchy sequence in X that converges to some f ∈ X. Hence

‖xk − f(0)‖r ≤ p1(xk − f)→ 0.

Consequently, E is complete. �

Now, let Bp = {x ∈ X : p(x) < 1} and B′p = {x ∈ X : p(x) ≤ 1}, where p is a
given r-seminorm. Then,
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(i) Bp and B′p are absorbing absolutely r-convex subsets of X.
(ii) pBp = pB′

p
= p.

The assertion (i) being obvious, we prove (ii). To do this, let x ∈ X. Then,

pBp
(x)= inf

{
t > 0 : t−

1
r x ∈ Bp

}
= inf

{
t > 0 : p

(
t−

1
r x
)
< 1

}
= inf {t > 0 : p(x) < t}
= p(x).

Consequently, pBp
= p. A similar reasoning yields pB′

p
= p.

With these preliminaries, we can proceed to the following Lemma.

Lemma 3.1. Let p be an r-seminorm on X and A be an absorbing absolutely r-convex
subset of X with 0 ∈ A (0 < r ≤ 1). Then p = pA if and only if:

Bp ⊂ A ⊂ B′p. (3.1)

Proof. Suppose that p = pA. The inclusion A ⊂ B′p being obvious, let us prove that
Bp ⊂ A. To do so, let x ∈ Bp and take a real t such that pA(x) < t < 1. Hence,

x ∈ t
1
r A and so t−

1
r x ∈ A. Thus, x = t

1
r

(
t−

1
r x

)
+ (1 − t)

1
r 0 ∈ A. Consequently,

Bp ⊂ A. Conversely, assume that (3.1) holds. Then,

p = pB′
p
≤ pA ≤ pBp

= p.

Consequently, p = pA. �

Recall that a topological vector space X is said to be quasi-complete if every
bounded closed subset of X is complete. It is well known [22] that every quasi-
complete topological vector space is sequentially complete.

Now, we state and prove a Mazur type result in locally r-convex spaces. This result
extends [5, Proposition 1, p.52] and [25, Lemma 2.1].

Theorem 3.1 (Mazur type). Let 0 < r ≤ 1 and 0 < s ≤ r. Let X be a locally
r-convex space and let A be a totally bounded subset of X. Then cos(A) is totally
bounded. If, in addition, X is quasi-complete, then cos(A) is compact.
Proof. Since the closure of a totally bounded set is totally bounded (see [22, p.25]), it
suffices to show that cos(A) is totally bounded. To see this, let V be a neighborhood
of the origin and let U be an absolutely r-convex neighborhood of the origin such
that U + U ⊂ V . Since A is totally bounded and U is s-convex then, there exists
x1, . . . , xn ∈ X such that A ⊂ {x1, . . . , xn}+ U , implying

cos(A) ⊂ cos(x1, . . . , xn) + U. (3.2)

The compactness of cos(x1, . . . , xn) ensures that there exists y1, . . . , ym ∈ X such
that

cos(x1, . . . , xn) ⊂ {y1, . . . , ym}+ U.

Using (3.2) we arrive at

cos(A) ⊂ cos(x1, . . . , xn) + U ⊂ {y1, . . . , ym}+ U + U ⊂ {y1, . . . , ym}+ V.
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If X is quasi-complete, then cos(A) is totally bounded and complete. By virtue of
[13, Corollary, p.65] we have that cos(A) is compact. �

Let X and Y be two topological vector spaces. A mapping T : D ⊂ X → Y is
said to be uniformly continuous if for every neighborhood V of 0 in Y , there exists a
neighborhood U of 0 in X such that:(

x, y ∈ D, x− y ∈ U
)

=⇒ Tx− Ty ∈ V.

The following lemma will be quite useful below.

Lemma 3.2. [6, p.36] Let X, Y be topological vector spaces and K be a compact subset
of X. Let T : K → Y be a continuous mapping. Then T is uniformly continuous.

Definition 3.1. Let X be a topological vector space and K be a compact subset of
X. Let T : K → K be a continuous mapping and S, S ′ be two sets of continuous
r-seminorms on X. We say that S ′ dominates S with respect to T if:

(a) For each q ∈ S ′ and x ∈ K, we have q(x) ≤ 1,
(b) for any p ∈ S and ε > 0, there exist q ∈ S ′ and α > 0 such that

q(y − x) < α⇒ p
(
Ty − Tx

)
< ε,

for all x, y ∈ K.

If S ′ = S, we say that S is self-dominating.
If S = {p}, we say that S ′ dominates p.

The following result is of fundamental importance for our subsequent analysis.

Theorem 3.2. Let X be a locally r-convex space (0 < r ≤ 1) and K be a compact
subset of X. Let T : K → K be a continuous mapping and p0 be a continuous r-
seminorm on X. Then, there exists an r-seminorm q on the vector subspace span(K)
of X satisfying:

(i) p0(x) ≤ q(x) for all x ∈ span(K).
(ii) q is continuous on K −K.
(iii) K is compact with respect to the topology generated by the r-seminorm q.
(iv) T is uniformly continuous in K with respect to q i.e., for any ε > 0, there

exists δ > 0 such that:

[x, y ∈ K, q(y − x) < δ] =⇒ q
(
Ty − Tx

)
< ε.

Proof. Since p0 is bounded on K then, without loss of generality, we may assume
that p0(x) ≤ 1 for all x ∈ K. We shall construct a countable self-dominating set S∞
of continuous r-seminorms such that p0 ∈ S∞. To do this, let p be a continuous r-

seminorm. For any integer n ≥ 1, the set Vn =

{
x ∈ X; p(x) <

1

n

}
is a neighborhood

of 0 in X. Referring to Lemma 3.2, we see that there exists an open absolutely r-
convex neighborhood Un of 0 in X such that, for each x, y ∈ K, we have

y − x ∈ Un ⇒ p
(
Ty − Tx

)
<

1

n
.

Clearly, the r-seminorm pUn
is continuous and we have

Un = {x ∈ X; pUn
(x) < 1} .
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Multiplying pUn
by an appropriate constant αn > 0, we obtain a continuous r-

seminorm qn satisfying:

• For each x ∈ K, qn(x) ≤ 1,

• For each x, y ∈ K, qn(y − x) < αn ⇒ p
(
Ty − Tx

)
<

1

n
.

The set {qn; n ≥ 1} of continuous r-seminorms is countable and dominates p. Ac-
cordingly, for any countable set S of continuous r-seminorms, there exists a countable
set S ′ of continuous r-seminorms that dominates S. The set {p0} is then dominated
by a countable set S1, S1 is dominated by a countable set S2 and so on. Accordingly,
S∞ = {p0} ∪

⋃∞
n=1 Sn is a countable self dominating set of continuous r-seminorms

such that p(x) ≤ 1 for each p ∈ S and x ∈ K. Let S∞ = {pn : n ≥ 0} and consider

q(x) =

∞∑
n=0

2−n pn(x), x ∈ span(K). (3.3)

Note that {pn(x) : n ∈ N} is bounded for each x ∈ span(K). Particularly, pn(x) ≤ 2
for all x ∈ K −K and all n ∈ N. Since the series (3.3) converges on span(K), then q
is an r-seminorm on span(K) satisfying (i).

Now we show that q is continuous on K −K. To see this, let ε > 0. Then, there

is an integer N such that 2−N <
ε

8
. For each x, y ∈ K −K, we have

q(y − x) ≤
N∑

n=0

2−n pn(y − x) +

∞∑
n=N+1

2−n+2 <

N∑
n=0

2−n pn(y − x) +
ε

2
.

Since the r-seminorm
∑N

n=0 2−n pn is continuous at 0 then, there is an open neigh-
borhood U of 0 such that:

z ∈ U ⇒
N∑

n=0

2−n pn(z) <
ε

2
.

Hence,

[x, y ∈ K −K, y − x ∈ U ]⇒ q(y − x) < ε.

This proves (ii).
Now, since q is continuous on K −K then, for any x ∈ K and for any ρ > 0 the set

B(x, ρ) = {y ∈ K : q(y − x) < ρ},
is an open subset of K in the topology τK on span(K) induced by the topology of X.
Accordingly, each open subset of K in the topology induced by τq

(
topology defined

by q on span(K)
)

is an open subset of K in the topology induced by τK . In other
words, the topology on K generated by the r-seminorm q is weaker than the topology
on K induced by the initial topology on X. Consequently, K is compact with respect
the topology generated by q. This proves (iii).

Now, let ε > 0 and choose an integer N such that 2−N <
ε

4
. For x, y ∈ K, we have

∞∑
n=N+1

2−n pn(y − x) ≤
∞∑

n=N+1

2−n+1 = 2. 2−N <
ε

2
,
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and

q(y − x) ≤
N∑

n=0

2−n pn(y − x) +
ε

2
.

Also, Tx, Ty ∈ K implies

q
(
Ty − Tx

)
≤

N∑
n=0

2−n pn
(
Ty − Tx

)
+
ε

2
. (3.4)

Since S∞ is self dominating, then for each integer n, there exists an integer kn and a
real αn > 0 such that for each x, y ∈ K, we have

pkn
(y − x) < αn ⇒ pn

(
Ty − Tx

)
<
ε

4
.

Put N ′ = max{k0, . . . , kN} and α = 2−N
′
min{α0, . . . , αN}. Since pk ≤ 2N

′
q for all

k ≤ N ′, we have,

q(y − x) < α⇒ pkn
(y − x) < αn,

and

q(y − x) < α⇒ pn(Ty − Tx) <
ε

4
,

for any x, y ∈ K and n ≤ N . Using (3.4) we get

q(y − x) < α⇒ q
(
Ty − Tx

)
< ε,

for each x, y ∈ K. As a result, the r-seminorm q satisfies (iv). �

Theorem 3.3. Let X be a locally r-convex space and K be a compact s-convex subset
of X for some r, s ∈ (0, 1]. Let T : K → K be a continuous mapping. Then for all
continuous r-seminorm p on X, there exists a x ∈ K such that p(Tx− x) = 0.
Proof. Without loss of generality, we may assume that span(K) = X. Let p be
a continuous r-seminorm on X. In view of Theorem 3.2, there is an r-seminorm q
satisfying conditions (i), (ii), (iii), (iv) where p0 = p. Let N = {x ∈ X : q(x) = 0} be
the kernel of q. Then the quotient space X/N equipped with the r-norm ‖x̃‖r = q(x)
where x̃ = x + N, is an r-normed space. Taking into account the fact that the
quotient map x 7→ x̃ is a continuous linear homeomorphism from X endowed with
topology induced by q to X/N endowed with the r-norm topology, we deduce that

K̃ = {x̃ : x ∈ K} is a compact s-convex subset of the r-normed space X/N .
Now, let x, y ∈ K such that x̃ = ỹ. For each ε > 0, there is a δ > 0 satisfying
(iv). Since q(y − x) = 0 < δ then, q

(
Ty − Tx

)
< ε. Hence, q

(
Ty − Tx

)
= 0 and

so T̃ (x) = T̃ (y). Accordingly, the mapping T̃ : K̃ → X/N defined by T̃ (x̃) = T̃ (x)
makes sense. Taking into account that T is uniformly continuous on K with respect

to q, we infer that T̃ maps continuously K̃ into itself. Invoking Theorem 2.1, we

deduce that there is a x ∈ K such that T̃ (x̃) = x̃. Thus, T (x)− x ∈ N and therefore
q
(
T (x)− x

)
= 0. Keeping in mind that T (x)− x ∈ K −K and p ≤ q on span(K), we

conclude that p
(
T (x)− x

)
= 0. �

Now, we are ready to state the main result of this section.
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Theorem 3.4 (Schauder-Tychonov type). Let X be a Hausdorff locally r-convex
space and K be a compact s-convex subset of X for some r, s ∈ (0, 1]. Let T : K → K
be a continuous mapping. Then T has at least one fixed point in K.
Proof. Let Pr denote the set of all continuous r-seminorms on X. From Theorem
3.3, we know that for every p ∈ Pr there exists xp ∈ K such that p

(
T (xp)− xp

)
= 0.

The compactness of K ensures the existence of a subnet (xpi
)i∈I of the net (xp)p∈Pr

converging to some x∗ ∈ K. Thus, T (xpi)→ T (x∗) and therefore

T (xpi
)− xpi

→ T (x∗)− x∗.

Let p ∈ Pr. Then there exists i0 ∈ I such that p ≤ pi for all i ≥ i0. Hence,

p
(
T (xpi

)− xpi

)
≤ pi

(
T (xpi

)− xpi

)
= 0,

and therefore, p
(
T (xpi

)− xpi

)
= 0 for all i ≥ i0. Consequently,

p
(
T (x∗)− x∗

)
= lim

i
p
(
T (xpi

)− xpi

)
= 0.

Since p is arbitrary we have T (x∗) = x∗. �

Remarks 3.1.

(i) Theorem 3.4 is a sharpening of [5, Theorem 34, p.64], [6, Theorem 3.2, p.40]
and [8, Theorem 2.3].

(ii) It is worthwhile to mention that we can remove the completeness condition
from Theorem 1.2, via a completion procedure as in Theorem 2.1. However,
this approach fails to remove metrizability condition and to cover the case
r = 1.

(iii) It might be noted that a locally convex space is locally r-convex for any
0 < r ≤ 1. This is a straightforward consequence of Lemma 2.2.

As a direct consequence of Theorem 3.4, we obtain the following sharpening of
the Schauder-Tychonov fixed point theorem in locally convex spaces. We particularly
show that Schauder-Tychonov’s statement remains valid for both convex and s-convex
sets (with 0 < s ≤ 1) in locally convex spaces. This result does not follow from
Theorem 1.2.

Theorem 3.5. Let K be a nonempty compact s-convex set (0 < s ≤ 1) in a Hausdorff
locally convex space X and let T : K → K be a continuous mapping. Then T has at
least one fixed point in K.
Proof. Apply Theorem 3.4 with r = 1. �

Likewise, we can derive from Theorem 3.4 the following interesting result which
extends Theorem 2.2.

Theorem 3.6. Let K be a nonempty compact convex set in a Hausdorff locally r-
convex space X (0 < r ≤ 1) and let T : K → K be a continuous mapping. Then T
has at least one fixed point in K.
Proof. Apply Theorem 3.4 with s = 1. �

Another consequence of Theorem 3.4 is the following sharpening of [8, Theorem 2.4].

Theorem 3.7 (Schauder-Tychonov type). Let X be a quasi-complete Hausdorff lo-
cally r-convex space, C a closed s-convex subset of X and T : C → C a continuous
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compact mapping (i.e. T (C) is compact) where 0 < s ≤ r ≤ 1. Then T has a fixed
point in C.
Proof. Let K = cos

(
T (C)

)
. Invoking Theorem 3.1, we deduce that K is a compact

s-convex subset of C. Since K ⊂ C then T (K) ⊂ T (C) ⊂ K. Applying Theorem 3.4
we get a fixed point for T . �

We now consider the case of non-self mappings. In this context, we present the
following Rothe type fixed point theorem in locally r-convex spaces.

Theorem 3.8 (Rothe type). Let 0 < s ≤ 1 and 0 < r ≤ 1. Let X be a Hausdorff
locally r-convex space and K be a compact s-convex subset of X such that 0 ∈ int(K),
where int(K) is the interior of K. Let T : K → X be a continuous mapping such that
T (∂K) ⊂ K, where ∂K is the boundary of K. Then T has a fixed point in K.
Proof. Since 0 ∈ int(K), then the Minkowsky s-functional pK of K is continuous on
X (see [25, Lemma 1.5]). Define the mapping f : X → X by

f(x) =
x

max

(
1, pK(x)

1
s

) for x ∈ X.

It is readily verified that f is continuous on X and f(X) ⊂ K.
The mapping T1 = f ◦ T : K → K being continuous, Theorem 3.4 ensures the
existence of x∗ ∈ K such that T1(x∗) = x∗. If x∗ ∈ int(K), then

1 > pK(x∗) = pK
(
T1(x∗)

)
=

pK
(
T (x∗)

)
max

(
1, pK

(
T (x∗)

)) .
Thus, pK

(
T (x∗)

)
< 1 and therefore Tx∗ ∈ K. Consequently,

x∗ = T1(x∗) = f
(
T (x∗)

)
= T (x∗).

If x∗ ∈ ∂K, then

x∗ = T1(x∗) =
T (x∗)

max

(
1, pK

(
T (x∗)

) 1
s

) , (3.5)

and therefore

1 = pK(x∗) =
pK
(
T (x∗)

)
max

(
1, pK

(
T (x∗)

)) . (3.6)

From our hypotheses we know that T (x∗) ∈ K (since x∗ ∈ ∂K) and so pK
(
T (x∗)

)
≤ 1.

Using (3.6) we get pK
(
T (x∗)

)
= 1. Going back to (3.5), we infer that T (x∗) = x∗.

This completes the proof. �

4. Fixed point theorems for multivalued mappings

In this section, we shall prove some fixed point theorems for multi-valued operators
in r-normed and locally r-convex spaces. Before proving our main results, we give
some useful definitions. Let X and Y be two topological Hausdorff spaces and T :
X → 2Y be a multi-valued operator. We say that T is upper semi-continuous at
x ∈ X if for every open set V which contains Tx, there exists a neighborhood U of
x such that T (U) ⊂ V . If T is upper semi-continuous at every x ∈ X then we say
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that T is upper semi-continuous. Note that T is upper semi-continuous if for every
open subset V of Y , there exists an open subset U of X such that T (U) ⊂ V . The
operator T is said to have closed graph if GT = {(x, y) ∈ X×Y : y ∈ Tx} is a closed
subset of the product space X × Y .

Now, we state the main result of this section.

Theorem 4.1. Let X be an r-normed space and C be a compact s-convex subset of X
(0 < s ≤ 1, 0 < r ≤ 1). If T : C → 2C is upper semi-continuous and Tx is nonempty
closed and s-convex for every x ∈ X. Then there exists x0 ∈ C such that x0 ∈ Tx0.
Proof. Since C is compact then it is totally bounded. Thus, for any integer n ≥ 1,

there are x1,n, . . . , xkn,n in C such that C ⊂
kn⋃
i=1

B

(
xi,n,

1

n

)
. Now, for i = 1, . . . , kn

and x ∈ C, set:

ϕi,n(x) = max

{
1

n
− ‖x− xi,n‖r, 0

}
.

Clearly, ϕi,n is a continuous functional on C and
∑kn

i=1 ϕi,n(x) > 0 for all x ∈ C. Let
yi,n be fixed in T (xi,n) and Tn : C → C defined by:

Tn(x) =

kn∑
i=1

(
ϕi,n(x)

ϕn(x)

) 1
s
yi,n, x ∈ C,

where ϕn(x) =

kn∑
i=1

ϕi,n(x).

Invoking Theorem 2.1, we deduce that the continuous function Tn : C → C has a
fixed point in C, say xn. By extracting a subsequence, if necessary, we may assume
that (xn)n converges to some x∗ ∈ C. For each ε > 0, the subset Uε = Tx∗ +B(0, ε)
is an open neighborhood of the closed subset Tx∗. Hence,⋂

ε>0

Uε = Tx∗ = Tx∗. (4.1)

The upper semi-continuity of T ensures the existence of δ > 0 such that T
(
B(x∗, δ)

)
⊂

Uε. Since xn → x∗, there is a positive integer N >
2

δ
such that xn ∈ B

(
x∗,

δ

2

)
for all

n ≥ N . Let n ≥ N and 1 ≤ i ≤ kn. Then, ‖xn − xi,n‖r <
1

n
whenever ϕi,n(xn) > 0.

Thus, xi,n ∈ B(x∗, δ). Hence, yi,n ∈ Txi,n ⊂ T
(
B(x∗, δ)

)
⊂ Uε, and therefore

yi,n ∈ Uε. Since Tx∗ and B(0, ε) are s-convex, then according to [13, Propostion 3,
p.102] we have that Uε is s-convex. Consequently,

xn = Tnxn =

kn∑
i=1

(
ϕi,n(x)

ϕn(x)

) 1
s
yi,n ∈ Uε.

Letting n→∞, we obtain x∗ ∈ Uε ⊂ U2ε and so, x∗ ∈
⋂

ε>0 Uε. Going back to (4.1)
we get x∗ ∈ Tx∗. �

Remark 4.1. Theorem 4.1 improves [25, Theorem 2.15].
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Before to state the next result, we recall the following lemma.

Lemma 4.1. [8, Proposition 2.5] Let X, Y be topological spaces and f : X → 2Y a
set-valued mapping.

(a) If Y is regular, f is upper semi-continuous and for every x ∈ X the set f(x)
is non empty and closed, then f has a closed graph.

(b) Conversely, if the space Y is compact Hausdorff and f is with closed graph,
then f is upper semi-continuous.

Theorem 4.2. Let X be an r-normed space and C a compact s-convex subset of X
(0 < s ≤ 1, 0 < r ≤ 1). If T : C → 2C is a mapping with closed graph and Tx is
nonempty and s-convex for every x ∈ C, then there exists z ∈ C such that z ∈ Tz.
Proof. Keeping in mind that T has a closed graph, it is readily verified that T (x)
is closed for any x ∈ C. According to Lemma 4.1, T is upper semi-continuous. The
result follows from Theorem 4.1. �

Remark 4.2. Theorem 4.2 is a sharpening of [25, Theorem 2.16].

Theorem 4.3. Let X be a Hausdorff locally r-convex space and C be a compact
s-convex subset of X, where 0 < r ≤ 1 and 0 < s ≤ 1. If T : C → 2C is upper
semi-continuous mapping such that Tx is nonempty closed s-convex for every x ∈ C,
then T has a fixed point in C.
Proof. We shall use some ideas from [10]. Let U be a basis of absolutely r-convex
open neighborhoods of the null element 0 that generates the locally r-convex topology
of X. Let U ∈ U be fixed and let V ∈ U such that V ⊂ U . Since C is compact,
there are x1, . . . , xn ∈ C such that C ⊂ {x1, . . . , xn} + V . Let K = cos(x1, . . . , xn)
the s-convex hull of {x1, . . . , xn}. It is easily seen that K ⊂ C and K is a compact
s-convex subset of the finite-dimensional topological vector space span{x1, . . . , xn}.
Let TU : K → 2K be the mapping defined by:

TUx =
(
Tx+ V

)
∩K,

for all x ∈ K. It is easy to check that TUx is a closed s-convex subset of K. We
show that TU is upper semi-continuous. To see this, let x0 ∈ K and V0 an open
set such that TUx0 ⊂ V0. Since TUx0 is compact, then there is W0 ∈ U such that
TUx0 + W0 ⊂ V0

(
see [21, Theorem 1.10, p.10]

)
. Keeping in mind the closedness of

Tx0 + V , the use of [10, Lemma 1] ensures the existence of W1 ∈ U such that:((
Tx0 + V

)
+W1

)
∩ (K +W1) ⊂ TUx0 +W0.

Since T is upper semi-continuous then, there exists an open neighborhood U0 of x0
such that Tx ⊂ Tx0 +W1 for all x ∈ C ∩ U0. Thus,

Tx+ V ⊂
(
Tx0 + V

)
+W1,

for all x ∈ K ∩ U0. Therefore,

TUx ⊂
((
Tx0 + V

)
+W1

)
∩K ⊂

((
Tx0 + V

)
+W1

)
∩
(
K +W1) ⊂ TUx0 +W0.

Consequently,

TUx ⊂ TUx0 +W0.
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Since TUx0 + W0 ⊂ V0, then TUx ⊂ V0. This proves that TU is upper semi-
continuous. According to Theorem 4.2, there is xU ∈ K such that xU ∈ TUxU ⊂
TxU + V . Therefore, xU ∈ C and xU ∈ TxU + U.

Notice that (xU )U∈U is a net of elements of the compact set C. Thus, there is a
subnet (xUi

)i∈I that converges to some element x∗ ∈ C. We show that x∗ is fixed
point of T . Indeed, let U ∈ U . Then, there exists V ∈ U such that V + V + V ⊂ U .
Since T is upper semi-continuous at x∗, there is W ∈ U such that W ⊂ V and
Tx ⊂ Tx∗ + V for each x ∈ x∗ + W . Furthermore, the subnet (xUi)i∈I converges to
x∗. Hence, there exists i0 ∈ I such that:

i ∈ I, i ≥ i0 ⇒ xUi
∈ x∗ +W.

Accordingly,

i ∈ I, i ≥ i0 ⇒ TxUi
⊂ Tx∗ + V.

Also, there is a j0 ∈ I such that:

i ∈ I, i ≥ j0 ⇒ Ui ⊂ V.

Consequently,

i ∈ I, i ≥ j0 ⇒ xUi
∈ TxUi

+ Ui ⊂ TxUi
+ V.

Let k ∈ I such that k ≥ i0 and k ≥ j0. Then x∗ ∈ xUk
+ W ( since −W = W ),

xUk
∈ TxUk

+ V and TxUk
⊂ Tx∗ + V . Therefore,

x∗ ∈ TxUk
+ V +W ⊂ Tx∗ + V + V + V ⊂ Tx∗ + U.

As a result, x∗ ∈ Tx∗ + U . Consequently,

x∗ ∈
⋂
U∈U

(Tx∗ + U) = Tx∗.

Since Tx∗ is closed, then x∗ ∈ Tx∗. This completes the proof. �

Remark 4.3.

(1) Theorem 4.2 extends [8, Theorem 2.6], [10, Theorem 1] and [12, Theorem].
(2) The mapping T in Theorem 4.2 is upper semi-continuous, compact-valued

and X is Hausdorff. Invoking [3, Corollary 14.47, p.483], we conclude that
the set of fixed points of T is compact.

Corollary 4.1. Let X be a Hausdorff locally r-convex space and C a compact s-
convex subset of X, where 0 < r ≤ 1 and 0 < s ≤ 1. If T : C → 2C has closed graph
and Tx is nonempty s-convex for every x ∈ X, then T has a fixed point in C.
Proof. The result follows from Theorem 4.3 on the basis of Lemma 4.1. �

Remark 4.4. Corollary 4.1 is the sharpening of [3, Corollary 14.50, p.484].

5. Applications

In an attempt to illustrate our results, we shall give two applications. The first
one concerns a Von Neumann’s result [23](see also [7, Corollary 16.4, p.75] and [16,
Corollary, p.69]). The second one is about a problem arising in game theory.
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5.1. On a Von Neumann’s result.

Theorem 5.1. Let X1, . . . , Xk be Hausdorff locally r-convex spaces for some 0 < r ≤
1. Let C1, . . . , Ck be nonempty compacts s-convex subsets of X1, . . . , Xk, respectively,
where 0 < s ≤ 1 and k ≥ 1. Let M1, . . . ,Mk be nonempty closed subsets of C =
C1 × · · · × Ck, such that

Ti(x) = {t ∈ Ci : (x1, . . . , xi−1, t, xi+1, . . . , xk) ∈Mi}
is nonempty and s-convex for any x = (x1, . . . , xk) ∈ C and 1 ≤ i ≤ k. Then

k⋂
i=1

Mi 6= ∅.

Proof. Consider the mapping T : C → 2C defined by

T (x) = T1(x)× · · · × Tk(x)

for all x ∈ C. Let Pi denote the family of continuous r-seminorms that generates the
topology of Xi for 1 ≤ i ≤ k.
Let p1 ∈ P1, . . . , pk ∈ Pk and let p : X1 × · · · ×Xk → [0, ∞) defined by

p(x) = max
1≤i≤k

pi(xi)

for all x = (x1, . . . , xk) ∈ X1 × · · · × Xk. Obviously, each p is an r-seminorm on
X1×· · ·×Xk and their family P generates a product topology on X1×· · ·×Xk that
makes X1 × · · · × Xk a Hausdorff locally r-convex space. It is easily seen that the
set C = C1 × · · · × Ck is a compact s-convex subset of X1 × · · · ×Xk and T (x) is a
nonempty s-convex set for each x ∈ C. We show that T has a closed graph. To see
this, notice first that the mapping fi : C2 → C defined by

fi(x, y) = (x1, . . . , yi, . . . , xk)

is continuous, for each 1 ≤ i ≤ k, where x = (x1, . . . , xk) and y = (y1, . . . , yk) are
elements of C. Thus the set

f−1i (Mi) = {(x, y) ∈ C2 : (x1, . . . , yi, . . . , xk) ∈Mi}
is closed. Since,

y ∈ T (x) ⇐⇒
[
(x1, . . . , yi, . . . , xk) ∈Mi for all 1 ≤ i ≤ k

]
,

then the graph of T :

GT =
{

(x, y) ∈ C2 : (x1, . . . , yi, . . . , xk) ∈Mi for all 1 ≤ i ≤ k
}

=

k⋂
i=1

f−1i (Mi)

is closed. Invoking Corollary 4.1, we deduce that there is x∗ = (x∗1, . . . , x
∗
k) ∈ C such

that x∗ ∈ T (x∗) = T1(x∗)× · · · × Tk(x∗) and so x∗i ∈ Ti(x∗) for all 1 ≤ i ≤ k. Thus,

x∗ ∈
k⋂

i=1

Mi and therefore

k⋂
i=1

Mi 6= ∅. �
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Remark 5.1. Theorem 5.1 extends [7, Corollary 16.4, p.75] and [16, Corollary, p.69].

5.2. On a problem from game theory.

A game is a triple (A, B, G), whereA andB are two nonempty sets, whose elements
are called strategies and G : A × B → R is the gain function. The value G(x, y)
represents the gain of a first player P and the loss of a second player Q when the
player P chooses the strategy x ∈ A and the player Q chooses the strategy y ∈ B.
The goal of the player P is to maximize his gain whereas the other player Q chooses
a strategy that will a total fiasco for his rival, that is, to choose x0 ∈ A such that
infy∈B G(x0, y) = supx∈A infy∈B G(x, y). Similarly, the player Q chooses y0 ∈ B such
that supx∈AG(x, y0) = infy∈B supx∈AG(x, y). Thus,

inf
y∈B

G(x0, y) = sup
x∈A

inf
y∈B

G(x, y) ≤ G(x0, y0) ≤ sup
x∈A

G(x, y0) = inf
y∈B

sup
x∈A

G(x, y).

Note that
sup
x∈A

inf
y∈B

G(x, y) ≤ inf
y∈B

sup
x∈A

G(x, y). (5.1)

Let A be a nonempty s-convex subset of a vector space (0 < s ≤ 1). A mapping
f : A→ R is called s-convex if,

f

(
ρ
1
s x+ (1− ρ)

1
s y

)
≤ ρ f(x) + (1− ρ) f(y),

for all x, y ∈ A, 0 ≤ ρ ≤ 1, and f is called s-concave if −f is s-convex.

Now, we are in position to state the following.

Theorem 5.2. Let X, Y be a two Hausdorff locally r-convex spaces and A ⊂ X, B ⊂
Y nonempty compact s-convex sets, where 0 < r ≤ 1 and 0 < s ≤ 1. Let G : A×B →
R be a continuous function such that:

(i) for each x ∈ A, the function G(x, .) : B → R is s-convex,
(ii) for each y ∈ B, the function G(., y) : A→ R is s-concave.

Then:
inf
y∈B

sup
x∈A

G(x, y) = sup
x∈A

inf
y∈B

G(x, y),

and the game (A, B, G) has a solution.
Proof. Let PX and PY denote the family of continuous r-seminorms that generate
the topology of X and Y respectively. Let p ∈ PX , p

′ ∈ PY and let the mapping
q : X × Y → [0, ∞) be defined by q(x, y) = max

(
p(x), p′(y)

)
for all (x, y) ∈ X × Y .

Obviously, q is a continuous r-seminorm on X × Y . The family of such r-seminorms
generates the product topology on X × Y .

Let f : A→ R and g : B → R be the functions defined by:

f(x) = inf
y∈B

G(x, y), g(y) = sup
x∈A

G(x, y).

By [8, Lemma 3.3], the functions f and g are continuous. Let

Ay = {x ∈ A : G(x, y) = g(y)} for all y ∈ B
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and
Bx = {y ∈ B : G(x, y) = f(x)} for all x ∈ A.

For all (x, y) ∈ A× B, the sets Ay and Bx are nonempty and closed. We show that
they are s-convex. To see this, let 0 ≤ ρ ≤ 1, x1, x2 ∈ Ay, y1, y2 ∈ Bx and set

x′ = ρ
1
s x1 + (1− ρ)

1
s x2, y

′ = ρ
1
s y1 + (1− ρ)

1
s y2.

Since G(x, .) is s-convex and G(., y) is s-concave, then we have:

f(x) ≤ G(x, y′) ≤ ρG(x, y1) + (1− ρ)G(x, y2) = ρ f(x) + (1− ρ) f(x) = f(x),

g(y) ≥ G(x′, y) ≥ ρG(x1, y) + (1− ρ)G(x1, y) = ρ g(y) + (1− ρ) g(y) = g(y).

Hence, f(x) = G(x, y′) and g(y) = G(x′, y). Therefore y′ ∈ Bx and x′ ∈ Ay. This
shows that Ay and Bx are s-convex.

Let C = A×B and define the mapping T : C → 2C by T (x, y) = Ay ×Bx for all
(x, y) ∈ C. Clearly, T (x, y) is a nonempty closed s-convex subset of C. Now, we claim
that the graph GT = {(x, y, z, t) ∈ C × C : (z, t) ∈ T (x, y)} of T is closed. Indeed,
let (xi, yi)i∈I be a net in C that converges to (x, y) ∈ C, and (zi, ti) ∈ T (xi, yi) for
each i ∈ I, such that the net (zi, ti)i∈I converges to (z, t) ∈ C. Note that:

(zi, ti) ∈ T (xi, yi)⇐⇒ G(zi, yi) = g(yi), G(xi, ti) = f(xi).

The continuity of the functions G, f and g yields G(z, y) = g(y) and G(x, t) = f(x).
Thus z ∈ Ay, t ∈ Bx and so (z, t) ∈ T (x, y). This proves our claim.
Invoking Corollary 4.1, there is (x0, y0) ∈ C such that (x0, y0) ∈ T (x0, y0), that is,

G(x0, y0) = g(y0) = f(x0).

From (5.1), it follows that

G(x0, y0) = f(x0) ≤ sup
x∈A

inf
y∈B

G(x, y) ≤ inf
y∈B

sup
x∈A

G(x, y) ≤ g(y0) = G(x0, y0).

Accordingly,
G(x0, y0) = sup

x∈A
inf
y∈B

G(x, y) = inf
y∈B

sup
x∈A

G(x, y).

This completes the proof. �

Remark 5.2. Theorem 5.2 extends [8, Theorem 3.4], [26, Proposition 9.18, p.461]
and [25, Theorem 3.2].
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