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1. Introduction and background

Metric spaces constitute an appropriate topological structure for various mathe-
matical models and problems in applied sciences. In particular, fixed point theory
plays an important role in different branches of mathematics and other sciences. How-
ever, some problems demand a more general scenario than the classical metric spaces
and some generalizations are needed. To this respect, we refer to [4, 12, 20, 23, 32]
as recent references. This is also the case of the quasi-metric spaces (cf. [25, 28], for
instance), which are naturally involved in a part of the harmonic analysis related to
the theory of spaces of homogeneous type. We refer to [25] as a reference about this
theory. These spaces are also known as b-metric spaces (see [5, 11], for instance) and
extensions of these ones are recently considered in [23, 32]. In this work, we study a
variant of the quasi-metric spaces, which consists of relaxing the condition of symme-
try in the bivariate function defining the topology of quasi-metric spaces, according
to the definitions given in [5, 11, 22, 25, 28]. Other definition of quasi-metric space is
given in [4, 20], where the symmetric property is relaxed, but the standard triangular
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inequality is maintained. As pointed out in [28], this definition is frequently used in
general topology. Anyway, they are also included in our setting. Moreover, the metric
structure introduced in this paper contains the S-metric spaces introduced by Sedghi
et al. in [30]. Based on the mentioned structure, the aim of the current paper are two
fold. First, we are interested in studying some properties of the topology generated
by the generalized metric introduced here. Maćıas and Segovia in [22] proved that
the topology of a quasi-metric space is metrizable. This fact remains valid whenever
the symmetry condition is dropped, as we prove in this paper. An appropriate tool,
allowing to verify compactness in these spaces, consists of a non-compactness mea-
sure, which is based on the generalized metrics defining their topologies. This concept
allows us to obtain, in our context, old results by Kuratowski in [21] and Horvath in
[18], for classical metric spaces. Also, we define condensing correspondences and de-
rive some natural results from this definition. A number of authors such as [17, 27, 31]
have derived results based on the existence of non-compactness measures, which are
axiomatically defined. To this respect, we mention that in the current work a concrete
non-compactness measure is introduced. The second aim of this work consisting of
proving a number of fixed point theorems. Our results allow us to prove the existence
of fixed points for a wide family of functions and correspondences, which are based on
a type of Banach condition consisting of a recursive chain of inequalities that involve
functions or correspondences, according to the case. These results are natural exten-
sions of different types of contractions existing in the literature. For instance, the
Banach contraction principle [6] for functions and the analogous result for correspon-
dences by Nadler [26] are remarkable contractions in the context treated in this work.

Also, Berinde [7], Chatterjea [9], Ćirić [10], Kannan [19], and Reich [29] contractions
admit extensions for functions and correspondences in the setting that we present in
this paper. Apart from Banach orbital type condition, we need certain continuity
conditions to obtain fixed points for correspondences. Accordingly, we assume the
correspondences satisfy similar or weaker properties than the upper semicontinuity.
To this objective, we define metrically upper (and also lower) semicontinuity of a
correspondence.

Including this section, we divide the entire paper into seven sections. In Section
2 we introduce a measure of length for paths in graphs, as a motivation to the pro-
posal of this paper. In Section 3, we first extend quasi-metric spaces with suitable
examples, which are extensions of quasi-metric and S-metric spaces. Also, direct
properties are given in this section. Section 4 is devoted to define the topology of
these spaces and their main topological characteristics. A non-compactness measure
and condensing correspondences are defined in Section 5. Moreover, some results are
presented. Indeed, conditions for the existence of a minimum in a function are es-
tablished. In addition, existence of fixed points, both for single valued functions and
correspondences are presented. In Section 6, the results corresponding to existence
of fixed point for functions are stated. Examples for different contractions are shown
in this section. Results for the existence of fixed point for correspondences and their
corresponding examples are stated in Section 7.
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2. Motivation

This section is dedicated to highlighting the importance of generalizing the quasi
metric concept outlined in the introduction.

Let us consider a nonempty set X containing vertices of graphs and w : X ×X →
R≥0 be a function denoting conectivity and weight between vertices, i.e. w(x, y) ≥ 0
and w(x, y) = 0, if and only if, x = y. For undirected graphs, w is a symmetric
function. Let x1, . . . , xp ∈ X. The total weight of the loop passing throught these
vertices, which also could be considered as its length, is denoted by

u(x1, . . . , xp) = w(x1, x2) + · · ·+ w(xp−1, xp) + w(xp, x1).

Observe that, for each i ∈ {1, . . . , p} and a ∈ X, u(xi, . . . , xi, a) = 2w(xi, a).
Consequently, if p = 3 and w is a metric, we have

u(x1, x2, x3) ≤ u(x1, x1, a) + u(x2, x2, a) + u(x3, x3, a).

Notice that u satisfies the properties of a S-metric as introduced by Sedghi et al. in
[30]. However, for p > 3 this concept need to be extended. On the other hand, if
instead of a loop, we consider any path (not necessarily a loop), the length of this
path is defined as

u(x1, . . . , xp) = w(x1, x2) + · · ·+ w(xp−1, xp).

In this case, for any a ∈ X, we have

u(x1, . . . , xp) ≤ 2(u(x1, . . . , x1, a) + · · ·+ u(xp, . . . , xp, a)).

Different inequalities could result when w is not a metric or the graphs are directed
(digraphs), in which case, the w could be nonsymmetric. On concepts related to
graphs we recommend [13, 24].

We think the subject of this paper could be of interest for network theory. However,
the current work is focused in the topological and metric properties of this concept
of length and its relation with the fixed point theory.

3. Extension of quasi-metric spaces

In order to extend the concept of quasi-metric space, in this section we introduce
the basic definitions and some examples.

Let X be a non-empty set, p ≥ 2, b ≥ 1 and u : Xp → [0,∞) a function satisfying,
for each x1, . . . , xp ∈ X, the following condition: (u0) u(x1, . . . , xp) = 0, if and only
if, x1 = · · · = xp. We say that

(u1) (X,u) is a QM(p, b)-metric space, if and only if

u(x1, . . . , xp) ≤ b
p∑
i=1

u(xi, . . . , xi, a), for all a ∈ X,

and
(u2) (X,u) is a QM1(p)-metric space, if and only if (X,u) is a QM(p, 1)-metric

space.
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Observe that a QM(2, b)-metric space is a quasi-metric space, were the symmetry
condition has been dropped. Moreover, a QM1(3)-metric space is a S-metric space,
as introduced by Sedghi et al. in [30].

Example 3.1. Let (X, d) be a metric space and u : Xp → R be defined as

u(x1, . . . , xp) = d(x1, x2) + · · ·+ d(xp−1, xp) + d(xp, x1).

Let x1, . . . , xp, a ∈ X and notice that, for each i ∈ {1, . . . , p}, we have

u(xi, . . . , xi, a) = 2d(xi, a).

Since
u(x1, . . . , xp) ≤ 2{d(x1, a) + · · ·+ d(xp−1, a) + d(xp, a)}

= u(x1, . . . , x1, a) + · · ·+ u(xp, . . . , xp, a),

(X,u) is an QM1(p)-metric space.

Example 3.2. Let (X,u) be a QM1(p)-metric space and define v : Xp → R as
v(x1, . . . , xp) = u(x1, . . . , xp)

α, where α > 1. Since for each u1, . . . , up ≥ 0, (u1 +
· · · + up)

α ≤ pα−1(uα1 + · · · + uαp ), we have (X, v) is a QM(p, b)-metric space, with

b = pα−1.

Let (X,u) be a QM(p, b) metric space. In what follows, du : X2 → R stands for
the function defined as du(x, y) = u(x, . . . , x, y).

Remarks 3.1. Let (X,u) be a QM(p, b)-metric space. Then, for all x, y, a ∈ X, we
have

(i) du(x, y) ≤ b{(p− 1)du(x, a) + du(y, a)} and
(ii) du(x, y) ≤ bdu(y, x).
(iii) du(x, y) = 0, if and only if, x = y.

Consequently, if (X,u) is a QM1(p)-metric space, then,

(iv) du(x, y) ≤ (p− 1)du(x, a) + du(y, a) and
(v) du(x, y) = du(y, x).

Notice that if (X,u) is a QM1(p)-metric space, then (X, du) is a quasi-metric space.
However, due to du is not symmetric, in general, (X, du) need not to be a quasi-metric
space if (X,u) is a QM(b, p)-metric space with p ≥ 2.

Given a QM(p, b)-metric space (X,u), x ∈ X and a nonempty subset A of X, we
denote

du(x,A) = inf{du(x, y) : y ∈ A}.
Limit of sequences, Cauchy sequences and completeness in QM(p, b)-metric spaces

are naturally defined. Indeed, let {xn}n∈N a sequence in E and x∗ ∈ E. This sequence
is said to converge to x∗, whenever for each ε > 0, there exists N ∈ N such that
du(x∗, xn) < ε, for all n ≥ N . The sequence {xn}n∈N is said to be Cauchy, whenever
for each ε > 0, there exists N ∈ N such that du(xn, xn+p) < ε, for all n ≥ N and
p ∈ N. The space (X,u) is said to be complete, whenever every Cauchy sequence in X
converges. For the time being, these definitions are only formal, because we have not
yet defined a topology on X. In Section 4, a topology on X with uniform structure is
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given, which is consistent with the concepts of convergence and completeness defined
here.

In most of the examples treated in the literature, for S-metric spaces, the function
du : X ×X → R turns out to be effectively a metric. This is the case, for instance, in
our Example 3.1. Since a number of results are based exclusively on this function, it
seems necessary to present at least one example of a genuine QM1(p)-metric space,
that is, a space where du is not a classical metric. Such an example is presented
below.

Example 3.3. Let X = {1, . . . , n}, Ip = {1, . . . , p} and, for each x = (x1, . . . , xp) ∈
Xp, σx : Ip → Ip be a bijective function satisfying xσx(1) ≤ · · · ≤ xσx(p). Let
u : Xp → R be defined as

u(x) = u(x1, . . . , xp) = max{xσx(2) − xσx(1), . . . , xσx(p) − xσx(p−1)}.

To avoid trivial cases, we assume n ≥ 2. Since, for all x, y ∈ X, du(x, y) = |x− y|, we
easily see that u(x1, . . . , xp) ≤ du(x1, y)+ · · ·+du(xp, y), for all y ∈ X. Consequently,
(X,u) is a QM1(p)-metric space. However, (X,u) is not genuine. In order to obtain
a genuine QM1(p)-metric, we suppose p ≥ 3 and choose x∗ = (1, . . . , 1, n) ∈ Xp. Let
u∗ : Xp → R be defined as u∗(x) = u(x) if x 6= x∗ and u∗(x∗) = u(x∗) + 1(= n). We
have (X,u∗) is a QM1(p)-metric space. To see this, we only need to prove that

u∗(x∗) ≤ du∗(1, y) + · · ·+ du∗(1, y) + du∗(n, y), for all y ∈ X.

Clearly, the equality hold for y = 1. For y ≥ 2, we have

du∗(1, y) + · · ·+ du∗(1, y) + du∗(n, y) = (p− 1)(y − 1) + n− y ≥ n = u∗(x∗),

due to p ≥ 3. Since du∗(1, n − 1) + du∗(n − 1, n) < du∗(1, n), (X,u) is a genuine
QM1(p)-metric space.

4. Topological properties

Let (X,u) be a QM(p, b)-metric space. For all a ∈ X and ε > 0, the following
notations are stated:

∆ = {(x, y) ∈ X ×X : x = y},
Uε = {(x, y) ∈ X ×X : du(x, y) < ε},
Bu = {Uε : ε > 0},
Uu = {U ⊂ X : ∃V ∈ Bu, V ⊂ U} and

Bu(a, ε) = {x ∈ X : du(a, x) < ε}.

Theorem 4.1. The family Bu is a fundamental system of entourages for the Haus-
dorff uniformity Uu on X, i.e., Bu is a filter base satisfying the following three con-
ditions:

(i) ∆ =
⋂
ε>0 Uε;

(ii) for each U ∈ Bu, there exists V ∈ Bu, such that V ⊂ U−1; and
(iii) for each U ∈ Bu, there exists W ∈ Bu, such that W ◦W ⊂ U .



608 DEBASHIS DEY, RAÚL FIERRO AND MANTU SAHA

Proof. It is easy to verify that Bu is a filter base on X × X. Conditions (i) follows
directly from (u0) in the definition of u and condition (ii) is obtained by taking into
account that, from (ii) in Remarks 3.1, for each ε > 0, U−1

ε/b ⊂ Uε. Let us prove

condition (iii). Let U ∈ Bu and ε > 0 satisfy U = Uε.
From (i), du(x, y) ≤ b[(p−1)du(x, a)+du(y, a)], for all x, y, a ∈ X. Let α = ε/2b2(p−1)
and W = Uα. Hence, from (i) and (ii) in Remarks 3.1, we have W ◦W ⊂ U and the
proof is complete. �

In the sequel, we consider the space (X,u) provided with the topology induced by
the uniformity Uu, i.e., a subset A of X is open, if and only if, for all a ∈ A, there
exists ε > 0 such that Bu(a, ε) ⊂ A. We denote by τu this topology. It is worth taking
into account that, with this topology, not necessarily, du is a continuous function and
either a ball Bu(a, r) is an open set, (see [3]).

Notice that {U1/n;n ∈ N \ {0}} is a countable fundamental system of entourages
for Uu. Consequently, by the Alexandroff-Urysohn theorem [2], the following corollary
holds.

Corollary 4.1. The topological space (X, τu) is metrizable. In particular, it satisfies
the first countability axiom.

Remark 4.1. Since, in general, du is not a metric, any metric generating τu need not
coincide with du. According to Example 3.3, this fact is true even for QM1(p)-metric
spaces, for p ≥ 3. However, in this case, (X, du) is a quasi-metric space and hence
there exists a metric ρ generating the topology τu, such that dβu ≤ 2ρ ≤ 2dβu, where
0 < β ≤ 1 (see [1, 22, 28]).

Corollary 4.2. Let (X,u) be a QM(p, b)-metric space, x ∈ X and f : X → X a
function. The following two conditions are equivalent:

(i) f is continuous at x, and
(ii) for all sequence {xn}n∈N converging to x, {f(xn)}n∈N converges to f(x).

Corollary 4.3. Let F be a nonempty subset X. The following three conditions are
equivalent:

(i) F is closed;
(ii) for all x ∈ X, du(x, F ) = 0 implies that x ∈ F , and
(iii) all sequence {xn}n∈N\{0} in F , converging to x ∈ X, satisfies x ∈ F .

Remarks 4.1. Suppose (X,u) is a QM1(p)-metric space, A a nonempty subset of
X and fA : X → R defined as fA(x) = du(x,A). Then, for all x, y ∈ X, we have
|fA(x)− fA(y)| ≤ (p− 1)du(x, y) and for all a, b ∈ X,

|d(x, y)− d(a, b)| ≤ (p− 1){d(x, a) + d(y, b)}.

Consequently, in this type of spaces, the functions fA and du : X × X → R are
continuous. Moreover, for all a ∈ X and r > 0, Bu(a, r) is an open set. Indeed, for
all x ∈ Bu(a, r), Bu(x, r′) ⊂ Bu(a, r), where r′ = (r − du(x, a))/(p− 1).

It is clear that the definition of completeness, according to the uniformity U , is
coherent with that given in Section 3.
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A subset A of X is said to be bounded, whenever there exist a ∈ X and r > 0 such
that A ⊂ Bu(a, r). We denote by B(X) the family of all bounded sets of X and by
C(X) the family of all nonempty and closed subsets of X. In what follows, we denote
CB(X) = C(X) ∩ B(X) and Bu(A, ε) =

⋃
a∈ABu(a, ε), for each A ∈ B(X) and ε > 0.

The concepts of convergence, Cauchy sequence and completeness coincide with
the corresponding ones, when they are defined in terms of the uniformity Uu. In
particular, a subset A of X is precompact (c.f. [8]), if and only if, for any ε > 0,
there exist A1, . . . , Ar ⊂ X such that, for each i ∈ {1, . . . , r}, Ai × Ai ⊂ Uε and
A ⊂ A1 ∪ · · · ∪Ar.

Let T : X → CB(X) be a correspondence and B a subset of X. We denote

T−1(B) = {x ∈ X : Tx ∩B 6= ∅}.

We say that T is lower (respectively, upper) semicontinuous, whenever for all open
(respectively, closed) subset B of X, we have T−1(B) is an open (respectively, closed)
subset of X. A correspondence is said to be continuous, whenever it is lower and
upper semicontinuous.

Let hT : X → [0,∞) be the function defined as hT (x) = du(x, Tx). We say
that T is metrically lower (respectively, upper) semicontinuous, whenever hT is upper
(respectively, lower) semicontinuous. If hT is continuous, we say that T is metrically
continuous. These concepts were previously introduced in [15] for classical metric
spaces.

As we show below, in QM1(p)-metric spaces, semicontinuity is stronger than metric
semicontinuity.

Theorem 4.2. Suppose (X,u) be a QM1(p)-metric space and let T : X → CB(X) be
a correspondence.

(i) if T is lower semi continuous, then T is metrically lower semi continuous,
and

(ii) if T is upper semi continuous, then T is metrically upper semi continuous.

Proof. Let suppose T is lower semicontinuous. Let α > 0 and

A = {x ∈ E : du(x, Tx) < α}.

If A is an emptyset, A is open. Hence, in order to prove that, in general, A is an
open set, we suppose A 6= ∅ and choose a ∈ A. Accordingly, there exist β and y ∈ Ta
such that du(a, Ta) < du(a, y) < β < α. Consequently, there exists a neighbourhood
V ′(a) of a such that du(x, y) < β, for all x ∈ V ′(a). Let

G = {x ∈ X : du(x, y) < (α− β)/(p− 1)}.

Since G is open, Ta ∩ G 6= ∅ and T is lower semicontinuous, there exists V ′′(a),
neighbourhood of a such that Tx ∩ G, for all x ∈ V ′′(a). Accordingly, for all
x ∈ V (a) = V ′(a) ∩ V ′′(a), du(x, y) < β and there exists bx ∈ Tx such that
(p− 1)du(bx, y) < α− β. Hence

du(x, Tx) ≤ du(x, bx) ≤ (p− 1)du(bx, y) + du(x, y) < α, for all x ∈ V (a),

which proves that T is metrically lower semicontinuous.
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Next suppose T is upper semicontinuous. Let α ∈ R,

A = {x ∈ E : du(x, Tx) > α}

and suppose a ∈ A. Choose β ∈ R such that β > α and du(a, Ta) > β. Let

G = {y ∈ E : du(y, Ta) < (β − α)/2(p− 1)}.

Since Ta ⊆ G, G is open and T is upper semicontinuous, there exists U ′(a) neighbor-
hood of a such that for each x ∈ U ′(a), Tx ⊆ G. This implies that for each x ∈ U ′(a)
and each y ∈ Tx, du(y, Ta) < (β−α)/2(p− 1). Let η > 0 and choose z(y) ∈ Ta such
that du(y, z(y)) < du(y, Ta) + η. Hence

β < du(a, Ta)
≤ (p− 1)du(z(y), y) + du(y, a)
< (p− 1)(du(y, Ta) + η) + du(a, y)
< (p− 1)η + (β − α)/2 + du(a, y).

Since η > 0 is arbitrary, we have du(a, y) ≥ (α+β)/2 and hence, du(a, Tx) ≥ (α+β)/2.
Let U(a) = U ′(a) ∩B(a, (β − α)/(p− 1)) and note that for each x ∈ U(a),

β < du(a, Tx) ≤ (p− 1)du(a, x) + du(x, Tx) < β − α+ du(x, Tx).

This proves that U(a) ⊆ A and therefore, T is metrically upper semicontinuous, which
concludes the proof. �

Example 4.1. Let u : Rp → R be the function defined as

u(x1, . . . , xp) = (|x1 − x2|+ · · ·+ |xp−1 − xp|)2.

Hence, (R, u) is a QM(p, p)-metric space and du(x, y) = (x−y)2, for all x, y ∈ R. Let
S : R→ CB(R) and T : R→ CB(R) be two correspondence defined as

Sx =

{
0 if x 6= 0

[−1, 1] if x 6= 0
and Tx =

{
[−1, 1] if x 6= 0

0 if x = 0.

Observe that S−1(1/2, 1) = {0} and T−1[1/2, 1] = R \ {0}. Hence, S is not lower
semicontinuous and T is not upper semicontinuous. But, on the other hand, hS(x) =
x2 and

hT (x) =

{
(|x| − 1)2 if |x| > 1

0 if |x| ≤ 1.

Thus, S and T are metrically continuous. Therefore, this example along with Theorem
4.2 show that, in QM1(p)-metric spaces, metrical semicontinuity is strictly weaker
than semicontinuity.

Remark 4.2. In Section 7, we show that upper metrically semicontinuity is related
with the existence of fixed points for correspondences.
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5. A non-compactness measure

Let (X,u) be a QM(p, b)-metric space. Even though an explicit metric gen-
erating the topology of a QM(p, b)-metric space is not defined in this paper, a
non-compactness measure (NCM) can be defined by mean of its uniform struc-
ture. In [14] such a NCM is defined, which, according to our uniformity, is given
by α : B(X)→ [0,∞) such that

α(A) = inf{ε > 0 : (∃x1, . . . , xr ∈ X)(A ⊆ Bu(x1, ε/2) ∪ · · · ∪Bu(xr, ε/2))}.
From Theorem 3, Section §4.2, Chapter II in [8], A ∈ B(X) is precompact, if and only
if, α(A) = 0. It is easy to see that α satisfies the usual properties of a NCM. Indeed,

(a) α(A) ≤ α(B), whenever A ⊆ B, (A,B ∈ B(X),
(b) α(A ∪B) ≤ max{α(A), α(B)}, (A,B ∈ B(X)),
(c) α(A) = α(A), (A ∈ B(X)),
(d) α(Bu(A, ε)) < α(A) + ε, (A ∈ B(X) and ε > 0).

Remark 5.1. Suppose (X,u) is a QM(p, b)-complete metric space and let {Bλ}λ∈Λ

be a family of subsets in CB(X) such that inf{α(Bλ) : λ ∈ Λ} = 0 and let

E =
⋂
λ∈Λ

Bλ.

Hence, from Theorem 5 in [14], an old result by Kuratowski in [21] and another by
Horvath in [18], for classical metric spaces, are obtained in the context of this paper.
Indeed, we have E is compact and nonempty.

The above remark enables us to obtain the following proposition.

Proposition 5.1. Let (X,u) be a bounded QM(p, b)-complete metric space and f :
X → R be a lower semicontinuous function such that

inf
x∈X

α({y ∈ X : f(y) ≤ f(x)}) = 0.

Then, f is bounded from below and there exists x∗ ∈ X such that f(x∗) ≤ f(x), for
all x ∈ X.

Proof. For each x ∈ X, let Bx = {y ∈ X : f(y) ≤ f(x)}. Since f is lower semi-
continuous, {Bx}x∈X is a family of subsets in CB(X) and, by assumption,

inf{α(Bx) : x ∈ X} = 0.

Since
⋂
x∈X{y ∈ X : f(y) ≤ f(x)} is nonempty, there exists x∗ ∈ X such that

f(x∗) ≤ f(x), for all x ∈ X, concluding the proof. �

Let T : D ⊆ X → CB(X) be a correspondence. We say that T is condensing, if
α(T (A)) < α(A), for all A ∈ CB(X) such that α(A) > 0.

Example 5.1. Let (X,u) be a QM(p, b)-metric space and f : X → X a du-
contraction, i.e., there exists k ∈ [0, 1) such that du(f(x), f(y)) ≤ kdu(x, y), for
all x, y ∈ X. As in the case of classic metric spaces, f turns out to be condesing.
Indeed, if for some η > 0 and A ∈ CB(X), we have α(A) = η, then α(f(A)) ≤ kη and
thus α(f(A)) < α(A).
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Theorem 5.1. Suppose (X,u) is a bounded QM1(p)-metric space and let T : X →
CB(X) be a metrically upper semicontinuous correspondence such that, for each x ∈
X, there exists y ∈ Tx \ {x} satisfying du(y, Ty) < du(x, y). Additionally, suppose
that one of the following two conditions hold:

(i) X is compact or
(ii) X is complete and T is condensing.

Then, there exists x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. First, we assume condition (i) holds. Since hT : X → R is lower semicontinuous
and X is compact, hT has a minimum at some x∗ ∈ X. Suppose x∗ /∈ Tx∗. By
assumption, there exists y∗ ∈ Tx∗ \ {x∗} such that

hT (y∗) = du(y∗, T y∗) < du(x∗, Tx∗) = hT (x∗),

which contradicts that hT attains a minimum at x∗. Hence, x∗ ∈ Tx∗.
Next, if condition (ii) holds, it follows from Theorem 7 in [14] that there exists a

precompact set C ∈ CB(X) such that T (C) ⊆ C. Since X is complete and C is closed,
C is compact and from what was proved, there exists x∗ ∈ X such that x∗ ∈ Tx∗,
which concludes the proof. �

From Theorems 4.2 and 5.1, the following corollary holds.

Corollary 5.1. Suppose (X,u) is a bounded QM1(p)-metric space and let T : X →
CB(X) be an upper semicontinuous correspondence such that, for each x ∈ X, there
exists y ∈ Tx \ {x} satisfying du(y, Ty) < du(x, y). Additionally, suppose that one of
the following two conditions hold:

(i) X is compact or
(ii) X is complete and T is condensing.

Then, there exists x∗ ∈ X such that x∗ ∈ Tx∗.

A set-valued version of an old result due to Furi Vignoli [16] can be stated, in this
setting, as follows.

Proposition 5.2. Let D be a complete subset of a QM(p, b)-metric space X, T :
D → CB(X) be a condensing metrically upper semi-continuous correspondence and
{xn}n∈N a sequence in D such that {hT (xn)}n∈N converges to zero. Then, {xn}n∈N
is compact and any limit point x∗ of {xn}n∈N satisfies x∗ ∈ Tx∗.

Proof. Let ε > 0 and M = {xn : n ∈ N} and T (M) =
⋃
n∈N Txn. There exists N ∈ N

such that M ⊂ {x0, . . . , xN} ∪ Bu(T (M), ε) and hence, from property (d) of α, we
have α(M) ≤ α(Bu(T (M), ε)) ≤ α(T (M)) + ε.
From this, we obtain α(M) ≤ α(T (M)) and since T is condensing, we have α(M) = 0.
Hence, {xn}n∈N is compact. Let x∗ ∈ D be a limit point of {xn}n∈N and {xnk

}k∈N be
a subsequence such that limn→∞ du(x∗, xnk

) = 0. Since hT is lower semicontinuous,
we have

du(x∗, Tx∗) = hT (x∗) ≤ lim inf hT (xnk
) = lim du(x∗, xnk

) = 0.

Therefore, x∗ ∈ Tx∗ and the proof is complete. �
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6. Fixed point theorems

Lemma 6.1. Let x0, x1, . . . , xm ∈ X. Then, for all n ≤ m− 1,

du(x0, xm) ≤ (p− 1)

n∑
k=0

b2k+1du(xk, xk+1) + b2n+1du(xm, xn+1).

In particular,

du(x0, xm) ≤ (p− 1)

m−1∑
k=0

b2k+1du(xk, xk+1).

Proof. It easily follows from the induction principle and conditions (i) and (ii) in
Remarks 3.1. �

Given a function f : X → X, we denote f1 = f and fn+1 = fn ◦ f , for all n ∈ N.

Theorem 6.1. Suppose (X,u) is complete and f : X → X is a continuous function
such that for all x ∈ X, du(f(x), f2(x)) ≤ kfdu(x, f(x)), where kfb

2 ∈ [0, 1). Then,
there exists a unique x∗ ∈ X such that f(x∗) = x∗ and, for all x ∈ X, the following
two conditions hold:

(i) limn→∞ fn(x) = x∗, and
(ii) du(x∗, fn(x)) ≤ b2(p− 1)knf du(x, f(x))/(1− kfb2), for all n ∈ N \ {0}.

Proof. The uniqueness of x∗ easily follows. Choose x ∈ X and notice that

du(fn(x), fn+1(x)) ≤ kfdu(fn−1(x), fn(x)) ≤ · · · ≤ knf du(x, f(x)).

By Lemma 6.1, we have

du(fn(x), fn+m(x)) ≤ (p− 1)

m−1∑
k=0

b2k+1du(fn+k(x), fn+k+1(x))

≤ (p− 1)

m−1∑
k=0

b2k+1kn+k
f du(x, f(x))

= b(p− 1)knf

m−1∑
k=0

(kfb
2)kdu(x, f(x)).

Consequently, for all m,n ∈ N \ {0},

du(fn(x), fn+m(x)) ≤ b(p− 1)knf du(x, f(x))/(1− kfb2). (6.1)

From this inequality, it is obtained that {fn(x)}n∈N is a Cauchy sequence, and since
(X,u) is a complete QM(p, b)-metric space, there exists x∗ = x∗(x) ∈ X such that
(i) holds. Observe that, for all x, y ∈ X,

du(x∗(x), x∗(y)) = lim sup du(fn(x), fn(y)) = 0.

Hence x∗, in (i), does not depend on x. Moreover, from (i) and the continuity of f at
x∗, we have f(x∗) = x∗. On the other hand, limm→∞ du(x∗, fm+n(x)) = 0 and

du(x∗, fn(x)) ≤ b(p− 1)du(x∗, fm+n(x)) + bdu(fn(x), fm+n(x)).
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Hence, by taking limit as m goes to ∞ in the above inequality, condition (ii) follows
from (6.1), which concludes the proof. �

Remark 6.1. The continuity of f in Theorem 4.1 is essential. Indeed, let f : R→ R
be defined as

f(x) =

{
1 + x

2 if x < 2
x
2 − 1 if x ≥ 2.

We have |f(x)− f2(x)| ≤ (1/2)|x− f(x)|, for all x ∈ R, and f has no fixed point.

Corollary 6.1. Suppose (X,u) is a complete QM1(p)-metric space and f : X → X
is a continuous function such that for all x ∈ X, du(f(x), f2(x)) ≤ kfdu(x, f(x)),
where kf ∈ [0, 1). Then, there exists a unique x∗ ∈ X such that f(x∗) = x∗ and, for
all x ∈ X, the following two conditions hold:

(i) limn→∞ fn(x) = x∗, and
(ii) du(fn(x), x∗) ≤ (p− 1)knf du(x, f(x))/(1− kf ), for all n ∈ N \ {0}.

Examples 6.1. The following examples illustrate Theorem 6.1.

(6.1.1) We say that f is a QM(p, b)-metric contraction, whenever

du(f(x), f(y)) ≤ kdu(x, y), for all x, y ∈ X,

where kb2 ∈ [0, 1). Since f is continuous and du(f(x), f2(x)) ≤ kdu(x, f(x)),
for all x ∈ X, Theorem 6.1 applies with kf = k.

(6.1.2) A continuous function f is said to be a Kannan QM(p, b)-metric contraction
(see [19]), whenever

du(f(x), f(y)) ≤ α(du(x, f(x)) + du(y, f(y))), for all x, y ∈ X,

where 0 ≤ α < 1/(1 + b2). Hence, for all x ∈ X,

du(f(x), f2(x)) ≤ kfdu(x, f(x)),

where kf = α/(1− α) and since, kb2 < 1, it follows from Theorem 6.1 that f
has a fixed point, x∗. Moreover, for all x ∈ X and n ∈ N \ {0}, we have

du(x∗, fn(x)) ≤ b2α(p− 1)

(
α

1− α

)n−1
du(x, f(x))

1− α(1 + b2)
.

Notice that, for p = 2 and b = 1, the original result by Kannan in [19] is
recovered.

(6.1.3) A condition for a continuous function f to be a Chatterjea QM(p, b)-metric
contraction (see [9]), with constant α, is naturally given by

du(f(x), f(y)) ≤ α[du(x, f(y)) + du(y, f(x))], for all x, y ∈ X,

where α{(p − 1)b + b2} < 1. Hence, from Theorem 6.1, f has a fixed point,
x∗, and for all x ∈ X and n ∈ N \ {0}, we have

du(x∗, fn(x)) ≤ αb3(p− 1)2

(
α(p− 1)b

1− αb2

)n−1
du(x, f(x))

1− αb2(1 + (p− 1)b)
.

If p = 2 and b = 1, as in Chatterjea [9], Theorem 6.1 applies for α < 1/2.
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(6.1.4) A QM(p, b)-Reich contraction is defined as a continuous function f satisfying

du(f(x), f(y)) ≤ αdu(x, y) + βdu(x, f(x)) + γdu(y, f(y)),

for all x, y ∈ X, where α, β and γ are constants such that 0 ≤ (α+β)b2 < 1−γ.
Accordingly, Theorem 6.1 implies that such a f has a fixed point, x∗, and for
all x ∈ X and n ∈ N \ {0}, we have

du(x∗, fn(x)) ≤ b2(p− 1)

(
α+ β

1− γ

)n
(1− γ)du(x, f(x))

1− γ − (α+ β)b2
.

Conclusion of Theorem 3 in Reich [29] is obtained by applying Theorem 6.1
with p = 2 and b = 1.

(6.1.5) We extend the concept of weak contraction by Berinde [7], as follows. We
say f : X → X is a QM(p, b)-contraction, if f is continuous and there exists
δ ∈ [0, 1/b2) and L ≥ 0, such that

du(f(x), f(y)) ≤ δdu(x, y) + Ldu(y, f(x)).

Since for each x ∈ X, du(f(x), f2(x)) ≤ δdu(x, f(x)), Theorem 6.1 implies
that f has a fixed point, x∗, and for all x ∈ X and n ∈ N \ {0}, we have

du(x∗, fn(x)) ≤ b2(p− 1)δndu(x, f(x))

(1− δb2)
, for all n ∈ N \ {0}.

(6.1.6) A version of quasi contraction (Ćirić) mapping with constant α, is defined by
stating f is continuous and satisfies

du(f(x), f(y)) ≤ αmax{du(x, y), du(x, f(x)),

du(y, f(y)), du(x, f(y)), du(y, f(x))},
for all x, y ∈ X, such that αb(p− 1 + b) < 1. Indeed, we have

du(f(x), f2(x)) ≤ αmax{du(x, f(x)), du(f(x), f2(x)), du(x, f2(x))}.

But α < 1/2 and hence

du(f(x), f2(x)) ≤ αmax{du(x, f(x)), du(x, f2(x))}
≤ α{b(p− 1)du(x, f(x)) + bdu(f2(x), f(x))}.

That is

du(f(x), f2(x)) ≤
(
αb(p− 1)

1− αb2

)
du(xf(x)).

By Theorem 6.1, f has a fixed point, x∗, and for all x ∈ X and n ∈ N \ {0},
we have

du(x∗, fn(x)) ≤ αb3(p− 1)2

(
αb(p− 1)

1− αb2

)n−1
du(x, f(x))

1− αb(p− 1 + b)
.

Condition αb(p − 1 + b) < 1, in Example (6.1.6), may be improved in order to
obtain existence of fixed point for quasi contractions. To this end, an independent
result of Theorem 6.1 is stated below, which is an extension of the main result of Ćirić
in [10].
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The concept of α-quasi contraction defined in Ćirić [10] may be extended in our
setting as a function f : X → X satisfying

du(f(x), f(y)) ≤ αmax{du(x, y), du(x, f(x)), du(y, f(y)), du(x, f(y)), du(y, f(x))},
for all x, y ∈ X, such that αb2 < 1. Indeed, we have

Theorem 6.2. Let (X,u) be a complete QM(p, b) metric space and f : X → X be
a quasi contraction, as defined in Example (6.1.6), with αb2 < 1. Then, there exists
x∗ ∈ X such that the following two condition hold:

(i) limn→∞ fn(x) = x∗, for all x ∈ X, and
(ii) du(x∗, fn(x)) ≤ (αb)n(p− 1)b2du(x, f(x))/(1− αb2), for all n ∈ N \ {0}.

Moreover, x∗ is a fixed point for f , if one of the following three conditions hold:

(iii) f is continuous at x∗,
(iv) du(x∗, ·) is continuous, or
(v) du(·, x∗) is continuous.

Proof. For each n ∈ N \ {0} and x ∈ X, let O(x, n) = {fk(x) : 0 ≤ k ≤ n}, where
f0(x) = x, and O(x,∞) =

⋃
n≥1O(x, n). Given a nonempty subset A of X, we denote

by δ[A] = sup{du(x, y) : x, y ∈ A} the diameter of A. Hence, for each i, j ∈ {1, . . . , n}
and x ∈ X, we have

du(f i(x), f j(x)) ≤ αδ[O(x, n)].

In particular, since α < 1, there exists kn ≤ n such that

Mn(x) := max{du(x, fkn(x)), du(fkn(x), x)} = δ[O(x, n)]. (6.2)

Moreover,

du(x, fkn(x)) ≤ (p− 1)bdu(x, f(x)) + bdu(fkn(x), f(x))
≤ (p− 1)bdu(x, f(x)) + αbMn(x).

Hence, Mn(x) ≤ (p− 1)b2du(x, f(x))/(1− αb2) and consequently,

δ[O(x,∞)] ≤ (p− 1)b2

1− αb2
du(x, f(x)). (6.3)

For each n, r ∈ N and x ∈ X, we have

du(fn(x), fn+r(x)) ≤ αδ[O(fn−1(x), r + 1)]

and, as in (6.2), there exists k ≤ r such that δ[O(fn−1(x), r + 1)] = M ′n(x), where

M ′n(x) = max{du(fn−1(x), fk+n(x)), du(fk+n(x), fn−1(x))}.
As before, du(fn−1(x), fk+n(x)) ≤ αδ[O(fn−2(x), r + 2)] and hence

M ′n(x) = δ[O(fn−1(x), r + 1)] ≤ αbδ[O(fn−2(x), r + 2)].

Thus, inductively, we have

du(fn(x), fn+r(x)) ≤ αδ[O(fn−1(x), r + 1)] ≤ · · · ≤ αnbn−1δ[O(x, r + n)]

and from (6.3), we obtain

du(fn(x), fn+r(x)) ≤ (αb)n
(p− 1)b

1− αb2
du(x, f(x)). (6.4)
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Thus, for each x ∈ X, {fn(x)}n∈N is a Cauchy sequence and since (X,u) is complete,
there exists x∗ ∈ X such that condition (i) holds. From (6.4),

du(x∗, fn(x)) ≤ b(p− 1)du(x∗, fn+r(x)) + (αb)n
(p− 1)b2

1− αb2
du(x, f(x)),

and by taking limit as r goes to ∞, condition (ii) is obtained.
From (i), x∗ is a fixed point for f , when f is continuous at x∗. Next, we suppose

du(·, x∗) or du(x∗, ·) are continuous. Notice that

du(x∗, f(x∗)) ≤ (p− 1)bdu(x∗, fn(x∗)) + bdu(f(x∗), fn(x∗))
≤ (p− 1)bdu(x∗, fn(x∗)) + αbMn,

where Mn = maxAn and

An = {du(x∗, fn−1(x∗)), du(x∗, f(x∗)), du(fn−1(x∗), fn(x∗)),

du(x∗, fn(x∗)), du(fn−1(x∗), f(x∗))}.
It is easy to see that lim supMn ≤ bdu(x∗, f(x∗)). Consequently,

du(x∗, f(x∗)) ≤ αb2du(x∗, f(x∗))

and since αb2 < 1, we have du(x∗, f(x∗)) = 0, which concludes the proof. �

Corollary 6.2. Suppose (X,u) is a QM1(p) metric space and f : X → X is a quasi
contraction, as defined in Example (6.1.6), with α < 1. Then, there exists a fixed
point x∗ ∈ X for f , such that the following two condition hold:

(i) limn→∞ fn(x) = x∗, for all x ∈ X, and
(ii) du(x∗, fn(x)) ≤ αn(p− 1)du(x, f(x))/(1− α), for all n ∈ N \ {0}.

Proof. It directly follows from Theorem 6.2 and Remarks 4.1. �

Remark 6.2. Even though most of the conclusions of Examples 6.1 may be also
obtained from Theorem 6.2, both Theorems 6.1 and 6.2 have their own importance
and they are independent, in the sense that, each of them has an independent proof.
In particular, it is not possible to obtain the conclusions of Example (6.1.5) by means
of Theorem 6.2 or Corollary 6.2. However, Corollary 6.2 implies that the continuity
in Examples (6.1.2)-(6.1.4) could be dropped when (X,u) is a QM1(p)-metric space.

7. Fixed point theorems for correspondences

Theorem 7.1. Let (X,u) be a complete QM(p, b)-metric space, T : X → CB(X) be
a correspondence and kT ∈ [0, 1/b2). Assume that for all x ∈ X,

inf
y∈Tx

du(y, Ty) ≤ kT du(x, Tx).

Then, for all x0 ∈ X and ρ ∈ (kT , 1/b
2), there exist x∗ ∈ X and a sequence {xn}n∈N

converging to x∗ such that xn+1 ∈ Txn, for all n ∈ N, and the following three condi-
tions hold:

(i) du(xn, Txn) ≤ du(xn, xn+1) ≤ ρndu(x0, Tx0),
(ii) limn→∞ du(x∗, Txn) = 0 and
(iii) du(x∗, Txn) ≤ b2(p− 1)ρn+1du(x0, Tx0)/(1− ρb2), for all n ∈ N.
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Moreover, x∗ ∈ Tx∗, whenever one of the two following conditions hold:

(iv) T is metrically upper continuous, or
(v) T is upper semicontinuous.

Proof. Fix x0 ∈ X and let ρ satisfy kT b
2 < ρb2 < 1. If du(x0, Tx0) = 0, we define

xn = x0, for all n ≥ 1. Otherwise, from assumption, there exist x1 ∈ Tx0 such that
du(x1, Tx1) < ρdu(x0, Tx0). If du(x1, Tx1) = 0, we define xn = x1, for all n ≥ 2.
Otherwise, there exist x2 ∈ Tx1 such that du(x2, Tx2) < ρd(x1, Tx1) < ρ2d(x0, Tx0).
It follows by induction that there exists a sequence {xn}n∈N in X such that, for
all n ∈ N, du(xn, Txn) ≤ du(xn, xn+1) ≤ ρndu(x0, Tx0) and xn+1 ∈ Txn. Hence,
condition (i) holds.

By Lemma 6.1, for all n ∈ N and m ≥ n+ 1, we have

du(xn, xn+m) ≤ (p− 1)

m−1∑
k=0

b2k+1du(xn+k, xn+k+1)

≤ (p− 1)
m−1∑
k=0

b2k+1ρn+kdu(x0, Tx0)

= b(p− 1)ρn
m−1∑
k=0

(ρb2)kdu(x0, Tx0)

≤ b(p− 1)ρndu(x0, Tx0)/(1− ρb2).

Hence, {xn}n∈N is a Cauchy sequence and, accordingly, there exists x∗ ∈ X such
that {xn}n∈N converges to x∗. In particular, condition (ii) holds. Condition (iii) is
obtained from the inequality Notice that

du(x∗, xn+1) ≤ b(p− 1)du(x∗, xn+m) + bdu(xn+1, xn+m)
b(p− 1)du(x∗, xn+m) + b2(p− 1)ρn+1du(x0, Tx0)/(1− ρb2).

Hence, condition (iii) is obtained from the above inequality by taking limit as m goes
to ∞.
Under condition (iv), we have

du(x∗, Tx∗) ≤ lim inf du(xn, Txn) ≤ lim inf du(xn, xn+1) = 0,

and since Tx∗ is closed, it is obtained that x∗ ∈ Tx∗. Next, we suppose that x∗ /∈ Tx∗
and condition (v) holds. Let G an open set such that x∗ /∈ G and Tx∗ ⊂ G. Since
T is upper semicontinuous, there exists a neighborhood V of x∗ such that T (x) ⊂ G,
for all x ∈ V . By the convergence of {xn}n∈N to x∗, there exists N ∈ N such that
xn ∈ V , for all n ≥ N , and hence xn+1 ∈ Txn ⊂ G. This fact implies that x∗ ∈ G,
which is a contradiction. Therefore, x∗ ∈ Tx∗ and the proof is complete. �

Corollary 7.1. Let (X,u) be a complete QM1(p)-metric space, T : X → CB(X) be
an upper semicontinuous correspondence and kT ∈ [0, 1). Assume that, for all x ∈ X,
infy∈Tx du(y, Ty) ≤ kT du(x, Tx). Then, for all x0 ∈ X and ρ ∈ (kT , 1/b

2), there
exist x∗ ∈ X such that x∗ ∈ Tx∗ and a sequence {xn}n∈N converging to x∗ such that
xn+1 ∈ Txn, for all n ∈ N, and the following three conditions hold:

(i) du(xn, Txn) ≤ du(xn, xn+1) ≤ ρndu(x0, Tx0),
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(ii) limn→∞ du(x∗, Txn) = 0 and
(iii) du(x∗, Txn) ≤ (p− 1)ρn+1du(x0, Tx0)/(1− ρ), for all n ∈ N.

Proof. It follows from Theorems 4.2 and 7.1. �

Suppose (X,u) is a QM(p, b)-metric space and let Hu : CB(X) × CB(X) → R be
defined as

Hu(A,B) = max

{
sup
x∈A

du(x,B), sup
x∈B

du(x,A)

}
.

Remark 7.1. For all A,B,C ∈ CB(X), Hu satisfies the following three conditions:

(i) Hu(A,B) = 0 if A = B,
(ii) Hu(A,B) = Hu(B,A),
(iii) Hu(A,B) ≤ b{(p− 1)Hu(A,C) +Hu(B,C)}, whenever du is symmetric, and
(iv) Hu(A,B) ≤ b{(p− 1)Hu(A,C) + bHu(B,C)}, in general.

Moreover, if (X,u) is a non genuine QM1(p)-metric space, Hu is the classic Hausdorff
metric generated by the metric du.

Theorem 7.2. Let (X,u) be a complete QM(p, b)-metric space, T : X → CB(X) be
a correspondence and kT ∈ [0, 1/b2). Assume that for all x ∈ X,

inf
y∈Tx

du(y, Ty) ≤ kT du(x, Tx).

Then, for all x0 ∈ X and ρ ∈ (kT , 1/b
2), there exist x∗ ∈ X and a sequence {xn}n∈N

converging to x∗ such that xn+1 ∈ Txn, for all n ∈ N, and the following three condi-
tions hold:

(i) du(xn, Txn) ≤ du(xn, xn+1) ≤ ρndu(x0, Tx0),
(ii) limn→∞ du(x∗, Txn) = 0 and

(iii) du(x∗, Txn) ≤ b2(p− 1)ρn+1du(x0, Tx0)/(1− ρb2), for all n ∈ N.

Moreover, x∗ ∈ Tx∗, whenever one of the following two conditions hold:

(iv) limn→∞Hu(Txn, Tx
∗) = 0, or

(v) T is upper semicontinuous.

Proof. From Theorem 7.1, for all x0 ∈ X and ρ ∈ (kT , 1/b
2), there exist x∗ ∈ X and

a sequence {xn}n∈N converging to x∗ ∈ X such that xn+1 ∈ Txn, for all n ∈ N, and
conditions (i)-(iii) hold. Moreover, x∗ ∈ Tx∗ if T is upper semicontinuous. Hence, by
supposing that limn→∞Hu(Txn, Tx

∗) = 0, it only remains to prove that x∗ ∈ Tx∗.
We have,

du(x∗, Tx∗) ≤ b(p− 1)du(x∗, xn+1) + b2Hu(Txn, Tx
∗)

and by taking limit as n goes to ∞, we obtain du(x∗, Tx∗) = 0 due to condition (v).
Since Tx∗ is closed, we have x∗ ∈ X and the proof is complete. �

Remark 7.2. In Theorem 7.2, if (X,u) is a metric space and T has compact images,
then, condition (iv) is obtained from condition (v).

Examples 7.1. Let (X,u) be a complete QM(p, b)-metric space and T : X → CB(X)
be a correspondence.
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(7.1.1) We say T is a multivalued QM(p, b)-metric contraction, whenever
Hu(Tx, Ty) ≤ kdu(x, y), for all x, y ∈ X, where k ∈ [0, 1/b2). Notice that,
for all x ∈ X and y ∈ Tx, du(y, Ty) ≤ Hu(Tx, Ty) ≤ kdu(x, y). Hence,
infy∈Tx du(y, Ty) ≤ kdu(x, Tx). Theorem 7.2 implies that, for all x0 ∈ X and
ρ ∈ (k, 1/b2), there exist x∗ ∈ X and a sequence {xn}n∈N converging to x∗

such that xn+1 ∈ Txn, for all n ∈ N, and the following inequality holds:

du(x∗, Txn) ≤
(
b2(p− 1)ρn+1

1− ρb2

)
du(x0, Tx0), for all n ∈ N.

Since Hu(Tx∗, Txn) ≤ kdu(x∗, xn), we have limn→∞Hu(Tx∗, Txn) = 0.
Hence, Theorem 7.2 implies that x∗ ∈ Tx∗.

(7.1.2) In our setting, T is a Kannan multivalued QM(p, b)-metric contraction, when-
ever

Hu(Tx, Ty) ≤ α(du(x, Tx) + du(y, Ty)), for all x, y ∈ X,
where 0 ≤ α(b2 + 1) < 1. For all x ∈ X and y ∈ Tx, we have

du(y, Ty) ≤ Hu(Tx, Ty) ≤ α{du(x, Tx) + du(y, Ty)}
and hence infy∈Tx du(y, Ty) ≤ kT du(x, Tx), where kT = α/(1 − α) < 1/b2.
From Theorem 7.2, for all x0 ∈ X and α∗ ∈ (α, 1/(b2 + 1), there exist x∗ ∈ X
and a sequence {xn}n∈N converging to x∗ such that xn+1 ∈ Txn, for all n ∈ N,
and the following inequality holds holds:

du(x∗, Txn) ≤ α∗b2(p− 1)

{
α∗

1− α∗

}n
du(x0, Tx0)

1− α∗(b2 + 1)
,

for all n ∈ N. Moreover

Hu(Txn, Tx
∗) ≤ α{du(xn, Txn) + du(x∗, Tx∗)}
≤ α{du(xn, Txn) + b(p− 1)du(x∗, Txn)

+ b2Hu(Txn, Tx
∗)}

and consequently,

Hu(Txn, Tx
∗) =

α{du(xn, xn+1) + b(p− 1)du(x∗, Txn)}
1− αb2

.

Hence, limn→∞Hu(Tx∗, Txn) = 0 and, from Theorem 7.2, x∗ ∈ Tx∗.
(7.1.3) The correspondence T is a Chatterjea QM(p, b)-metric contraction, with con-

stant α satisfying αb2(b(p− 1) + 1) < 1, whenever

Hu(Tx, Ty) ≤ α{du(x, Ty) + du(y, Tx)}, for all x, y ∈ X.
For all x ∈ X and y ∈ Tx, we have

Hu(Tx, Ty) ≤ αdu(x, Ty) ≤ αb(p− 1)du(x, Tx) + αb2Hu(Tx, Ty)

and hence

du(y, Ty) ≤ Hu(Tx, Ty) ≤
(
αb(p− 1)

1− αb2

)
du(x, Tx).

Hence, Theorem 7.2 implies that, for all x0 ∈ X and

α∗ ∈ (α, 1/b2(b(p− 1) + 1)),
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there exist x∗ ∈ X and a sequence {xn}n∈N, converging to x∗, such that
xn+1 ∈ Txn and the following inequality holds:

du(x∗, Txn) ≤ α∗b3(p− 1)2

{
α∗b(p− 1)

1− α∗b2

}n
du(x0, Tx0)

1− α∗b2(b(p− 1) + 1)
,

for all n ∈ N.
Notice that

Hu(Txn, Tx
∗) ≤ α{du(xn, Tx

∗) + du(x∗, Txn)}
≤ α{b(p− 1)du(xn, xn+1) + b2Hu(Txn, Tx

∗)
+ du(x∗, Txn)}.

Hence

Hu(Txn, Tx
∗) =

α{b(p− 1)du(xn, xn+1) + du(x∗, Txn)}
1− αb2

and thus limn→∞Hu(Txn, Tx
∗) = 0. Therefore, by Theorem 7.2, x∗ ∈ Tx∗.

(7.1.4) We say the correspondence T is a multivalued QM(p, b)-Reich contraction
whenever

Hu(Tx, Ty) ≤ αdu(x, y) + βdu(x, Tx) + γdu(y, Ty), for all x, y ∈ X,

where α, β and γ are constants such that 0 ≤ (α+β)b2 + γ < 1. Notice that,
for all x ∈ X and y ∈ Tx,

du(y, Ty) ≤ αdu(x, y) + βdu(x, Tx)

1− γ
.

Hence,

inf
y∈Tx

du(y, Ty) ≤ α+ β

1− γ
du(x, Tx).

From Theorem 7.2, for all x0 ∈ X and ρ such that

α+ β

1− γ
< ρ <

1

b2
,

there exist x∗ ∈ X and a sequence {xn}n∈N converging to x∗ such that xn+1 ∈
Txn and the following inequality holds:

du(x∗, Txn) ≤
(
b2(p− 1)ρn+1

1− ρb2

)
du(x0, Tx0),

for all n ∈ N.
(7.1.5) The concept of weak contraction by Berinde [7] is extended for correspon-

dences as follows. We say T is a QM(p, b)-weak contraction, if there exists
δ ∈ [0, 1/b2) and L ≥ 0, such that

Hu(Tx, Ty) ≤ δdu(x, y) + Ldu(y, Tx).

Since for all x ∈ X and y ∈ Tx, du(y, Ty) ≤ δdu(x, Tx), Theorem 7.2 implies
that, for all x0 ∈ X and δ∗ ∈ (δ, 1), there exist x∗ ∈ X and a sequence
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{xn}n∈N converging to x∗ such that xn+1 ∈ Txn and the following inequality
holds:

du(x∗, Txn) ≤
(
b2(p− 1)δ∗n+1

1− δ∗b2

)
du(x0, Tx0), for all n ∈ N.

(7.1.6) The correspondence T is say to be a multivalued quasi contraction (Ćirić),
with constant α, whenever

Hu(Tx, Ty) ≤ αmax{du(x, y), du(x, Tx), du(y, Ty),

du(x, Ty), du(y, Tx)},
for all x, y ∈ X, such that α(b3(p − 1) + b2) < 1. In this case, for all x ∈ X
and y ∈ Tx, we have

du(y, Ty) ≤ Hu(Tx, Ty) ≤ αmax{du(x, y), du(x, Ty)}
and hence

inf
y∈Tx

du(y, Ty) ≤
(
αb(p− 1)

1− αb2

)
du(x, Tx).

Since 0 ≤ αb(p−1)/(1−αb2) < 1/b2, Theorem 7.2 implies that for all x0 ∈ X
and α∗ ∈ (α, 1/{b3(p− 1) + b2}) there exist x∗ ∈ X and a sequence {xn}n∈N
such that xn+1 ∈ Txn and the following inequality holds:

du(x∗, Txn) ≤ α∗b3(p− 1)2

{
α∗b(p− 1)

1− α∗b2

}n
du(x0, Tx0)

1− α∗b2(b(p− 1) + 1)
,

for all n ∈ N.

Remark 7.3. It is well known that in Example (7.1.6), when (X,u) is a classic metric
space, one condition for the existence of a fixed point and the other conclusions in this
example is 0 ≤ α < 1/2. These results are recovered in Example (7.1.6), by making
p = 2 and b = 1. It is worth mentioning that it is an open problem the existence of
fixed points for this type of contractions when 1/2 ≤ α < 1. Even for classic metric
spaces.
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[2] P. Alexandroff, P. Urysohn, Mémoire sur les espaces topologiques compactes, Verh. Akad. Weten-
sch, 14(1929), 1-91.

[3] V.T. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications,
Topology Appl., 185-186(2015), 50-64.

[4] H. Aydi, A. Felhi, E. Karapinar, F.A. Alojail, Fixed points on quasi-metric spaces via simulation
functions and consequences, J. Math. Anal., 9(2018), no. 2, 10-24.

[5] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos.
Ped. Inst., Unianowsk, 30(1989), 26-37.

[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations
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